Abstract

Laser speckle imaging (LSI) techniques provide important functional information about tissue perfusion and mechanical properties. To perform LSI in vivo, laser speckle patterns are transmitted via optical fiber bundles incorporated within small-diameter endoscopes. Inter-fiber crosstalk due to mode coupling in fiber bundles can result in erroneous speckle statistics and therefore reduces the accuracy of LSI analysis. In this paper, we investigate the influence of multiple parameters that influence crosstalk between neighboring cores within optical fiber bundles and govern the modulation of transmitted laser speckle patterns. Our results show that in addition to large core-to-core separation, large refractive index contrast between core and cladding material, reduced number of propagating modes and variability in core size are essential parameters for accurate speckle pattern transmission to conduct endoscopic LSI.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Dainty, Laser Speckle and Related Phenomena (Springer-Verlag, 1984).
  2. J. W. Goodman, Speckle Phenomena in Optics : Theory and Applications (Roberts & Company Publishers, 2007).
  3. D. A. Boas, A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
    [CrossRef] [PubMed]
  4. S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
    [CrossRef] [PubMed]
  5. S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
    [CrossRef] [PubMed]
  6. Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
    [CrossRef] [PubMed]
  7. Z. Hajjarian, S. K. Nadkarni, “Evaluating the viscoelastic properties of tissue from laser speckle fluctuations,” Sci. Rep. 2, 316 (2012).
    [CrossRef] [PubMed]
  8. A. K. Dunn, H. Bolay, M. A. Moskowitz, D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
    [CrossRef] [PubMed]
  9. L. Song, D. Elson, “Endoscopic laser speckle contrast imaging system using a fibre image guide,” Proc. SPIE 7907, 79070F (2011).
    [CrossRef]
  10. D. A. Zimnyakov, A. P. Sviridov, L. V. Kuznetsova, S. A. Baranov, N. Y. Ignatieva, “Monitoring of tissue thermal modification with a bundle-based full-field speckle analyzer,” Appl. Opt. 45(18), 4480–4490 (2006).
    [CrossRef] [PubMed]
  11. H. Zhang, P. Li, N. Feng, J. Qiu, B. Li, W. Luo, Q. Luo, “Correcting the detrimental effects of nonuniform intensity distribution on fiber-transmitting laser speckle imaging of blood flow,” Opt. Express 20(1), 508–517 (2012).
    [CrossRef] [PubMed]
  12. A. F. Gmitro, D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett. 18(8), 565–567 (1993).
    [CrossRef] [PubMed]
  13. T. Xie, D. Mukai, S. Guo, M. Brenner, Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett. 30(14), 1803–1805 (2005).
    [CrossRef] [PubMed]
  14. V. Dubaj, A. Mazzolini, A. Wood, M. Harris, “Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope,” J. Microsc. 207(2), 108–117 (2002).
    [CrossRef] [PubMed]
  15. W. Göbel, J. N. D. Kerr, A. Nimmerjahn, F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett. 29(21), 2521–2523 (2004).
    [CrossRef] [PubMed]
  16. R. Juškattis, T. Wilson, T. Watson, “Real‐time white light reflection confocal microscopy using a fibre‐optic bundle,” Scanning 19(1), 15–19 (1997).
    [CrossRef]
  17. A. Komiyama, M. Hashimoto, “Crosstalk and mode coupling between cores of image fibres,” Electron. Lett. 25(16), 1101–1103 (1989).
    [CrossRef]
  18. A. Komiyama, M. Hashimoto, “A new class of crosstalk in image fibers,” Opt. Commun. 107(1-2), 49–53 (1994).
    [CrossRef]
  19. X. Chen, K. L. Reichenbach, C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Express 16(26), 21598–21607 (2008).
    [CrossRef] [PubMed]
  20. J.-M. Liu, Photonic Devices (Cambridge University Press, 2005).
  21. K. L. Reichenbach, C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express 15(5), 2151–2165 (2007).
    [CrossRef] [PubMed]
  22. N. Ortega-Quijano, F. Fanjul-Vélez, J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283(4), 633–638 (2010).
    [CrossRef]
  23. A. Snyder, “Coupled-Mode Theory for Optical Fibers,” J. Opt. Soc. Am. 62(11), 1267–1277 (1972).
    [CrossRef]
  24. A. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).
  25. A. Hardy, W. Streifer, “Coupled mode theory of parallel waveguides,” J. Lightwave Technol. 3(5), 1135–1146 (1985).
    [CrossRef]
  26. J. Goodman, Statistical Optics (Wiley, 2000).
  27. D. Marcuse, “Coupled mode theory of round optical fibers,” Bell Syst. Tech. J. 52(6), 817–842 (1973).
    [CrossRef]
  28. M. Skorobogatiy, K. Saitoh, M. Koshiba, “Full-vectorial coupled mode theory for the evaluation of macro-bending loss in multimode fibers. application to the hollow-core photonic bandgap fibers,” Opt. Express 16(19), 14945–14953 (2008).
    [CrossRef] [PubMed]
  29. M. Koshiba, K. Saitoh, K. Takenaga, S. Matsuo, “Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory,” Opt. Express 19(26), B102–B111 (2011).
    [CrossRef] [PubMed]

