Abstract

We analyze radiation produced by an ultrarelativistic charge as it exits the open end of a cylindrical waveguide with a dielectric lining. The end of the waveguide can be either orthogonal to the structure axis or skewed. To obtain terahertz radiation from waveguides with centimeter or millimeter radii, we consider high order TM0m modes driven by the beam. We obtain an integral representation which describes the radiation produced by a single waveguide mode in the Fraunhofer zone. We perform a series of numerical calculations for structures which look promising for generation of THz radiation. It is shown that for a mode with large mode number, the aperture of the vacuum channel gives the main contribution to the field if the skew angle of the waveguide aperture is not too small. Simple expressions for the angle of the main pattern lobe maximum are obtained.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband generation of terahertz radiation in a waveguide

Hua Cao, Richard A. Linke, and Ajay Nahata
Opt. Lett. 29(15) 1751-1753 (2004)

Quadrupole radiation from terahertz dipole antennas

J. V. Rudd, Jon L. Johnson, and Daniel M. Mittleman
Opt. Lett. 25(20) 1556-1558 (2000)

Terahertz dielectric waveguides

Shaghik Atakaramians, Shahraam Afshar V., Tanya M. Monro, and Derek Abbott
Adv. Opt. Photon. 5(2) 169-215 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. P. Williams, “Filling the THz gap - high power sources and applications,” Rep. Prog. Phys. 69, 301–326 (2006).
    [Crossref]
  2. S. V. Garnov and I. A. Shcherbakov, “Laser methods for generating megavolt terahertz pulses,” Phys. Uspekhi 54, 91–96 (2011).
    [Crossref]
  3. G. P. Gallerano and S. Biedron, “Overview on terahertz radiation sources,” in Proceedings of the 2004 FEL Conference(2004), pp. 216–221.
  4. H. Wen, K.-J. Kim, A. Zholents, J. Byrd, and A. Cavalleri, “Preface to special topic: Intense terahertz sources for time-resolved studies of matter,” Rev. Sci. Instrum. 84, 022501 (2013).
    [Crossref] [PubMed]
  5. A. A. Ponomarenko, M. I. Ryazanov, M. N. Strikhanov, and A. A. Tishchenko, “Terahertz radiation from electrons moving through a waveguide with variable radius, based on Smith-Purcell and Cherenkov mechanisms,” Nucl. Instrum. Methods Phys. Res. B 309, 223–225 (2013).
    [Crossref]
  6. A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103, 095003 (2009).
    [Crossref] [PubMed]
  7. G. Andonian, O. Williams, X. Wei, P. Niknejadi, E. Hemsing, J. B. Rosenzweig, P. Muggli, M. Babzien, M. Fedurin, K. Kusche, R. Malone, and V. Yakimenko, “Resonant excitation of coherent Cerenkov radiation in dielectric lined waveguides,” Appl. Phys. Lett. 98, 202901 (2011).
    [Crossref]
  8. S. Antipov, C. Jing, A. Kanareykin, J. E. Butler, V. Yakimenko, M. Fedurin, K. Kusche, and W. Gai, “Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure,” Appl. Phys. Lett. 100, 132910 (2012).
    [Crossref]
  9. K. Bane and G. Stupakov, “Terahertz radiation from a pipe with small corrugations,” Nucl. Instrum. Methods Phys. Res. A 677, 67–73 (2012).
    [Crossref]
  10. P. Muggli, B. Allen, V. E. Yakimenko, J. Park, M. Babzien, K. P. Kusche, and W. D. Kimura, “Simple method for generating adjustable trains of picosecond electron bunches,” Phys. Rev. ST Accel. Beams 13, 052803 (2010).
    [Crossref]
  11. S. Antipov, M. Babzien, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, V. Yakimenko, and A. Zholents, “Subpicosecond bunch train production for a tunable mJ level THz source,” Phys. Rev. Lett. 111, 134802 (2013).
    [Crossref] [PubMed]
  12. J. Benford, J. A. Swegle, and E. Schamiloglu, High Power Microwaves, 2 (Taylor and Francis, 2007).
  13. B. M. Bolotovskii, “Theory of the Vavilov-Cherenkov effect (III),” Phys. Uspekhi 4, 781 (1962).
    [Crossref]
  14. E. S. Belonogaya, A. V. Tyukhtin, and S. N. Galyamin, “Approximate method for calculating the radiation from a moving charge in the presence of a complex object,” Phys. Rev. E 87, 043201 (2013).
    [Crossref]
  15. A. Z. Fradin, Microwave Antennas (Pergamon, 1961).
  16. L. A. Vainshtein, The Theory of Diffraction and the Factorization Method (Golem, 1969).
  17. C. E. Ryan and R. C. Rudduck, “Radiation patterns of rectangular waveguides,” IEEE Trans. Antennas Propag. 16, 498–499 (1968).
    [Crossref]

