Abstract

We present a novel and simple optical structure, i.e., the symmetrical metal-cladding waveguide, in which a polymer layer is added into the guiding layer, for sensitive detection of chemical vapor by using the enhanced Goos-Hänchen (GH) shift (nearly a millimeter scale). Owing to the high sensitivity of the excited ultrahigh-order modes, the vapor-induced effect (swelling effect and refractive index change) in the polymer layer will lead to a dramatic variation of the GH shift. The detected GH shift signal is irrelevant to the power fluctuation of the incident light. The detection limit of 9.5 ppm for toluene and 28.5 ppm for benzene has been achieved.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Mah, K. B. Thurbide, “Acoustic methods of detection in gas chromatography,” J. Sep. Sci. 29(12), 1922–1930 (2006).
    [CrossRef] [PubMed]
  2. J. R. Stetter, J. Li, “Amperometric gas sensors--a review,” Chem. Rev. 108(2), 352–366 (2008).
    [CrossRef] [PubMed]
  3. K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, H. Ming, “Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity,” Opt. Express 16(23), 18599–18604 (2008).
    [CrossRef] [PubMed]
  4. T. L. Lowder, J. D. Gordon, S. M. Schultz, R. H. Selfridge, “Volatile organic compound sensing using a surface-relief D-shaped fiber Bragg grating and a polydimethylsiloxane layer,” Opt. Lett. 32(17), 2523–2525 (2007).
    [CrossRef] [PubMed]
  5. Y. Sun, S. I. Shopova, G. Frye-Mason, X. Fan, “Rapid chemical-vapor sensing using optofluidic ring resonators,” Opt. Lett. 33(8), 788–790 (2008).
    [CrossRef] [PubMed]
  6. J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S. J. Ja, S. K. Wang, M. J. Bai, H. Taub, M. Almasri, X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
    [CrossRef] [PubMed]
  7. R. Bernini, M. Tonezzer, F. Mottola, L. Zeni, A. Quaranta, G. Maggioni, S. Carturan, G. D. Mea, “Volatile organic compounds detection using porphyrin-based metal-cladding leaky waveguides,” Sens. Actuators B Chem. 127(1), 231–236 (2007).
    [CrossRef]
  8. P. Xiao, M. Deng, “Polymer-coated symmetrical metal-cladding waveguide for chemical vapor detection with high sensitivity,” Sci. China Phys. Mech. Astron. 55(11), 2024–2029 (2012).
    [CrossRef]
  9. K. Artmann, “Berechnung der seitenversetzung des totalreflextierten strahles,” Ann. Phys. 437(1-2), 87–102 (1948).
    [CrossRef]
  10. J. L. Birman, D. N. Pattanayak, A. Puri, “Presiction of a resonance enhanced laser-beam displacement at total internal reflection in semiconductors,” Phys. Rev. Lett. 50(21), 1664–1667 (1983).
    [CrossRef]
  11. L. Chen, Z. Cao, F. Ou, H. Li, Q. Shen, H. Qiao, “Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides,” Opt. Lett. 32(11), 1432–1434 (2007).
    [CrossRef] [PubMed]
  12. X. B. Yin, L. Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89(26), 261108 (2006).
    [CrossRef]
  13. Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, Y. He, “Oscillating wave sensor based on the Goos-Hänchen effect,” Appl. Phys. Lett. 92, 06117 (2008).
  14. X. Wang, C. Yin, J. Sun, H. Li, Y. Wang, M. Ran, Z. Cao, “High-sensitivity temperature sensor using the ultrahigh order mode-enhanced Goos-Hänchen effect,” Opt. Express 21(11), 13380–13385 (2013).
    [CrossRef] [PubMed]
  15. Y. Feng, Z. Cao, Q. Shen, F. Chen, “Effect of nonparallelism of guiding air-liquid layers on the reflection dip in attenuated total reflection,” Appl. Opt. 46(1), 58–60 (2007).
    [CrossRef] [PubMed]
  16. H. Li, Z. Cao, H. Lu, Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83(14), 2757–2759 (2003).
    [CrossRef]
  17. H. Lu, Z. Cao, H. Li, Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85(20), 4579–4581 (2004).
    [CrossRef]
  18. Y. Wang, Z. Cao, H. Li, J. Hao, T. Yu, Q. Shen, “Electric control of spatial beam position based on the Goos-Hänchen effect,” Appl. Phys. Lett. 93(9), 091103 (2008).
    [CrossRef]
  19. R. P. Podgorsek, H. Franke, “Selective optical detection of aromatic vapors,” Appl. Opt. 41(4), 601–608 (2002).
    [CrossRef] [PubMed]
  20. C. F. Li, Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 69(5), 055601 (2004).
    [CrossRef] [PubMed]
  21. Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
    [CrossRef] [PubMed]