2012 (2)

2011 (3)

L. Song, D. Elson, “Endoscopic laser speckle contrast imaging system using a fibre image guide,” Proc. SPIE 7907, 79070F (2011).
[CrossRef]

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[CrossRef] [PubMed]

M. Koshiba, K. Saitoh, K. Takenaga, S. Matsuo, “Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory,” Opt. Express 19(26), B102–B111 (2011).
[CrossRef] [PubMed]

2010 (2)

N. Ortega-Quijano, F. Fanjul-Vélez, J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283(4), 633–638 (2010).
[CrossRef]

D. A. Boas, A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[CrossRef] [PubMed]

2008 (3)

2007 (1)

2006 (1)

2005 (2)

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[CrossRef] [PubMed]

T. Xie, D. Mukai, S. Guo, M. Brenner, Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett. 30(14), 1803–1805 (2005).
[CrossRef] [PubMed]

2004 (1)

2002 (1)

V. Dubaj, A. Mazzolini, A. Wood, M. Harris, “Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope,” J. Microsc. 207(2), 108–117 (2002).
[CrossRef] [PubMed]

2001 (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

1997 (1)

R. Juškattis, T. Wilson, T. Watson, “Real‐time white light reflection confocal microscopy using a fibre‐optic bundle,” Scanning 19(1), 15–19 (1997).
[CrossRef]

1994 (1)

A. Komiyama, M. Hashimoto, “A new class of crosstalk in image fibers,” Opt. Commun. 107(1-2), 49–53 (1994).
[CrossRef]

1993 (1)

1989 (1)

A. Komiyama, M. Hashimoto, “Crosstalk and mode coupling between cores of image fibres,” Electron. Lett. 25(16), 1101–1103 (1989).
[CrossRef]

1985 (1)

A. Hardy, W. Streifer, “Coupled mode theory of parallel waveguides,” J. Lightwave Technol. 3(5), 1135–1146 (1985).
[CrossRef]

1973 (1)

D. Marcuse, “Coupled mode theory of round optical fibers,” Bell Syst. Tech. J. 52(6), 817–842 (1973).
[CrossRef]

1972 (1)

Arce-Diego, J. L.

N. Ortega-Quijano, F. Fanjul-Vélez, J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283(4), 633–638 (2010).
[CrossRef]

Aziz, D.

Baranov, S. A.

Boas, D. A.

D. A. Boas, A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[CrossRef] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

Bolay, H.

A. K. Dunn, H. Bolay, M. A. Moskowitz, D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

Bouma, B. E.

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[CrossRef] [PubMed]

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[CrossRef] [PubMed]

Brenner, M.

Chan, R.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[CrossRef] [PubMed]

Chau, A.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[CrossRef] [PubMed]

Chen, X.

Chen, Z.

Dubaj, V.

V. Dubaj, A. Mazzolini, A. Wood, M. Harris, “Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope,” J. Microsc. 207(2), 108–117 (2002).
[CrossRef] [PubMed]

Dunn, A. K.

D. A. Boas, A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[CrossRef] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

Elson, D.

L. Song, D. Elson, “Endoscopic laser speckle contrast imaging system using a fibre image guide,” Proc. SPIE 7907, 79070F (2011).
[CrossRef]

Fanjul-Vélez, F.

N. Ortega-Quijano, F. Fanjul-Vélez, J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283(4), 633–638 (2010).
[CrossRef]

Feng, N.

Gmitro, A. F.

Göbel, W.

Gulati, A.

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[CrossRef] [PubMed]

Guo, S.

Hajjarian, Z.

Z. Hajjarian, S. K. Nadkarni, “Evaluating the viscoelastic properties of tissue from laser speckle fluctuations,” Sci. Rep. 2, 316 (2012).
[CrossRef] [PubMed]

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[CrossRef] [PubMed]

Halpern, E.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[CrossRef] [PubMed]

Hardy, A.

A. Hardy, W. Streifer, “Coupled mode theory of parallel waveguides,” J. Lightwave Technol. 3(5), 1135–1146 (1985).
[CrossRef]

Harris, M.

V. Dubaj, A. Mazzolini, A. Wood, M. Harris, “Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope,” J. Microsc. 207(2), 108–117 (2002).
[CrossRef] [PubMed]

Hashimoto, M.