2013 (4)

H. Wen, K.-J. Kim, A. Zholents, J. Byrd, and A. Cavalleri, “Preface to special topic: Intense terahertz sources for time-resolved studies of matter,” Rev. Sci. Instrum. 84, 022501 (2013).
[Crossref] [PubMed]

A. A. Ponomarenko, M. I. Ryazanov, M. N. Strikhanov, and A. A. Tishchenko, “Terahertz radiation from electrons moving through a waveguide with variable radius, based on Smith-Purcell and Cherenkov mechanisms,” Nucl. Instrum. Methods Phys. Res. B 309, 223–225 (2013).
[Crossref]

S. Antipov, M. Babzien, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, V. Yakimenko, and A. Zholents, “Subpicosecond bunch train production for a tunable mJ level THz source,” Phys. Rev. Lett. 111, 134802 (2013).
[Crossref] [PubMed]

E. S. Belonogaya, A. V. Tyukhtin, and S. N. Galyamin, “Approximate method for calculating the radiation from a moving charge in the presence of a complex object,” Phys. Rev. E 87, 043201 (2013).
[Crossref]

2012 (2)

S. Antipov, C. Jing, A. Kanareykin, J. E. Butler, V. Yakimenko, M. Fedurin, K. Kusche, and W. Gai, “Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure,” Appl. Phys. Lett. 100, 132910 (2012).
[Crossref]

K. Bane and G. Stupakov, “Terahertz radiation from a pipe with small corrugations,” Nucl. Instrum. Methods Phys. Res. A 677, 67–73 (2012).
[Crossref]

2011 (2)

S. V. Garnov and I. A. Shcherbakov, “Laser methods for generating megavolt terahertz pulses,” Phys. Uspekhi 54, 91–96 (2011).
[Crossref]

G. Andonian, O. Williams, X. Wei, P. Niknejadi, E. Hemsing, J. B. Rosenzweig, P. Muggli, M. Babzien, M. Fedurin, K. Kusche, R. Malone, and V. Yakimenko, “Resonant excitation of coherent Cerenkov radiation in dielectric lined waveguides,” Appl. Phys. Lett. 98, 202901 (2011).
[Crossref]

2010 (1)

P. Muggli, B. Allen, V. E. Yakimenko, J. Park, M. Babzien, K. P. Kusche, and W. D. Kimura, “Simple method for generating adjustable trains of picosecond electron bunches,” Phys. Rev. ST Accel. Beams 13, 052803 (2010).
[Crossref]

2009 (1)

A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103, 095003 (2009).
[Crossref] [PubMed]

2006 (1)

G. P. Williams, “Filling the THz gap - high power sources and applications,” Rep. Prog. Phys. 69, 301–326 (2006).
[Crossref]

1968 (1)

C. E. Ryan and R. C. Rudduck, “Radiation patterns of rectangular waveguides,” IEEE Trans. Antennas Propag. 16, 498–499 (1968).
[Crossref]

1962 (1)

B. M. Bolotovskii, “Theory of the Vavilov-Cherenkov effect (III),” Phys. Uspekhi 4, 781 (1962).
[Crossref]

Allen, B.

P. Muggli, B. Allen, V. E. Yakimenko, J. Park, M. Babzien, K. P. Kusche, and W. D. Kimura, “Simple method for generating adjustable trains of picosecond electron bunches,” Phys. Rev. ST Accel. Beams 13, 052803 (2010).
[Crossref]

Andonian, G.

