Abstract

We demonstrate intense room temperature photoluminescence (PL) from optically active hydrogen- related defects incorporated into crystalline silicon. Hydrogen was incorporated into the device layer of a silicon on insulator (SOI) wafer by two methods: hydrogen plasma treatment and ion implantation. The room temperature PL spectra show two broad PL bands centered at 1300 and 1500 nm wavelengths: the first one relates to implanted defects while the other band mainly relates to the plasma treatment. Structural characterization reveals the presence of nanometric platelets and bubbles and we attribute different features of the emission spectrum to the presence of these different kind of defects. The emission is further enhanced by introducing defects into photonic crystal (PhC) nanocavities. Transmission electron microscopy analyses revealed that the isotropicity of plasma treatment causes the formation of a higher defects density around the whole cavity compared to the ion implantation technique, while ion implantation creates a lower density of defects embedded in the Si layer, resulting in a higher PL enhancement. These results further increase the understanding of the nature of optically active hydrogen defects and their relation with the observed photoluminescence, which will ultimately lead to the development of intense and tunable crystalline silicon light sources at room temperature.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, P. G. Fallica, “Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett. 81(17), 3242–3244 (2002).
    [CrossRef]
  2. Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, L. Dal Negro, J. Vuckovic, “Observation of transparency of erbium-doped silicon nitride in photonic crystal nanobeam cavities,” Opt. Express 18(13), 13863–13873 (2010).
    [CrossRef] [PubMed]
  3. G. Franzò, A. Irrera, E. Ceretta Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys., A Mater. Sci. Process. 74(1), 1–5 (2002).
    [CrossRef]
  4. A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett. 94, 221110 (2009).
  5. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
    [CrossRef] [PubMed]
  6. W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, K. P. Homewood, “An efficient room-temperature Si-based light-emitting diode,” Nature 410, 192–194 (2001).
  7. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
    [CrossRef] [PubMed]
  8. S. G. Cloutier, P. A. Kossyrev, J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4(12), 887–891 (2005).
    [CrossRef] [PubMed]
  9. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
    [CrossRef] [PubMed]
  10. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
    [CrossRef] [PubMed]
  11. F. Priolo, T. Gregorkiewicz, M. Galli, T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
    [CrossRef] [PubMed]
  12. A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photonics Rev. 7(1), 114–121 (2013).
    [CrossRef]
  13. H. Weman, B. Monemar, G. S. Oehrlein, S. J. Jeng, “Strain-induced quantum confinement of carriers due to extended defects in silicon,” Phys. Rev. B Condens. Matter 42(5), 3109–3112 (1990).
    [CrossRef] [PubMed]
  14. J. Weber, “Defect generation during plasma treatment of semiconductors,” Physica B 170(1-4), 201–217 (1991).
    [CrossRef]
