Abstract

A simple refractive index sensor based on a small section of fiber damaged by the fiber fuse is proposed and demonstrated with a sensitivity of 350.58 nm/refractive index unit (RIU). For comparison, a hetero-core structure fiber sensor composed of a short no-core fiber (NCF) sandwiched between two pieces of single-mode fibers is demonstrated with a sensitivity of 157.29 nm/RIU. The fiber fuse technique can allow mass production of sensors by incorporating small sections of the damaged fiber of any type into each device. We believe this is the first application of the periodic damage tracks in optical fibers formed by the fiber fuse.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Y. Fu, G. R. Lin, W. F. Liu, H. J. Sheng, P. C. Su, C. L. Tien, “Optical fiber sensor based on air-gap long-period fiber gratings,” Jpn. J. Appl. Phys. 48(12), 120211 (2009).
    [CrossRef]
  2. J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photonics J. 3(6), 1189–1197 (2011).
    [CrossRef]
  3. M. Y. Fu, “Refractive index sensing based on the reflectivity of the backward cladding-core mode coupling in a concatenated fiber Bragg grating and a long period grating,” IEEE Sens. J. 12(5), 1415–1420 (2012).
    [CrossRef]
  4. A. Sun, Z. Wu, “High sensitive refractive index sensor based on cladding mode recoupled chirped FBG,” IEEE Photon. Technol. Lett. 24(5), 413–415 (2012).
    [CrossRef]
  5. Q. Rong, X. Qiao, Y. Du, D. Feng, R. Wang, Y. Ma, H. Sun, M. Hu, Z. Feng, “Reflective refractometer based on a thin-core fiber tailored multimode Fiber Bragg grating,” IEEE Sens. J. 13(11), 4356–4360 (2013).
    [CrossRef]
  6. Q. Wang, G. Farrell, W. Yan, J., “Investigation on single-mode–multimode–single-mode fiber structure,” J. Lightwave Technol. 26(5), 512–519 (2008).
    [CrossRef]
  7. W. S. Mohammed, A. Mehta, E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22(2), 469–477 (2004).
    [CrossRef]
  8. W. S. Mohammed, P. W. E. Smith, X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31(17), 2547–2549 (2006).
    [CrossRef] [PubMed]
  9. H. Xue, H. Meng, W. Wang, R. Xiong, Q. Yao, B. Huang, “Single-mode-multimode fiber structure based sensor for simultaneous measurement of refractive index and temperature,” IEEE Sens. J. 13(11), 4220–4223 (2013).
    [CrossRef]
  10. Q. Wu, Y. Semenova, B. Yan, Y. Ma, P. Wang, C. Yu, G. Farrell, “Fiber refractometer based on a fiber Bragg grating and single-mode-multimode-single-mode fiber structure,” Opt. Lett. 36(12), 2197–2199 (2011).
    [CrossRef] [PubMed]
  11. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, G. Farrell, “Investigation of single-mode–multimode–single-mode and single-mode–tapered-multimode–single-mode fiber structures and their application for refractive index sensing,” J. Opt. Soc. Am. B 28(5), 1180–1186 (2011).
    [CrossRef]
  12. C. L. Lee, K. H. Lin, Y. Y. Lin, J. M. Hsu, “Widely tunable and ultrasensitive leaky-guided multimode fiber interferometer based on refractive-index-matched coupling,” Opt. Lett. 37(3), 302–304 (2012).
    [CrossRef] [PubMed]
  13. S. Todoroki, “Origin of periodic void formation during fiber fuse,” Opt. Express 13(17), 6381–6389 (2005).
    [CrossRef] [PubMed]
  14. R. Kashyap, K. J. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibers,” Electron. Lett. 24(1), 47–49 (1988).
    [CrossRef]
  15. R. Kashyap, “The Fiber Fuse--from a curious effect to a critical issue: A 25th year retrospective,” Opt. Express 21(5), 6422–6441 (2013).
    [CrossRef] [PubMed]
  16. K. S. Abedin, M. Nakazawa, “Real time monitoring of a fiber fuse using an optical time-domain reflectometer,” Opt. Express 18(20), 21315–21321 (2010).
    [CrossRef] [PubMed]
  17. R. R. Alfano, S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24(11), 592–594 (1970).
    [CrossRef]
  18. J. E. Antonio-Lopez, A. Castillo-Guzman, D. A. May-Arrioja, R. Selvas-Aguilar, P. Likamwa, “Tunable multimode-interference bandpass fiber filter,” Opt. Lett. 35(3), 324–326 (2010).
    [CrossRef] [PubMed]