G. Andonian, O. Williams, X. Wei, P. Niknejadi, E. Hemsing, J. B. Rosenzweig, P. Muggli, M. Babzien, M. Fedurin, K. Kusche, R. Malone, and V. Yakimenko, “Resonant excitation of coherent Cerenkov radiation in dielectric lined waveguides,” Appl. Phys. Lett. 98, 202901 (2011).
[Crossref]

Antipov, S.

S. Antipov, M. Babzien, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, V. Yakimenko, and A. Zholents, “Subpicosecond bunch train production for a tunable mJ level THz source,” Phys. Rev. Lett. 111, 134802 (2013).
[Crossref] [PubMed]

S. Antipov, C. Jing, A. Kanareykin, J. E. Butler, V. Yakimenko, M. Fedurin, K. Kusche, and W. Gai, “Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure,” Appl. Phys. Lett. 100, 132910 (2012).
[Crossref]

Babzien, M.

S. Antipov, M. Babzien, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, V. Yakimenko, and A. Zholents, “Subpicosecond bunch train production for a tunable mJ level THz source,” Phys. Rev. Lett. 111, 134802 (2013).
[Crossref] [PubMed]

G. Andonian, O. Williams, X. Wei, P. Niknejadi, E. Hemsing, J. B. Rosenzweig, P. Muggli, M. Babzien, M. Fedurin, K. Kusche, R. Malone, and V. Yakimenko, “Resonant excitation of coherent Cerenkov radiation in dielectric lined waveguides,” Appl. Phys. Lett. 98, 202901 (2011).
[Crossref]

P. Muggli, B. Allen, V. E. Yakimenko, J. Park, M. Babzien, K. P. Kusche, and W. D. Kimura, “Simple method for generating adjustable trains of picosecond electron bunches,” Phys. Rev. ST Accel. Beams 13, 052803 (2010).
[Crossref]

Bane, K.

K. Bane and G. Stupakov, “Terahertz radiation from a pipe with small corrugations,” Nucl. Instrum. Methods Phys. Res. A 677, 67–73 (2012).
[Crossref]

Belonogaya, E. S.

E. S. Belonogaya, A. V. Tyukhtin, and S. N. Galyamin, “Approximate method for calculating the radiation from a moving charge in the presence of a complex object,” Phys. Rev. E 87, 043201 (2013).
[Crossref]

Benford, J.

J. Benford, J. A. Swegle, and E. Schamiloglu, High Power Microwaves, 2 (Taylor and Francis, 2007).

Biedron, S.

G. P. Gallerano and S. Biedron, “Overview on terahertz radiation sources,” in Proceedings of the 2004 FEL Conference(2004), pp. 216–221.

Bolotovskii, B. M.

B. M. Bolotovskii, “Theory of the Vavilov-Cherenkov effect (III),” Phys. Uspekhi 4, 781 (1962).
[Crossref]

Butler, J. E.

S. Antipov, C. Jing, A. Kanareykin, J. E. Butler, V. Yakimenko, M. Fedurin, K. Kusche, and W. Gai, “Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure,” Appl. Phys. Lett. 100, 132910 (2012).
[Crossref]

Byrd, J.

H. Wen, K.-J. Kim, A. Zholents, J. Byrd, and A. Cavalleri, “Preface to special topic: Intense terahertz sources for time-resolved studies of matter,” Rev. Sci. Instrum. 84, 022501 (2013).
[Crossref] [PubMed]

Cavalleri, A.

H. Wen, K.-J. Kim, A. Zholents, J. Byrd, and A. Cavalleri, “Preface to special topic: Intense terahertz sources for time-resolved studies of matter,” Rev. Sci. Instrum. 84, 022501 (2013).
[Crossref] [PubMed]

Cook, A. M.

A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103, 095003 (2009).
[Crossref] [PubMed]

Fedurin, M.

S. Antipov, M. Babzien, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, V. Yakimenko, and A. Zholents, “Subpicosecond bunch train production for a tunable mJ level THz source,” Phys. Rev. Lett. 111, 134802 (2013).
[Crossref] [PubMed]

S. Antipov, C. Jing, A. Kanareykin, J. E. Butler, V. Yakimenko, M. Fedurin, K. Kusche, and W. Gai, “Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure,” Appl. Phys. Lett. 100, 132910 (2012).
[Crossref]

G. Andonian, O. Williams, X. Wei, P. Niknejadi, E. Hemsing, J. B. Rosenzweig, P. Muggli, M. Babzien, M. Fedurin, K. Kusche, R. Malone, and V. Yakimenko, “Resonant excitation of coherent Cerenkov radiation in dielectric lined waveguides,” Appl. Phys. Lett. 98, 202901 (2011).
[Crossref]

Fradin, A. Z.