  15. A. V. Mudryi, F. P. Korshunov, A. I. Patuk, I. A. Shakin, T. P. Larionova, A. G. Ulyashin, R. Job, W. R. Fahrner, V. V. Emtsev, V. Yu. Davydov, G. Oganesyan, “Low-temperature photoluminescence characterization of defects formation in hydrogen and helium implanted silicon at post-implantation annealing,” Physica B 308–310, 181–184 (2001).
    [CrossRef]
  16. J. Weber, T. Fischer, E. Hieckmann, M. Hiller, E. V. Lavrov, “Properties of hydrogen induced voids,” J. Phys. Condens. Matter 17(22), S2303–S2314 (2005).
    [CrossRef]
  17. J. Grisolia, G. Ben Assayag, A. Claverie, B. Aspar, C. Lagahe, L. Laanab, “A transmission electron microscopy quantitative study of the growth kinetics of H platelets in Si,” Appl. Phys. Lett. 76(7), 852–854 (2000).
    [CrossRef]
  18. X. Hebras, P. Nguyen, K. K. Bourdelle, F. Letertre, N. Cherkashin, A. Claverie, “Comparison of platelets formation in hydrogen and helium-implanted silicon,” Nucl. Instrum. Methods B 262(1), 24–28 (2007).
    [CrossRef]
  19. C. Ghica, L. C. Nistor, M. Stefan, D. Ghica, B. Mironov, S. Vizireanu, A. Moldovan, M. Dinescu, “Specificity of defects induced in siliconby RF-plasma hydrogenation,” Appl. Phys., A Mater. Sci. Process. 98(4), 777–785 (2010).
    [CrossRef]
  20. C. Ghica, L. C. Nistor, S. Vizireanu, G. Dinescu, “Annealing of hydrogen-induced defects in RF-plasma-treated Si wafers: ex situ transmission electron microscopy studies,” J. Phys. D Appl. Phys. 44, 295401 (2011).
  21. N. M. Johnson, F. A. Ponce, R. A. Street, R. J. Nemaich, “Defects in single-crystal silicon induced by hydrogenation,” Phys. Rev. B Condens. Matter 35(8), 4166–4169 (1987).
  22. H. Weman, J. L. Lindström, G. S. Oerhlein, B. G. Svensson, “Reactive ion and plasma etching induced extended defects in silicon studied with photoluminescence,” J. Appl. Phys. 67(2), 1013–1021 (1990).
    [CrossRef]
  23. R. Lo Savio, S. L. Portalupi, D. Gerace, A. Shakoor, T. F. Krauss, L. O’Faolin, L. C. Andreani, M. Galli, “Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98, 201106 (2011).
  24. A. Shakoor, R. Lo Savio, S. L. Portalupi, D. Gerace, L. C. Andreani, M. Galli, T. F. Krauss, L. O’Faolain, “Enhancement of room temperature sub-bandgap light emission from silicon photic crystal nanocavity by Purcell effect,” Physica B 407(20), 4027–4031 (2012).
    [CrossRef]
  25. Y. Akahane, T. Asano, B.-S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  26. N.-V.-Q. Tran, S. Combrié, A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
    [CrossRef]
  27. S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18(15), 16064–16073 (2010).
    [CrossRef] [PubMed]
  28. S. Boninelli, A. Claverie, G. Impellizzeri, S. Mirabella, F. Priolo, E. Napolitani, F. Cristiano, “Evidences of F-induced nanobubbles as sink for self-interstitials in Si,” Appl. Phys. Lett. 89, 171916 (2006).
  29. S. Boninelli, G. Impellizzeri, S. Mirabella, F. Priolo, E. Napolitani, N. Cherkashin, F. Cristiano, “Formation and evolution of F nanobubbles in amorphous and crystalline Si,” Appl. Phys. Lett. 93, 061906 (2008).
  30. T. Höchbauer, A. Misra, M. Nastasi, J. W. Mayer, “Physical mechanisms behind the ion-cut in hydrogen implanted silicon,” J. Appl. Phys. 92(5), 2335–2342 (2002).
    [CrossRef]
  31. N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12, 053005 (2010).
  32. A. Shakoor, “Silicon nanocavity light emitters at 1.3-1.5 µm wavelength,” PhD thesis, University of St. Andrews (2013).