2013

Q. Rong, X. Qiao, Y. Du, D. Feng, R. Wang, Y. Ma, H. Sun, M. Hu, Z. Feng, “Reflective refractometer based on a thin-core fiber tailored multimode Fiber Bragg grating,” IEEE Sens. J. 13(11), 4356–4360 (2013).
[CrossRef]

H. Xue, H. Meng, W. Wang, R. Xiong, Q. Yao, B. Huang, “Single-mode-multimode fiber structure based sensor for simultaneous measurement of refractive index and temperature,” IEEE Sens. J. 13(11), 4220–4223 (2013).
[CrossRef]

R. Kashyap, “The Fiber Fuse--from a curious effect to a critical issue: A 25th year retrospective,” Opt. Express 21(5), 6422–6441 (2013).
[CrossRef] [PubMed]

2012

C. L. Lee, K. H. Lin, Y. Y. Lin, J. M. Hsu, “Widely tunable and ultrasensitive leaky-guided multimode fiber interferometer based on refractive-index-matched coupling,” Opt. Lett. 37(3), 302–304 (2012).
[CrossRef] [PubMed]

M. Y. Fu, “Refractive index sensing based on the reflectivity of the backward cladding-core mode coupling in a concatenated fiber Bragg grating and a long period grating,” IEEE Sens. J. 12(5), 1415–1420 (2012).
[CrossRef]

A. Sun, Z. Wu, “High sensitive refractive index sensor based on cladding mode recoupled chirped FBG,” IEEE Photon. Technol. Lett. 24(5), 413–415 (2012).
[CrossRef]

2011

2010

2009

M. Y. Fu, G. R. Lin, W. F. Liu, H. J. Sheng, P. C. Su, C. L. Tien, “Optical fiber sensor based on air-gap long-period fiber gratings,” Jpn. J. Appl. Phys. 48(12), 120211 (2009).
[CrossRef]

2008

2006

2005

2004

1988

R. Kashyap, K. J. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibers,” Electron. Lett. 24(1), 47–49 (1988).
[CrossRef]

1970

R. R. Alfano, S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24(11), 592–594 (1970).
[CrossRef]

Abedin, K. S.

Alfano, R. R.

R. R. Alfano, S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24(11), 592–594 (1970).
[CrossRef]

Antonio-Lopez, J. E.

Blow, K. J.

R. Kashyap, K. J. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibers,” Electron. Lett. 24(1), 47–49 (1988).
[CrossRef]

Brambilla, G.

Castillo-Guzman, A.

Chen, Q.

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photonics J. 3(6), 1189–1197 (2011).
[CrossRef]

Ding, M.

Du, Y.

Q. Rong, X. Qiao, Y. Du, D. Feng, R. Wang, Y. Ma, H. Sun, M. Hu, Z. Feng, “Reflective refractometer based on a thin-core fiber tailored multimode Fiber Bragg grating,” IEEE Sens. J. 13(11), 4356–4360 (2013).
[CrossRef]

Farrell, G.

Feng, D.

Q. Rong, X. Qiao, Y. Du, D. Feng, R. Wang, Y. Ma, H. Sun, M. Hu, Z. Feng, “Reflective refractometer based on a thin-core fiber tailored multimode Fiber Bragg grating,” IEEE Sens. J. 13(11), 4356–4360 (2013).
[CrossRef]

Feng, Z.

Q. Rong, X. Qiao, Y. Du, D. Feng, R. Wang, Y. Ma, H. Sun, M. Hu, Z. Feng, “Reflective refractometer based on a thin-core fiber tailored multimode Fiber Bragg grating,” IEEE Sens. J. 13(11), 4356–4360 (2013).
[CrossRef]

Fu, M. Y.