A. Z. Fradin, Microwave Antennas (Pergamon, 1961).

Gai, W.

S. Antipov, M. Babzien, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, V. Yakimenko, and A. Zholents, “Subpicosecond bunch train production for a tunable mJ level THz source,” Phys. Rev. Lett. 111, 134802 (2013).
[Crossref] [PubMed]

S. Antipov, C. Jing, A. Kanareykin, J. E. Butler, V. Yakimenko, M. Fedurin, K. Kusche, and W. Gai, “Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure,” Appl. Phys. Lett. 100, 132910 (2012).
[Crossref]

Gallerano, G. P.

G. P. Gallerano and S. Biedron, “Overview on terahertz radiation sources,” in Proceedings of the 2004 FEL Conference(2004), pp. 216–221.

Galyamin, S. N.

E. S. Belonogaya, A. V. Tyukhtin, and S. N. Galyamin, “Approximate method for calculating the radiation from a moving charge in the presence of a complex object,” Phys. Rev. E 87, 043201 (2013).
[Crossref]

Garnov, S. V.

S. V. Garnov and I. A. Shcherbakov, “Laser methods for generating megavolt terahertz pulses,” Phys. Uspekhi 54, 91–96 (2011).
[Crossref]

Hemsing, E.

G. Andonian, O. Williams, X. Wei, P. Niknejadi, E. Hemsing, J. B. Rosenzweig, P. Muggli, M. Babzien, M. Fedurin, K. Kusche, R. Malone, and V. Yakimenko, “Resonant excitation of coherent Cerenkov radiation in dielectric lined waveguides,” Appl. Phys. Lett. 98, 202901 (2011).
[Crossref]

Jing, C.

S. Antipov, M. Babzien, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, V. Yakimenko, and A. Zholents, “Subpicosecond bunch train production for a tunable mJ level THz source,” Phys. Rev. Lett. 111, 134802 (2013).
[Crossref] [PubMed]

S. Antipov, C. Jing, A. Kanareykin, J. E. Butler, V. Yakimenko, M. Fedurin, K. Kusche, and W. Gai, “Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure,” Appl. Phys. Lett. 100, 132910 (2012).
[Crossref]

Kanareykin, A.

S. Antipov, M. Babzien, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, V. Yakimenko, and A. Zholents, “Subpicosecond bunch train production for a tunable mJ level THz source,” Phys. Rev. Lett. 111, 134802 (2013).
[Crossref] [PubMed]

S. Antipov, C. Jing, A. Kanareykin, J. E. Butler, V. Yakimenko, M. Fedurin, K. Kusche, and W. Gai, “Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure,” Appl. Phys. Lett. 100, 132910 (2012).
[Crossref]

Kim, K.-J.

H. Wen, K.-J. Kim, A. Zholents, J. Byrd, and A. Cavalleri, “Preface to special topic: Intense terahertz sources for time-resolved studies of matter,” Rev. Sci. Instrum. 84, 022501 (2013).
[Crossref] [PubMed]

Kimura, W. D.

P. Muggli, B. Allen, V. E. Yakimenko, J. Park, M. Babzien, K. P. Kusche, and W. D. Kimura, “Simple method for generating adjustable trains of picosecond electron bunches,” Phys. Rev. ST Accel. Beams 13, 052803 (2010).
[Crossref]

Kusche, K.

S. Antipov, M. Babzien, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, V. Yakimenko, and A. Zholents, “Subpicosecond bunch train production for a tunable mJ level THz source,” Phys. Rev. Lett. 111, 134802 (2013).
[Crossref] [PubMed]

S. Antipov, C. Jing, A. Kanareykin, J. E. Butler, V. Yakimenko, M. Fedurin, K. Kusche, and W. Gai, “Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure,” Appl. Phys. Lett. 100, 132910 (2012).
[Crossref]

G. Andonian, O. Williams, X. Wei, P. Niknejadi, E. Hemsing, J. B. Rosenzweig, P. Muggli, M. Babzien, M. Fedurin, K. Kusche, R. Malone, and V. Yakimenko, “Resonant excitation of coherent Cerenkov radiation in dielectric lined waveguides,” Appl. Phys. Lett. 98, 202901 (2011).
[Crossref]

Kusche, K. P.