2014

F. Priolo, T. Gregorkiewicz, M. Galli, T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[CrossRef] [PubMed]

2013

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photonics Rev. 7(1), 114–121 (2013).
[CrossRef]

2012

A. Shakoor, R. Lo Savio, S. L. Portalupi, D. Gerace, L. C. Andreani, M. Galli, T. F. Krauss, L. O’Faolain, “Enhancement of room temperature sub-bandgap light emission from silicon photic crystal nanocavity by Purcell effect,” Physica B 407(20), 4027–4031 (2012).
[CrossRef]

R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
[CrossRef] [PubMed]

2011

C. Ghica, L. C. Nistor, S. Vizireanu, G. Dinescu, “Annealing of hydrogen-induced defects in RF-plasma-treated Si wafers: ex situ transmission electron microscopy studies,” J. Phys. D Appl. Phys. 44, 295401 (2011).

R. Lo Savio, S. L. Portalupi, D. Gerace, A. Shakoor, T. F. Krauss, L. O’Faolin, L. C. Andreani, M. Galli, “Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98, 201106 (2011).

2010

2009

A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett. 94, 221110 (2009).

N.-V.-Q. Tran, S. Combrié, A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[CrossRef]

2008

S. Boninelli, G. Impellizzeri, S. Mirabella, F. Priolo, E. Napolitani, N. Cherkashin, F. Cristiano, “Formation and evolution of F nanobubbles in amorphous and crystalline Si,” Appl. Phys. Lett. 93, 061906 (2008).

2007

X. Hebras, P. Nguyen, K. K. Bourdelle, F. Letertre, N. Cherkashin, A. Claverie, “Comparison of platelets formation in hydrogen and helium-implanted silicon,” Nucl. Instrum. Methods B 262(1), 24–28 (2007).
[CrossRef]

2006

S. Boninelli, A. Claverie, G. Impellizzeri, S. Mirabella, F. Priolo, E. Napolitani, F. Cristiano, “Evidences of F-induced nanobubbles as sink for self-interstitials in Si,” Appl. Phys. Lett. 89, 171916 (2006).

2005

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

S. G. Cloutier, P. A. Kossyrev, J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4(12), 887–891 (2005).
[CrossRef] [PubMed]

J. Weber, T. Fischer, E. Hieckmann, M. Hiller, E. V. Lavrov, “Properties of hydrogen induced voids,” J. Phys. Condens. Matter 17(22), S2303–S2314 (2005).
[CrossRef]

2003

Y. Akahane, T. Asano, B.-S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

2002

G. Franzò, A. Irrera, E. Ceretta Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys., A Mater. Sci. Process. 74(1), 1–5 (2002).
[CrossRef]

T. Höchbauer, A. Misra, M. Nastasi, J. W. Mayer, “Physical mechanisms behind the ion-cut in hydrogen implanted silicon,” J. Appl. Phys. 92(5), 2335–2342 (2002).
[CrossRef]

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, P. G. Fallica, “Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett. 81(17), 3242–3244 (2002).
[CrossRef]

2001

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, K. P. Homewood, “An efficient room-temperature Si-based light-emitting diode,” Nature 410, 192–194 (2001).

A. V. Mudryi, F. P. Korshunov, A. I. Patuk, I. A. Shakin, T. P. Larionova, A. G. Ulyashin, R. Job, W. R. Fahrner, V. V. Emtsev, V. Yu. Davydov, G. Oganesyan, “Low-temperature photoluminescence characterization of defects formation in hydrogen and helium implanted silicon at post-implantation annealing,” Physica B 308–310, 181–184 (2001).
[CrossRef]

2000

J. Grisolia, G. Ben Assayag, A. Claverie, B. Aspar, C. Lagahe, L. Laanab, “A transmission electron microscopy quantitative study of the growth kinetics of H platelets in Si,” Appl. Phys. Lett. 76(7), 852–854 (2000).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

1991

J. Weber, “Defect generation during plasma treatment of semiconductors,” Physica B 170(1-4), 201–217 (1991).
[CrossRef]

1990

H. Weman, B. Monemar, G. S. Oehrlein, S. J. Jeng, “Strain-induced quantum confinement of carriers due to extended defects in silicon,” Phys. Rev. B Condens. Matter 42(5), 3109–3112 (1990).
[CrossRef] [PubMed]

H. Weman, J. L. Lindström, G. S. Oerhlein, B. G. Svensson, “Reactive ion and plasma etching induced extended defects in silicon studied with photoluminescence,” J. Appl. Phys. 67(2), 1013–1021 (1990).
[CrossRef]

1987

N. M. Johnson, F. A. Ponce, R. A. Street, R. J. Nemaich, “Defects in single-crystal silicon induced by hydrogenation,” Phys. Rev. B Condens. Matter 35(8), 4166–4169 (1987).

Abstreiter, G.

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12, 053005 (2010).

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Andreani, L. C.