2013 (1)

2012 (1)

P. Xiao, M. Deng, “Polymer-coated symmetrical metal-cladding waveguide for chemical vapor detection with high sensitivity,” Sci. China Phys. Mech. Astron. 55(11), 2024–2029 (2012).
[CrossRef]

2010 (1)

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S. J. Ja, S. K. Wang, M. J. Bai, H. Taub, M. Almasri, X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

2009 (1)

Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
[CrossRef] [PubMed]

2008 (5)

J. R. Stetter, J. Li, “Amperometric gas sensors--a review,” Chem. Rev. 108(2), 352–366 (2008).
[CrossRef] [PubMed]

K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, H. Ming, “Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity,” Opt. Express 16(23), 18599–18604 (2008).
[CrossRef] [PubMed]

Y. Sun, S. I. Shopova, G. Frye-Mason, X. Fan, “Rapid chemical-vapor sensing using optofluidic ring resonators,” Opt. Lett. 33(8), 788–790 (2008).
[CrossRef] [PubMed]

Y. Wang, Z. Cao, H. Li, J. Hao, T. Yu, Q. Shen, “Electric control of spatial beam position based on the Goos-Hänchen effect,” Appl. Phys. Lett. 93(9), 091103 (2008).
[CrossRef]

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, Y. He, “Oscillating wave sensor based on the Goos-Hänchen effect,” Appl. Phys. Lett. 92, 06117 (2008).

2007 (4)

2006 (2)

C. Mah, K. B. Thurbide, “Acoustic methods of detection in gas chromatography,” J. Sep. Sci. 29(12), 1922–1930 (2006).
[CrossRef] [PubMed]

X. B. Yin, L. Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89(26), 261108 (2006).
[CrossRef]

2004 (2)

H. Lu, Z. Cao, H. Li, Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85(20), 4579–4581 (2004).
[CrossRef]

C. F. Li, Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 69(5), 055601 (2004).
[CrossRef] [PubMed]

2003 (1)

H. Li, Z. Cao, H. Lu, Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83(14), 2757–2759 (2003).
[CrossRef]

2002 (1)

1983 (1)

J. L. Birman, D. N. Pattanayak, A. Puri, “Presiction of a resonance enhanced laser-beam displacement at total internal reflection in semiconductors,” Phys. Rev. Lett. 50(21), 1664–1667 (1983).
[CrossRef]

1948 (1)

K. Artmann, “Berechnung der seitenversetzung des totalreflextierten strahles,” Ann. Phys. 437(1-2), 87–102 (1948).
[CrossRef]

Almasri, M.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S. J. Ja, S. K. Wang, M. J. Bai, H. Taub, M. Almasri, X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Artmann, K.

K. Artmann, “Berechnung der seitenversetzung des totalreflextierten strahles,” Ann. Phys. 437(1-2), 87–102 (1948).
[CrossRef]

Bai, M. J.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S. J. Ja, S. K. Wang, M. J. Bai, H. Taub, M. Almasri, X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Bernini, R.

R. Bernini, M. Tonezzer, F. Mottola, L. Zeni, A. Quaranta, G. Maggioni, S. Carturan, G. D. Mea, “Volatile organic compounds detection using porphyrin-based metal-cladding leaky waveguides,” Sens. Actuators B Chem. 127(1), 231–236 (2007).
[CrossRef]

Birman, J. L.

J. L. Birman, D. N. Pattanayak, A. Puri, “Presiction of a resonance enhanced laser-beam displacement at total internal reflection in semiconductors,” Phys. Rev. Lett. 50(21), 1664–1667 (1983).
[CrossRef]

Cao, Z.