P. Muggli, B. Allen, V. E. Yakimenko, J. Park, M. Babzien, K. P. Kusche, and W. D. Kimura, “Simple method for generating adjustable trains of picosecond electron bunches,” Phys. Rev. ST Accel. Beams 13, 052803 (2010).
[Crossref]

Malone, R.

G. Andonian, O. Williams, X. Wei, P. Niknejadi, E. Hemsing, J. B. Rosenzweig, P. Muggli, M. Babzien, M. Fedurin, K. Kusche, R. Malone, and V. Yakimenko, “Resonant excitation of coherent Cerenkov radiation in dielectric lined waveguides,” Appl. Phys. Lett. 98, 202901 (2011).
[Crossref]

Muggli, P.

G. Andonian, O. Williams, X. Wei, P. Niknejadi, E. Hemsing, J. B. Rosenzweig, P. Muggli, M. Babzien, M. Fedurin, K. Kusche, R. Malone, and V. Yakimenko, “Resonant excitation of coherent Cerenkov radiation in dielectric lined waveguides,” Appl. Phys. Lett. 98, 202901 (2011).
[Crossref]

P. Muggli, B. Allen, V. E. Yakimenko, J. Park, M. Babzien, K. P. Kusche, and W. D. Kimura, “Simple method for generating adjustable trains of picosecond electron bunches,” Phys. Rev. ST Accel. Beams 13, 052803 (2010).
[Crossref]

Niknejadi, P.

G. Andonian, O. Williams, X. Wei, P. Niknejadi, E. Hemsing, J. B. Rosenzweig, P. Muggli, M. Babzien, M. Fedurin, K. Kusche, R. Malone, and V. Yakimenko, “Resonant excitation of coherent Cerenkov radiation in dielectric lined waveguides,” Appl. Phys. Lett. 98, 202901 (2011).
[Crossref]

Park, J.

P. Muggli, B. Allen, V. E. Yakimenko, J. Park, M. Babzien, K. P. Kusche, and W. D. Kimura, “Simple method for generating adjustable trains of picosecond electron bunches,” Phys. Rev. ST Accel. Beams 13, 052803 (2010).
[Crossref]

Ponomarenko, A. A.

A. A. Ponomarenko, M. I. Ryazanov, M. N. Strikhanov, and A. A. Tishchenko, “Terahertz radiation from electrons moving through a waveguide with variable radius, based on Smith-Purcell and Cherenkov mechanisms,” Nucl. Instrum. Methods Phys. Res. B 309, 223–225 (2013).
[Crossref]

Rosenzweig, J. B.

G. Andonian, O. Williams, X. Wei, P. Niknejadi, E. Hemsing, J. B. Rosenzweig, P. Muggli, M. Babzien, M. Fedurin, K. Kusche, R. Malone, and V. Yakimenko, “Resonant excitation of coherent Cerenkov radiation in dielectric lined waveguides,” Appl. Phys. Lett. 98, 202901 (2011).
[Crossref]

A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103, 095003 (2009).
[Crossref] [PubMed]

Rudduck, R. C.

C. E. Ryan and R. C. Rudduck, “Radiation patterns of rectangular waveguides,” IEEE Trans. Antennas Propag. 16, 498–499 (1968).
[Crossref]

Ryan, C. E.

C. E. Ryan and R. C. Rudduck, “Radiation patterns of rectangular waveguides,” IEEE Trans. Antennas Propag. 16, 498–499 (1968).
[Crossref]

Ryazanov, M. I.

A. A. Ponomarenko, M. I. Ryazanov, M. N. Strikhanov, and A. A. Tishchenko, “Terahertz radiation from electrons moving through a waveguide with variable radius, based on Smith-Purcell and Cherenkov mechanisms,” Nucl. Instrum. Methods Phys. Res. B 309, 223–225 (2013).
[Crossref]

Schamiloglu, E.

J. Benford, J. A. Swegle, and E. Schamiloglu, High Power Microwaves, 2 (Taylor and Francis, 2007).

Shcherbakov, I. A.