M. Y. Fu, “Refractive index sensing based on the reflectivity of the backward cladding-core mode coupling in a concatenated fiber Bragg grating and a long period grating,” IEEE Sens. J. 12(5), 1415–1420 (2012).
[CrossRef]

M. Y. Fu, G. R. Lin, W. F. Liu, H. J. Sheng, P. C. Su, C. L. Tien, “Optical fiber sensor based on air-gap long-period fiber gratings,” Jpn. J. Appl. Phys. 48(12), 120211 (2009).
[CrossRef]

Gu, X.

Hsu, J. M.

Hu, M.

Q. Rong, X. Qiao, Y. Du, D. Feng, R. Wang, Y. Ma, H. Sun, M. Hu, Z. Feng, “Reflective refractometer based on a thin-core fiber tailored multimode Fiber Bragg grating,” IEEE Sens. J. 13(11), 4356–4360 (2013).
[CrossRef]

Huang, B.

H. Xue, H. Meng, W. Wang, R. Xiong, Q. Yao, B. Huang, “Single-mode-multimode fiber structure based sensor for simultaneous measurement of refractive index and temperature,” IEEE Sens. J. 13(11), 4220–4223 (2013).
[CrossRef]

Jiang, L.

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photonics J. 3(6), 1189–1197 (2011).
[CrossRef]

Johnson, E. G.

Kashyap, R.

R. Kashyap, “The Fiber Fuse--from a curious effect to a critical issue: A 25th year retrospective,” Opt. Express 21(5), 6422–6441 (2013).
[CrossRef] [PubMed]

R. Kashyap, K. J. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibers,” Electron. Lett. 24(1), 47–49 (1988).
[CrossRef]

Lee, C. L.

Li, B.

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photonics J. 3(6), 1189–1197 (2011).
[CrossRef]

Likamwa, P.

Lin, G. R.

M. Y. Fu, G. R. Lin, W. F. Liu, H. J. Sheng, P. C. Su, C. L. Tien, “Optical fiber sensor based on air-gap long-period fiber gratings,” Jpn. J. Appl. Phys. 48(12), 120211 (2009).
[CrossRef]

Lin, K. H.

Lin, Y. Y.

Liu, W. F.

M. Y. Fu, G. R. Lin, W. F. Liu, H. J. Sheng, P. C. Su, C. L. Tien, “Optical fiber sensor based on air-gap long-period fiber gratings,” Jpn. J. Appl. Phys. 48(12), 120211 (2009).
[CrossRef]

Ma, Y.

Q. Rong, X. Qiao, Y. Du, D. Feng, R. Wang, Y. Ma, H. Sun, M. Hu, Z. Feng, “Reflective refractometer based on a thin-core fiber tailored multimode Fiber Bragg grating,” IEEE Sens. J. 13(11), 4356–4360 (2013).
[CrossRef]

Q. Wu, Y. Semenova, B. Yan, Y. Ma, P. Wang, C. Yu, G. Farrell, “Fiber refractometer based on a fiber Bragg grating and single-mode-multimode-single-mode fiber structure,” Opt. Lett. 36(12), 2197–2199 (2011).
[CrossRef] [PubMed]

May-Arrioja, D. A.

Mehta, A.

Meng, H.

H. Xue, H. Meng, W. Wang, R. Xiong, Q. Yao, B. Huang, “Single-mode-multimode fiber structure based sensor for simultaneous measurement of refractive index and temperature,” IEEE Sens. J. 13(11), 4220–4223 (2013).
[CrossRef]

Mohammed, W. S.

Nakazawa, M.

Qiao, X.

Q. Rong, X. Qiao, Y. Du, D. Feng, R. Wang, Y. Ma, H. Sun, M. Hu, Z. Feng, “Reflective refractometer based on a thin-core fiber tailored multimode Fiber Bragg grating,” IEEE Sens. J. 13(11), 4356–4360 (2013).
[CrossRef]

Rong, Q.