X. Wang, C. Yin, J. Sun, H. Li, Y. Wang, M. Ran, Z. Cao, “High-sensitivity temperature sensor using the ultrahigh order mode-enhanced Goos-Hänchen effect,” Opt. Express 21(11), 13380–13385 (2013).
[CrossRef] [PubMed]

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, Y. He, “Oscillating wave sensor based on the Goos-Hänchen effect,” Appl. Phys. Lett. 92, 06117 (2008).

Y. Wang, Z. Cao, H. Li, J. Hao, T. Yu, Q. Shen, “Electric control of spatial beam position based on the Goos-Hänchen effect,” Appl. Phys. Lett. 93(9), 091103 (2008).
[CrossRef]

Y. Feng, Z. Cao, Q. Shen, F. Chen, “Effect of nonparallelism of guiding air-liquid layers on the reflection dip in attenuated total reflection,” Appl. Opt. 46(1), 58–60 (2007).
[CrossRef] [PubMed]

L. Chen, Z. Cao, F. Ou, H. Li, Q. Shen, H. Qiao, “Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides,” Opt. Lett. 32(11), 1432–1434 (2007).
[CrossRef] [PubMed]

H. Lu, Z. Cao, H. Li, Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85(20), 4579–4581 (2004).
[CrossRef]

H. Li, Z. Cao, H. Lu, Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83(14), 2757–2759 (2003).
[CrossRef]

Carturan, S.

R. Bernini, M. Tonezzer, F. Mottola, L. Zeni, A. Quaranta, G. Maggioni, S. Carturan, G. D. Mea, “Volatile organic compounds detection using porphyrin-based metal-cladding leaky waveguides,” Sens. Actuators B Chem. 127(1), 231–236 (2007).
[CrossRef]

Chen, F.

Chen, J.

Chen, L.

Chen, X.

Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
[CrossRef] [PubMed]

Deng, M.

P. Xiao, M. Deng, “Polymer-coated symmetrical metal-cladding waveguide for chemical vapor detection with high sensitivity,” Sci. China Phys. Mech. Astron. 55(11), 2024–2029 (2012).
[CrossRef]

Fan, X.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S. J. Ja, S. K. Wang, M. J. Bai, H. Taub, M. Almasri, X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Y. Sun, S. I. Shopova, G. Frye-Mason, X. Fan, “Rapid chemical-vapor sensing using optofluidic ring resonators,” Opt. Lett. 33(8), 788–790 (2008).
[CrossRef] [PubMed]

Feng, Y.

Franke, H.

Frye-Mason, G.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S. J. Ja, S. K. Wang, M. J. Bai, H. Taub, M. Almasri, X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Y. Sun, S. I. Shopova, G. Frye-Mason, X. Fan, “Rapid chemical-vapor sensing using optofluidic ring resonators,” Opt. Lett. 33(8), 788–790 (2008).
[CrossRef] [PubMed]

Gordon, J. D.

Hao, J.

Y. Wang, Z. Cao, H. Li, J. Hao, T. Yu, Q. Shen, “Electric control of spatial beam position based on the Goos-Hänchen effect,” Appl. Phys. Lett. 93(9), 091103 (2008).
[CrossRef]

He, Y.

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, Y. He, “Oscillating wave sensor based on the Goos-Hänchen effect,” Appl. Phys. Lett. 92, 06117 (2008).

Hesselink, L.

X. B. Yin, L. Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89(26), 261108 (2006).
[CrossRef]

Howard, D. J.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S. J. Ja, S. K. Wang, M. J. Bai, H. Taub, M. Almasri, X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Ja, S. J.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S. J. Ja, S. K. Wang, M. J. Bai, H. Taub, M. Almasri, X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Li, C. F.

C. F. Li, Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 69(5), 055601 (2004).
[CrossRef] [PubMed]

Li, H.

X. Wang, C. Yin, J. Sun, H. Li, Y. Wang, M. Ran, Z. Cao, “High-sensitivity temperature sensor using the ultrahigh order mode-enhanced Goos-Hänchen effect,” Opt. Express 21(11), 13380–13385 (2013).
[CrossRef] [PubMed]

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, Y. He, “Oscillating wave sensor based on the Goos-Hänchen effect,” Appl. Phys. Lett. 92, 06117 (2008).