S. V. Garnov and I. A. Shcherbakov, “Laser methods for generating megavolt terahertz pulses,” Phys. Uspekhi 54, 91–96 (2011).
[Crossref]

Strikhanov, M. N.

A. A. Ponomarenko, M. I. Ryazanov, M. N. Strikhanov, and A. A. Tishchenko, “Terahertz radiation from electrons moving through a waveguide with variable radius, based on Smith-Purcell and Cherenkov mechanisms,” Nucl. Instrum. Methods Phys. Res. B 309, 223–225 (2013).
[Crossref]

Stupakov, G.

K. Bane and G. Stupakov, “Terahertz radiation from a pipe with small corrugations,” Nucl. Instrum. Methods Phys. Res. A 677, 67–73 (2012).
[Crossref]

Swegle, J. A.

J. Benford, J. A. Swegle, and E. Schamiloglu, High Power Microwaves, 2 (Taylor and Francis, 2007).

Tikhoplav, R.

A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103, 095003 (2009).
[Crossref] [PubMed]

Tishchenko, A. A.

A. A. Ponomarenko, M. I. Ryazanov, M. N. Strikhanov, and A. A. Tishchenko, “Terahertz radiation from electrons moving through a waveguide with variable radius, based on Smith-Purcell and Cherenkov mechanisms,” Nucl. Instrum. Methods Phys. Res. B 309, 223–225 (2013).
[Crossref]

Tochitsky, S. Y.

A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103, 095003 (2009).
[Crossref] [PubMed]

Travish, G.

A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103, 095003 (2009).
[Crossref] [PubMed]

Tyukhtin, A. V.

E. S. Belonogaya, A. V. Tyukhtin, and S. N. Galyamin, “Approximate method for calculating the radiation from a moving charge in the presence of a complex object,” Phys. Rev. E 87, 043201 (2013).
[Crossref]

Vainshtein, L. A.

L. A. Vainshtein, The Theory of Diffraction and the Factorization Method (Golem, 1969).

Wei, X.

G. Andonian, O. Williams, X. Wei, P. Niknejadi, E. Hemsing, J. B. Rosenzweig, P. Muggli, M. Babzien, M. Fedurin, K. Kusche, R. Malone, and V. Yakimenko, “Resonant excitation of coherent Cerenkov radiation in dielectric lined waveguides,” Appl. Phys. Lett. 98, 202901 (2011).
[Crossref]

Wen, H.

H. Wen, K.-J. Kim, A. Zholents, J. Byrd, and A. Cavalleri, “Preface to special topic: Intense terahertz sources for time-resolved studies of matter,” Rev. Sci. Instrum. 84, 022501 (2013).
[Crossref] [PubMed]

Williams, G. P.

G. P. Williams, “Filling the THz gap - high power sources and applications,” Rep. Prog. Phys. 69, 301–326 (2006).
[Crossref]

Williams, O.

G. Andonian, O. Williams, X. Wei, P. Niknejadi, E. Hemsing, J. B. Rosenzweig, P. Muggli, M. Babzien, M. Fedurin, K. Kusche, R. Malone, and V. Yakimenko, “Resonant excitation of coherent Cerenkov radiation in dielectric lined waveguides,” Appl. Phys. Lett. 98, 202901 (2011).
[Crossref]

Williams, O. B.

A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103, 095003 (2009).
[Crossref] [PubMed]

Yakimenko, V.

S. Antipov, M. Babzien, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, V. Yakimenko, and A. Zholents, “Subpicosecond bunch train production for a tunable mJ level THz source,” Phys. Rev. Lett. 111, 134802 (2013).
[Crossref] [PubMed]

S. Antipov, C. Jing, A. Kanareykin, J. E. Butler, V. Yakimenko, M. Fedurin, K. Kusche, and W. Gai, “Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure,” Appl. Phys. Lett. 100, 132910 (2012).
[Crossref]

G. Andonian, O. Williams, X. Wei, P. Niknejadi, E. Hemsing, J. B. Rosenzweig, P. Muggli, M. Babzien, M. Fedurin, K. Kusche, R. Malone, and V. Yakimenko, “Resonant excitation of coherent Cerenkov radiation in dielectric lined waveguides,” Appl. Phys. Lett. 98, 202901 (2011).
[Crossref]

Yakimenko, V. E.