Q. Rong, X. Qiao, Y. Du, D. Feng, R. Wang, Y. Ma, H. Sun, M. Hu, Z. Feng, “Reflective refractometer based on a thin-core fiber tailored multimode Fiber Bragg grating,” IEEE Sens. J. 13(11), 4356–4360 (2013).
[CrossRef]

Selvas-Aguilar, R.

Semenova, Y.

Shapiro, S. L.

R. R. Alfano, S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24(11), 592–594 (1970).
[CrossRef]

Sheng, H. J.

M. Y. Fu, G. R. Lin, W. F. Liu, H. J. Sheng, P. C. Su, C. L. Tien, “Optical fiber sensor based on air-gap long-period fiber gratings,” Jpn. J. Appl. Phys. 48(12), 120211 (2009).
[CrossRef]

Smith, P. W. E.

Su, P. C.

M. Y. Fu, G. R. Lin, W. F. Liu, H. J. Sheng, P. C. Su, C. L. Tien, “Optical fiber sensor based on air-gap long-period fiber gratings,” Jpn. J. Appl. Phys. 48(12), 120211 (2009).
[CrossRef]

Sun, A.

A. Sun, Z. Wu, “High sensitive refractive index sensor based on cladding mode recoupled chirped FBG,” IEEE Photon. Technol. Lett. 24(5), 413–415 (2012).
[CrossRef]

Sun, H.

Q. Rong, X. Qiao, Y. Du, D. Feng, R. Wang, Y. Ma, H. Sun, M. Hu, Z. Feng, “Reflective refractometer based on a thin-core fiber tailored multimode Fiber Bragg grating,” IEEE Sens. J. 13(11), 4356–4360 (2013).
[CrossRef]

Tien, C. L.

M. Y. Fu, G. R. Lin, W. F. Liu, H. J. Sheng, P. C. Su, C. L. Tien, “Optical fiber sensor based on air-gap long-period fiber gratings,” Jpn. J. Appl. Phys. 48(12), 120211 (2009).
[CrossRef]

Todoroki, S.

Wang, P.

Wang, Q.

Wang, R.

Q. Rong, X. Qiao, Y. Du, D. Feng, R. Wang, Y. Ma, H. Sun, M. Hu, Z. Feng, “Reflective refractometer based on a thin-core fiber tailored multimode Fiber Bragg grating,” IEEE Sens. J. 13(11), 4356–4360 (2013).
[CrossRef]

Wang, S.

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photonics J. 3(6), 1189–1197 (2011).
[CrossRef]

Wang, W.

H. Xue, H. Meng, W. Wang, R. Xiong, Q. Yao, B. Huang, “Single-mode-multimode fiber structure based sensor for simultaneous measurement of refractive index and temperature,” IEEE Sens. J. 13(11), 4220–4223 (2013).
[CrossRef]

Wu, Q.

Wu, Z.

A. Sun, Z. Wu, “High sensitive refractive index sensor based on cladding mode recoupled chirped FBG,” IEEE Photon. Technol. Lett. 24(5), 413–415 (2012).
[CrossRef]

Xiao, H.

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photonics J. 3(6), 1189–1197 (2011).
[CrossRef]

Xiong, R.

H. Xue, H. Meng, W. Wang, R. Xiong, Q. Yao, B. Huang, “Single-mode-multimode fiber structure based sensor for simultaneous measurement of refractive index and temperature,” IEEE Sens. J. 13(11), 4220–4223 (2013).
[CrossRef]

Xue, H.

H. Xue, H. Meng, W. Wang, R. Xiong, Q. Yao, B. Huang, “Single-mode-multimode fiber structure based sensor for simultaneous measurement of refractive index and temperature,” IEEE Sens. J. 13(11), 4220–4223 (2013).
[CrossRef]

Yan, B.

Yan, W.

Yang, J.

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photonics J. 3(6), 1189–1197 (2011).
[CrossRef]

Yao, Q.

H. Xue, H. Meng, W. Wang, R. Xiong, Q. Yao, B. Huang, “Single-mode-multimode fiber structure based sensor for simultaneous measurement of refractive index and temperature,” IEEE Sens. J. 13(11), 4220–4223 (2013).
[CrossRef]

Yu, C.