Y. Wang, Z. Cao, H. Li, J. Hao, T. Yu, Q. Shen, “Electric control of spatial beam position based on the Goos-Hänchen effect,” Appl. Phys. Lett. 93(9), 091103 (2008).
[CrossRef]

L. Chen, Z. Cao, F. Ou, H. Li, Q. Shen, H. Qiao, “Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides,” Opt. Lett. 32(11), 1432–1434 (2007).
[CrossRef] [PubMed]

H. Lu, Z. Cao, H. Li, Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85(20), 4579–4581 (2004).
[CrossRef]

H. Li, Z. Cao, H. Lu, Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83(14), 2757–2759 (2003).
[CrossRef]

Li, J.

J. R. Stetter, J. Li, “Amperometric gas sensors--a review,” Chem. Rev. 108(2), 352–366 (2008).
[CrossRef] [PubMed]

Lin, K.

Liu, J.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S. J. Ja, S. K. Wang, M. J. Bai, H. Taub, M. Almasri, X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Lowder, T. L.

Lu, H.

H. Lu, Z. Cao, H. Li, Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85(20), 4579–4581 (2004).
[CrossRef]

H. Li, Z. Cao, H. Lu, Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83(14), 2757–2759 (2003).
[CrossRef]

Lu, Y.

Maggioni, G.

R. Bernini, M. Tonezzer, F. Mottola, L. Zeni, A. Quaranta, G. Maggioni, S. Carturan, G. D. Mea, “Volatile organic compounds detection using porphyrin-based metal-cladding leaky waveguides,” Sens. Actuators B Chem. 127(1), 231–236 (2007).
[CrossRef]

Mah, C.

C. Mah, K. B. Thurbide, “Acoustic methods of detection in gas chromatography,” J. Sep. Sci. 29(12), 1922–1930 (2006).
[CrossRef] [PubMed]

Mea, G. D.

R. Bernini, M. Tonezzer, F. Mottola, L. Zeni, A. Quaranta, G. Maggioni, S. Carturan, G. D. Mea, “Volatile organic compounds detection using porphyrin-based metal-cladding leaky waveguides,” Sens. Actuators B Chem. 127(1), 231–236 (2007).
[CrossRef]

Ming, H.

Mottola, F.

R. Bernini, M. Tonezzer, F. Mottola, L. Zeni, A. Quaranta, G. Maggioni, S. Carturan, G. D. Mea, “Volatile organic compounds detection using porphyrin-based metal-cladding leaky waveguides,” Sens. Actuators B Chem. 127(1), 231–236 (2007).
[CrossRef]

Ou, F.

Pattanayak, D. N.

J. L. Birman, D. N. Pattanayak, A. Puri, “Presiction of a resonance enhanced laser-beam displacement at total internal reflection in semiconductors,” Phys. Rev. Lett. 50(21), 1664–1667 (1983).
[CrossRef]

Podgorsek, R. P.

Puri, A.

J. L. Birman, D. N. Pattanayak, A. Puri, “Presiction of a resonance enhanced laser-beam displacement at total internal reflection in semiconductors,” Phys. Rev. Lett. 50(21), 1664–1667 (1983).
[CrossRef]

Qiao, H.

Quaranta, A.

R. Bernini, M. Tonezzer, F. Mottola, L. Zeni, A. Quaranta, G. Maggioni, S. Carturan, G. D. Mea, “Volatile organic compounds detection using porphyrin-based metal-cladding leaky waveguides,” Sens. Actuators B Chem. 127(1), 231–236 (2007).
[CrossRef]

Ran, M.

Schultz, S. M.

Selfridge, R. H.

Shen, Q.

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, Y. He, “Oscillating wave sensor based on the Goos-Hänchen effect,” Appl. Phys. Lett. 92, 06117 (2008).