P. Muggli, B. Allen, V. E. Yakimenko, J. Park, M. Babzien, K. P. Kusche, and W. D. Kimura, “Simple method for generating adjustable trains of picosecond electron bunches,” Phys. Rev. ST Accel. Beams 13, 052803 (2010).
[Crossref]

Zholents, A.

S. Antipov, M. Babzien, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, V. Yakimenko, and A. Zholents, “Subpicosecond bunch train production for a tunable mJ level THz source,” Phys. Rev. Lett. 111, 134802 (2013).
[Crossref] [PubMed]

H. Wen, K.-J. Kim, A. Zholents, J. Byrd, and A. Cavalleri, “Preface to special topic: Intense terahertz sources for time-resolved studies of matter,” Rev. Sci. Instrum. 84, 022501 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

G. Andonian, O. Williams, X. Wei, P. Niknejadi, E. Hemsing, J. B. Rosenzweig, P. Muggli, M. Babzien, M. Fedurin, K. Kusche, R. Malone, and V. Yakimenko, “Resonant excitation of coherent Cerenkov radiation in dielectric lined waveguides,” Appl. Phys. Lett. 98, 202901 (2011).
[Crossref]

S. Antipov, C. Jing, A. Kanareykin, J. E. Butler, V. Yakimenko, M. Fedurin, K. Kusche, and W. Gai, “Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure,” Appl. Phys. Lett. 100, 132910 (2012).
[Crossref]

IEEE Trans. Antennas Propag. (1)

C. E. Ryan and R. C. Rudduck, “Radiation patterns of rectangular waveguides,” IEEE Trans. Antennas Propag. 16, 498–499 (1968).
[Crossref]

Nucl. Instrum. Methods Phys. Res. A (1)

K. Bane and G. Stupakov, “Terahertz radiation from a pipe with small corrugations,” Nucl. Instrum. Methods Phys. Res. A 677, 67–73 (2012).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (1)

A. A. Ponomarenko, M. I. Ryazanov, M. N. Strikhanov, and A. A. Tishchenko, “Terahertz radiation from electrons moving through a waveguide with variable radius, based on Smith-Purcell and Cherenkov mechanisms,” Nucl. Instrum. Methods Phys. Res. B 309, 223–225 (2013).
[Crossref]

Phys. Rev. E (1)

E. S. Belonogaya, A. V. Tyukhtin, and S. N. Galyamin, “Approximate method for calculating the radiation from a moving charge in the presence of a complex object,” Phys. Rev. E 87, 043201 (2013).
[Crossref]

Phys. Rev. Lett. (2)

A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103, 095003 (2009).
[Crossref] [PubMed]

S. Antipov, M. Babzien, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, V. Yakimenko, and A. Zholents, “Subpicosecond bunch train production for a tunable mJ level THz source,” Phys. Rev. Lett. 111, 134802 (2013).
[Crossref] [PubMed]

Phys. Rev. ST Accel. Beams (1)

P. Muggli, B. Allen, V. E. Yakimenko, J. Park, M. Babzien, K. P. Kusche, and W. D. Kimura, “Simple method for generating adjustable trains of picosecond electron bunches,” Phys. Rev. ST Accel. Beams 13, 052803 (2010).
[Crossref]

Phys. Uspekhi (2)

S. V. Garnov and I. A. Shcherbakov, “Laser methods for generating megavolt terahertz pulses,” Phys. Uspekhi 54, 91–96 (2011).
[Crossref]

B. M. Bolotovskii, “Theory of the Vavilov-Cherenkov effect (III),” Phys. Uspekhi 4, 781 (1962).
[Crossref]

Rep. Prog. Phys. (1)

G. P. Williams, “Filling the THz gap - high power sources and applications,” Rep. Prog. Phys. 69, 301–326 (2006).
[Crossref]

Rev. Sci. Instrum. (1)

H. Wen, K.-J. Kim, A. Zholents, J. Byrd, and A. Cavalleri, “Preface to special topic: Intense terahertz sources for time-resolved studies of matter,” Rev. Sci. Instrum. 84, 022501 (2013).
[Crossref] [PubMed]

Other (4)

G. P. Gallerano and S. Biedron, “Overview on terahertz radiation sources,” in Proceedings of the 2004 FEL Conference(2004), pp. 216–221.