Electron. Lett.

R. Kashyap, K. J. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibers,” Electron. Lett. 24(1), 47–49 (1988).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Sun, Z. Wu, “High sensitive refractive index sensor based on cladding mode recoupled chirped FBG,” IEEE Photon. Technol. Lett. 24(5), 413–415 (2012).
[CrossRef]

IEEE Photonics J.

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photonics J. 3(6), 1189–1197 (2011).
[CrossRef]

IEEE Sens. J.

M. Y. Fu, “Refractive index sensing based on the reflectivity of the backward cladding-core mode coupling in a concatenated fiber Bragg grating and a long period grating,” IEEE Sens. J. 12(5), 1415–1420 (2012).
[CrossRef]

H. Xue, H. Meng, W. Wang, R. Xiong, Q. Yao, B. Huang, “Single-mode-multimode fiber structure based sensor for simultaneous measurement of refractive index and temperature,” IEEE Sens. J. 13(11), 4220–4223 (2013).
[CrossRef]

Q. Rong, X. Qiao, Y. Du, D. Feng, R. Wang, Y. Ma, H. Sun, M. Hu, Z. Feng, “Reflective refractometer based on a thin-core fiber tailored multimode Fiber Bragg grating,” IEEE Sens. J. 13(11), 4356–4360 (2013).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

M. Y. Fu, G. R. Lin, W. F. Liu, H. J. Sheng, P. C. Su, C. L. Tien, “Optical fiber sensor based on air-gap long-period fiber gratings,” Jpn. J. Appl. Phys. 48(12), 120211 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

R. R. Alfano, S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24(11), 592–594 (1970).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

The fabrication of damaged fiber by the fiber fuse. By using IPG laser as a input source, the output fiber is touched to the metal surface to start the fiber fuse.

Fig. 2
Fig. 2

The photographs of the damaged fiber under a microscope, shows periodic cavities in the fiber core region with the period of 13.96 μm.

Fig. 3
Fig. 3

The schematic diagram of FF sensor made by a 7 mm-long damaged fiber with offset output SMF for sampling the cladding modes. The single-mode light is scattered by the cavities into the cladding to cause the enormous attenuation of the core mode.

Fig. 4
Fig. 4

The schematic diagram of the hetero-core-structure fiber, including the NCF of 7-mm length with offset output SMF. The NCF can be viewed as an MMF with lower refractive index surrounding medium.

Fig. 5
Fig. 5

Experimental setup for measuring different liquids of different refractive indices. Drops of the refractive index oils are used on the sensing area of the damaged fiber and NCF, respectively.

Fig. 6
Fig. 6

(a) The original spectrum and the near field photograph of the cladding modes of the FF. (A: 1535 nm with LP05, B: 1548 nm with LP05, C: 1570 nm with LP05, and D: 1587 nm with LP04). (b) The inverted transmission spectrum of (a) with resonant wavelength at 1535 nm.

Fig. 7
Fig. 7

The measured inverted transmission spectrum for different index oils with the FF sensor with period of 13.96 μm. The loss-dip shifts to longer wavelengths as the refractive index is increased.

Fig. 8
Fig. 8

The simulated and experimentally demonstrated relationship between the refractive index and the loss-dip wavelength shift of FF damaged fiber sensor with a period of 13.96 μm.

Fig. 9
Fig. 9

The simulations of the near fields for the FF fiber, (a) n = 1, (b) n = 1.4 at a wavelength of 1535 nm.

Fig. 10
Fig. 10

The measured transmission spectrum for different index oils with the hetero-core structure sensor based on 7-mm long NCF and the inserted spectrum shows the spectral responses of a 40-mm long NCF, but with the output fiber not offset.

Fig. 11
Fig. 11

The relationship between the refractive index and the loss-dip wavelength shift of the hetero-core structure sensor. The experimental results are in good agreement with simulation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

L=m( 3 L π 4 ),m=0,1,2,3....
L π 16 n cladding eff a cladding 2 3 λ m .
λ m =m( 4 n cladding eff a cladding 2 L ),m=0,1,2,3...

Metrics