Y. Wang, Z. Cao, H. Li, J. Hao, T. Yu, Q. Shen, “Electric control of spatial beam position based on the Goos-Hänchen effect,” Appl. Phys. Lett. 93(9), 091103 (2008).
[CrossRef]

Y. Feng, Z. Cao, Q. Shen, F. Chen, “Effect of nonparallelism of guiding air-liquid layers on the reflection dip in attenuated total reflection,” Appl. Opt. 46(1), 58–60 (2007).
[CrossRef] [PubMed]

L. Chen, Z. Cao, F. Ou, H. Li, Q. Shen, H. Qiao, “Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides,” Opt. Lett. 32(11), 1432–1434 (2007).
[CrossRef] [PubMed]

H. Lu, Z. Cao, H. Li, Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85(20), 4579–4581 (2004).
[CrossRef]

H. Li, Z. Cao, H. Lu, Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83(14), 2757–2759 (2003).
[CrossRef]

Shopova, S. I.

Stetter, J. R.

J. R. Stetter, J. Li, “Amperometric gas sensors--a review,” Chem. Rev. 108(2), 352–366 (2008).
[CrossRef] [PubMed]

Sun, J.

Sun, Y.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S. J. Ja, S. K. Wang, M. J. Bai, H. Taub, M. Almasri, X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Y. Sun, S. I. Shopova, G. Frye-Mason, X. Fan, “Rapid chemical-vapor sensing using optofluidic ring resonators,” Opt. Lett. 33(8), 788–790 (2008).
[CrossRef] [PubMed]

Taub, H.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S. J. Ja, S. K. Wang, M. J. Bai, H. Taub, M. Almasri, X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Thompson, A. K.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S. J. Ja, S. K. Wang, M. J. Bai, H. Taub, M. Almasri, X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Thurbide, K. B.

C. Mah, K. B. Thurbide, “Acoustic methods of detection in gas chromatography,” J. Sep. Sci. 29(12), 1922–1930 (2006).
[CrossRef] [PubMed]

Tonezzer, M.

R. Bernini, M. Tonezzer, F. Mottola, L. Zeni, A. Quaranta, G. Maggioni, S. Carturan, G. D. Mea, “Volatile organic compounds detection using porphyrin-based metal-cladding leaky waveguides,” Sens. Actuators B Chem. 127(1), 231–236 (2007).
[CrossRef]

Wang, P.

Wang, Q.

C. F. Li, Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 69(5), 055601 (2004).
[CrossRef] [PubMed]

Wang, S. K.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S. J. Ja, S. K. Wang, M. J. Bai, H. Taub, M. Almasri, X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Wang, X.

Wang, Y.

X. Wang, C. Yin, J. Sun, H. Li, Y. Wang, M. Ran, Z. Cao, “High-sensitivity temperature sensor using the ultrahigh order mode-enhanced Goos-Hänchen effect,” Opt. Express 21(11), 13380–13385 (2013).
[CrossRef] [PubMed]

Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
[CrossRef] [PubMed]

Y. Wang, Z. Cao, H. Li, J. Hao, T. Yu, Q. Shen, “Electric control of spatial beam position based on the Goos-Hänchen effect,” Appl. Phys. Lett. 93(9), 091103 (2008).
[CrossRef]

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, Y. He, “Oscillating wave sensor based on the Goos-Hänchen effect,” Appl. Phys. Lett. 92, 06117 (2008).

Xiao, P.

P. Xiao, M. Deng, “Polymer-coated symmetrical metal-cladding waveguide for chemical vapor detection with high sensitivity,” Sci. China Phys. Mech. Astron. 55(11), 2024–2029 (2012).
[CrossRef]

Xu, D.

Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
[CrossRef] [PubMed]

Yang, Z.

Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
[CrossRef] [PubMed]

Yin, C.

Yin, X. B.

X. B. Yin, L. Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89(26), 261108 (2006).
[CrossRef]

Yu, T.

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, Y. He, “Oscillating wave sensor based on the Goos-Hänchen effect,” Appl. Phys. Lett. 92, 06117 (2008).

Y. Wang, Z. Cao, H. Li, J. Hao, T. Yu, Q. Shen, “Electric control of spatial beam position based on the Goos-Hänchen effect,” Appl. Phys. Lett. 93(9), 091103 (2008).
[CrossRef]

Zeni, L.