A. Z. Fradin, Microwave Antennas (Pergamon, 1961).

L. A. Vainshtein, The Theory of Diffraction and the Factorization Method (Golem, 1969).

J. Benford, J. A. Swegle, and E. Schamiloglu, High Power Microwaves, 2 (Taylor and Francis, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 (a) Geometry of the problem (axes Oy and Oy′ are directed out of the plane of the page towards the reader). (b) Aperture of the skewed waveguide end.
Fig. 2
Fig. 2 The electric field (normalized by the multiplier Ak0g0 exp(−mt)/2) in the Fraunhofer zone for m = 10, generated by the aperture of the vacuum channel (Ev), dielectric aperture (Ed) and total field (E) as functions of θ1 for α = π/2 (in the xz and yz planes) and for α = 60° (in the xz plane).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E z { E z v = A ε μ 1 sin ( s m d ) for r < b E z d = A ε μ 1 b / r sin [ s m ( a r ) ] for r > b } exp ( i ω m ζ / υ ) , E r { E r v = H ϕ v = i A ε r b 1 cos ( s m d ) for r < b E r d = H ϕ d / ε = i A b / r cos [ s m ( a r ) ] for r > b } exp ( i ω m ζ / υ ) .
E = i k 0 g 0 4 π S a d ξ d η { [ e R , [ [ e z , H a ] , e R ] ] + [ [ E a , e z ] , e R ] } exp [ i k 0 ( r a , e R ) ] .
R 1 / k 0 , R a / sin α , R ( a / sin α ) 2 λ m 1 ( λ m = 2 π / k 0 = 2 d ε μ 1 / m ) .
E e θ v = i k 0 g 0 4 π cos θ S av d ξ d η [ H x av sin ϕ H y av cos ϕ ] exp ( i χ m Φ v ( ξ , η ) ) , E m θ v = i k 0 g 0 4 π S av d ξ d η [ E x av cos ϕ + E y av sin ϕ ] exp ( i χ m Φ v ( ξ , η ) ) ,
Φ v ( ξ , η ) = [ ( ξ cos ϕ + η sin ϕ ) sin θ + ξ cos α ] d 1 ( ε μ 1 ) 1 / 2 ,
H x av = H ϕ v sin α sin ϕ , H y av = H ϕ v cos ϕ , H z av = H ϕ v cos α sin ϕ , E x av = E z v cos α + E r v sin α cos ϕ , E y av = E r v sin ϕ , E z av = E z v sin α + E r v cos α cos ϕ ,
r = ξ 2 sin 2 α + η 2 , z = ξ cos α , sin ϕ = η / ξ 2 sin 2 α + η 2 .
E e θ d ± = i k 0 g 0 4 π cos θ S ad d ξ d η [ H x ad ( s ) ± sin ϕ H y ad ( s ) ± cos ϕ ] exp ( i χ m Φ d ± ( ξ , η ) ) , E m θ d ± = i k 0 g 0 4 π S ad d ξ d η [ E x ad ( s ) ± cos ϕ + E y ad ( s ) ± sin ϕ ] exp ( i χ m Φ d ± ( ξ , η ) ) .
H x ad ( s ) ± = T ± k y ± ( k y ± H x d ( s ) ± k x ± H y d ( s ) ± ) k 2 sin 2 θ i ± + T ± k z t ± k x ± ( k y ± E x d ( s ) ± k x ± E y d ( s ) ± ) k 0 k 2 sin 2 θ i ± ,
E z d ( s ) ± i A b / r ε μ 1 exp ( ± i s m a i ω m t ) / 2 , E r d ( s ) ± = H ϕ d ( s ) ± / ε i A b / r exp ( ± i s m a i ω m t ) / 2 ,
E θ v = ( i k 0 g 0 / 2 ) A ε b 2 cos ( s m d ) exp ( i ω m t ) ( 1 + cos θ ) J 2 ( ψ ) / ψ ,
E θ d = ( i k 0 / 2 ) g 0 A b exp ( i ω m t ) T ( 1 + ε cos θ ) I d ( m , θ ) ,

Metrics