A. Komiyama, M. Hashimoto, “A new class of crosstalk in image fibers,” Opt. Commun. 107(1-2), 49–53 (1994).
[CrossRef]

A. Komiyama, M. Hashimoto, “Crosstalk and mode coupling between cores of image fibres,” Electron. Lett. 25(16), 1101–1103 (1989).
[CrossRef]

Helg, T.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[CrossRef] [PubMed]

Helmchen, F.

Houser, S. L.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[CrossRef] [PubMed]

Ignatieva, N. Y.

Jaffer, F. A.

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[CrossRef] [PubMed]

Juškattis, R.

R. Juškattis, T. Wilson, T. Watson, “Real‐time white light reflection confocal microscopy using a fibre‐optic bundle,” Scanning 19(1), 15–19 (1997).
[CrossRef]

Kerr, J. N. D.

Komiyama, A.

A. Komiyama, M. Hashimoto, “A new class of crosstalk in image fibers,” Opt. Commun. 107(1-2), 49–53 (1994).
[CrossRef]

A. Komiyama, M. Hashimoto, “Crosstalk and mode coupling between cores of image fibres,” Electron. Lett. 25(16), 1101–1103 (1989).
[CrossRef]

Koshiba, M.

Kuznetsova, L. V.

Li, B.

Li, P.

Luo, Q.

Luo, W.

Marcuse, D.

D. Marcuse, “Coupled mode theory of round optical fibers,” Bell Syst. Tech. J. 52(6), 817–842 (1973).
[CrossRef]

Matsuo, S.

Mazzolini, A.

V. Dubaj, A. Mazzolini, A. Wood, M. Harris, “Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope,” J. Microsc. 207(2), 108–117 (2002).
[CrossRef] [PubMed]

Minsky, M. S.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[CrossRef] [PubMed]

Moskowitz, M. A.

A. K. Dunn, H. Bolay, M. A. Moskowitz, D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

Motz, J. T.

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[CrossRef] [PubMed]

Mukai, D.

Nadkarni, S. K.

Z. Hajjarian, S. K. Nadkarni, “Evaluating the viscoelastic properties of tissue from laser speckle fluctuations,” Sci. Rep. 2, 316 (2012).
[CrossRef] [PubMed]

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[CrossRef] [PubMed]

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[CrossRef] [PubMed]

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[CrossRef] [PubMed]

Nimmerjahn, A.

Ortega-Quijano, N.

N. Ortega-Quijano, F. Fanjul-Vélez, J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283(4), 633–638 (2010).
[CrossRef]

Qiu, J.

Reichenbach, K. L.

Saitoh, K.

Skorobogatiy, M.

Snyder, A.

Song, L.

L. Song, D. Elson, “Endoscopic laser speckle contrast imaging system using a fibre image guide,” Proc. SPIE 7907, 79070F (2011).
[CrossRef]

Streifer, W.

A. Hardy, W. Streifer, “Coupled mode theory of parallel waveguides,” J. Lightwave Technol. 3(5), 1135–1146 (1985).
[CrossRef]

Sviridov, A. P.

Takenaga, K.

Tearney, G. J.

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[CrossRef] [PubMed]

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[CrossRef] [PubMed]

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[CrossRef] [PubMed]

Watson, T.

R. Juškattis, T. Wilson, T. Watson, “Real‐time white light reflection confocal microscopy using a fibre‐optic bundle,” Scanning 19(1), 15–19 (1997).
[CrossRef]

Wilson, T.

R. Juškattis, T. Wilson, T. Watson, “Real‐time white light reflection confocal microscopy using a fibre‐optic bundle,” Scanning 19(1), 15–19 (1997).
[CrossRef]

Wood, A.

V. Dubaj, A. Mazzolini, A. Wood, M. Harris, “Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope,” J. Microsc. 207(2), 108–117 (2002).
[CrossRef] [PubMed]

Xi, J.

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[CrossRef] [PubMed]

Xie, T.

Xu, C.

Yelin, D.

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[CrossRef] [PubMed]

Zhang, H.

Zimnyakov, D. A.