R. Bernini, M. Tonezzer, F. Mottola, L. Zeni, A. Quaranta, G. Maggioni, S. Carturan, G. D. Mea, “Volatile organic compounds detection using porphyrin-based metal-cladding leaky waveguides,” Sens. Actuators B Chem. 127(1), 231–236 (2007).
[CrossRef]

Zhang, Y.

Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
[CrossRef] [PubMed]

Zheng, R.

Zhou, Z.

Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
[CrossRef] [PubMed]

Anal. Chem. (1)

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S. J. Ja, S. K. Wang, M. J. Bai, H. Taub, M. Almasri, X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Ann. Phys. (1)

K. Artmann, “Berechnung der seitenversetzung des totalreflextierten strahles,” Ann. Phys. 437(1-2), 87–102 (1948).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (5)

H. Li, Z. Cao, H. Lu, Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83(14), 2757–2759 (2003).
[CrossRef]

H. Lu, Z. Cao, H. Li, Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85(20), 4579–4581 (2004).
[CrossRef]

Y. Wang, Z. Cao, H. Li, J. Hao, T. Yu, Q. Shen, “Electric control of spatial beam position based on the Goos-Hänchen effect,” Appl. Phys. Lett. 93(9), 091103 (2008).
[CrossRef]

X. B. Yin, L. Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89(26), 261108 (2006).
[CrossRef]

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, Y. He, “Oscillating wave sensor based on the Goos-Hänchen effect,” Appl. Phys. Lett. 92, 06117 (2008).

Chem. Rev. (1)

J. R. Stetter, J. Li, “Amperometric gas sensors--a review,” Chem. Rev. 108(2), 352–366 (2008).
[CrossRef] [PubMed]

J. Sep. Sci. (1)

C. Mah, K. B. Thurbide, “Acoustic methods of detection in gas chromatography,” J. Sep. Sci. 29(12), 1922–1930 (2006).
[CrossRef] [PubMed]

Nanotechnology (1)

Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. E Stat. Nonlinear Soft Matter Phys. (1)

C. F. Li, Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 69(5), 055601 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

J. L. Birman, D. N. Pattanayak, A. Puri, “Presiction of a resonance enhanced laser-beam displacement at total internal reflection in semiconductors,” Phys. Rev. Lett. 50(21), 1664–1667 (1983).
[CrossRef]

Sci. China Phys. Mech. Astron. (1)

P. Xiao, M. Deng, “Polymer-coated symmetrical metal-cladding waveguide for chemical vapor detection with high sensitivity,” Sci. China Phys. Mech. Astron. 55(11), 2024–2029 (2012).
[CrossRef]

Sens. Actuators B Chem. (1)

R. Bernini, M. Tonezzer, F. Mottola, L. Zeni, A. Quaranta, G. Maggioni, S. Carturan, G. D. Mea, “Volatile organic compounds detection using porphyrin-based metal-cladding leaky waveguides,” Sens. Actuators B Chem. 127(1), 231–236 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic layout of the optical chemical vapor sensor based on the enhanced GH shift in the SMCW, where an amorphous Teflon AF polymer layer is added into the guiding layer.

Fig. 2
Fig. 2

(a) The simulated reflectivity (solid curve) and the reflected phase (dashed curve) with respect to the effective RI with n 3 = 1.31 and n 3 = 1.31 + 4 e 4 . (b) Profiles of the Gaussian incident beam and the corresponding reflected beam. The incident angle is θ = 4.32 o , the waist radius is 800 μ m . Perpendicular dashed lines represent the magnitudes of the GH shift.

Fig. 3
Fig. 3

(a) Experimental arrangement for detecting of chemical vapor. PSD: position sensitive detector, PD: photodiode; (b) schematic of the airtight container; (c) device for generating, mixing and delivering of chemical vapor.

Fig. 4
Fig. 4

(a) Experimental results of the GH shift vs. the concentrations of toluene and benzene. Insets are two representative sensorgrams via monitoring the relative GH shift in real-time. (b) Three-cycle responses of the GH shift to 867 ppm toluene vapor.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

κ 4 d 4 arctan{ κ 3 κ 4 tan[ arctan( α 2 κ 3 ) κ 3 d 3 ] }arctan( α 5 κ 4 )=mπ, ( m=0,1,2 ) ,
S = 1 k 0 d ϕ d N .
ΔN C V N ,

Metrics