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

D. Marcuse, “Coupled mode theory of round optical fibers,” Bell Syst. Tech. J. 52(6), 817–842 (1973).
[CrossRef]

Circulation (1)

S. K. Nadkarni, B. E. Bouma, T. Helg, R. Chan, E. Halpern, A. Chau, M. S. Minsky, J. T. Motz, S. L. Houser, G. J. Tearney, “Characterization of atherosclerotic plaques by laser speckle imaging,” Circulation 112(6), 885–892 (2005).
[CrossRef] [PubMed]

Electron. Lett. (1)

A. Komiyama, M. Hashimoto, “Crosstalk and mode coupling between cores of image fibres,” Electron. Lett. 25(16), 1101–1103 (1989).
[CrossRef]

J. Biomed. Opt. (3)

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[CrossRef] [PubMed]

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[CrossRef] [PubMed]

D. A. Boas, A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

A. Hardy, W. Streifer, “Coupled mode theory of parallel waveguides,” J. Lightwave Technol. 3(5), 1135–1146 (1985).
[CrossRef]

J. Microsc. (1)

V. Dubaj, A. Mazzolini, A. Wood, M. Harris, “Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope,” J. Microsc. 207(2), 108–117 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

Opt. Commun. (2)

N. Ortega-Quijano, F. Fanjul-Vélez, J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283(4), 633–638 (2010).
[CrossRef]

A. Komiyama, M. Hashimoto, “A new class of crosstalk in image fibers,” Opt. Commun. 107(1-2), 49–53 (1994).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Proc. SPIE (1)

L. Song, D. Elson, “Endoscopic laser speckle contrast imaging system using a fibre image guide,” Proc. SPIE 7907, 79070F (2011).
[CrossRef]

Scanning (1)

R. Juškattis, T. Wilson, T. Watson, “Real‐time white light reflection confocal microscopy using a fibre‐optic bundle,” Scanning 19(1), 15–19 (1997).
[CrossRef]

Sci. Rep. (1)

Z. Hajjarian, S. K. Nadkarni, “Evaluating the viscoelastic properties of tissue from laser speckle fluctuations,” Sci. Rep. 2, 316 (2012).
[CrossRef] [PubMed]

Other (5)

J. C. Dainty, Laser Speckle and Related Phenomena (Springer-Verlag, 1984).

J. W. Goodman, Speckle Phenomena in Optics : Theory and Applications (Roberts & Company Publishers, 2007).

J.-M. Liu, Photonic Devices (Cambridge University Press, 2005).

A. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).

J. Goodman, Statistical Optics (Wiley, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Image of cross section of a leached fiber bundle. (b) Schematic of 7-core structure used in our calculations.

Fig. 2
Fig. 2

Simulations of speckle pattern transmission via a 1 m long optical fiber bundle. (a) Numerically generated speckle patterns are coupled into fiber bundle with 3 μm core size, 6 μm core spacing and 0.40 NA. The generated speckle pattern excites the guided modes of all cores to different degrees. The speckle pattern reconstructed at z = 0 (b), and at z = 1m (c) demonstrate considerable spatial modulation of speckle patterns during transmission via an optical fiber bundle. In (b) and (c) the speckle structure in each core is caused by the summation of the mode fields of all excited modes.

Fig. 3
Fig. 3

Coupling between modes of 7 identical cores of fiber bundle with 3 μm core size and 6 μm core spacing and 0.40 NA. Each core supports 16 propagating modes. (a)-(f) show the intensity of different order modes of central fiber (red) coupled to the corresponding modes of surround fibers (green) with propagation distance z for HE11, TE01, HE21, TM01 HE31 and HE12 mode, respectively. Coupling between higher orders modes is stronger.

Fig. 4
Fig. 4

Total intensity in central core (red line) coupled into surround cores (green lines) with propagation distance for the fiber bundles with different core sizes dco ((a)-(c)), core spacings D ((d)-(f)), NA ((g)-(i)) and non-uniformity of core sizes ((j)-(l)). The coupling strength increases with core size and decreases with core spacing, NA and on average with non-uniformity. All the modes of the central fiber are equally excited.

Fig. 5
Fig. 5

The correlation coefficient measured between the speckle pattern at z = 0 with those measured at different propagation distances over 1m for variation in (a) core sizes dco, (b) core spacings D and (c) NAs. Reduced speckle decorrelation is observed for larger core-to-core separation, small core size and large refractive index contrast between core and cladding material.

Fig. 6
Fig. 6

Effect of fiber core non-uniformity on speckle pattern transmission. One case of transmitted speckle patterns at z = 0 (a), 1 cm (b) and 1m (c) show minimum speckle modulation. (d)-(f) One case of speckle transmission with strong speckle modulation.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E(x,y,z)= ν a ν (z) e ν (x,y)exp(i β ν z) H(x,y,z)= ν a ν (z) h ν (x,y)exp(i β ν z) ,
d a ν dz = μ i κ νμ a μ exp(iΔ β νμ z) ,
a ν ( 0 ) = e ν E 0 d x d y ,
E ( x , y , z ) = ν a ν ( z ) e ν ( x , y ) .
C(z)= ( I(x,y,z) I ¯ (z) )( I(x,y,z=0) I ¯ (z=0) ) ¯ σ I (z) σ I (z=0) ,

Metrics