A. Shakoor, R. Lo Savio, S. L. Portalupi, D. Gerace, L. C. Andreani, M. Galli, T. F. Krauss, L. O’Faolain, “Enhancement of room temperature sub-bandgap light emission from silicon photic crystal nanocavity by Purcell effect,” Physica B 407(20), 4027–4031 (2012).
[CrossRef]

R. Lo Savio, S. L. Portalupi, D. Gerace, A. Shakoor, T. F. Krauss, L. O’Faolin, L. C. Andreani, M. Galli, “Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98, 201106 (2011).

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18(15), 16064–16073 (2010).
[CrossRef] [PubMed]

Anopchenko, A.

A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett. 94, 221110 (2009).

Arakawa, Y.

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12, 053005 (2010).

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Aspar, B.

J. Grisolia, G. Ben Assayag, A. Claverie, B. Aspar, C. Lagahe, L. Laanab, “A transmission electron microscopy quantitative study of the growth kinetics of H platelets in Si,” Appl. Phys. Lett. 76(7), 852–854 (2000).
[CrossRef]

Baek, B.

Bellutti, P.

A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett. 94, 221110 (2009).

Ben Assayag, G.

J. Grisolia, G. Ben Assayag, A. Claverie, B. Aspar, C. Lagahe, L. Laanab, “A transmission electron microscopy quantitative study of the growth kinetics of H platelets in Si,” Appl. Phys. Lett. 76(7), 852–854 (2000).
[CrossRef]

Bessette, J. T.

Boninelli, S.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photonics Rev. 7(1), 114–121 (2013).
[CrossRef]

S. Boninelli, G. Impellizzeri, S. Mirabella, F. Priolo, E. Napolitani, N. Cherkashin, F. Cristiano, “Formation and evolution of F nanobubbles in amorphous and crystalline Si,” Appl. Phys. Lett. 93, 061906 (2008).

S. Boninelli, A. Claverie, G. Impellizzeri, S. Mirabella, F. Priolo, E. Napolitani, F. Cristiano, “Evidences of F-induced nanobubbles as sink for self-interstitials in Si,” Appl. Phys. Lett. 89, 171916 (2006).

Bougeard, D.

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12, 053005 (2010).

Bourdelle, K. K.

X. Hebras, P. Nguyen, K. K. Bourdelle, F. Letertre, N. Cherkashin, A. Claverie, “Comparison of platelets formation in hydrogen and helium-implanted silicon,” Nucl. Instrum. Methods B 262(1), 24–28 (2007).
[CrossRef]

Cai, Y.

Camacho-Aguilera, R.

Camacho-Aguilera, R. E.

Cardile, P.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photonics Rev. 7(1), 114–121 (2013).
[CrossRef]

Ceretta Moreira, E.

G. Franzò, A. Irrera, E. Ceretta Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys., A Mater. Sci. Process. 74(1), 1–5 (2002).
[CrossRef]

Cherkashin, N.

S. Boninelli, G. Impellizzeri, S. Mirabella, F. Priolo, E. Napolitani, N. Cherkashin, F. Cristiano, “Formation and evolution of F nanobubbles in amorphous and crystalline Si,” Appl. Phys. Lett. 93, 061906 (2008).

X. Hebras, P. Nguyen, K. K. Bourdelle, F. Letertre, N. Cherkashin, A. Claverie, “Comparison of platelets formation in hydrogen and helium-implanted silicon,” Nucl. Instrum. Methods B 262(1), 24–28 (2007).
[CrossRef]

Claverie, A.

X. Hebras, P. Nguyen, K. K. Bourdelle, F. Letertre, N. Cherkashin, A. Claverie, “Comparison of platelets formation in hydrogen and helium-implanted silicon,” Nucl. Instrum. Methods B 262(1), 24–28 (2007).
[CrossRef]

S. Boninelli, A. Claverie, G. Impellizzeri, S. Mirabella, F. Priolo, E. Napolitani, F. Cristiano, “Evidences of F-induced nanobubbles as sink for self-interstitials in Si,” Appl. Phys. Lett. 89, 171916 (2006).

J. Grisolia, G. Ben Assayag, A. Claverie, B. Aspar, C. Lagahe, L. Laanab, “A transmission electron microscopy quantitative study of the growth kinetics of H platelets in Si,” Appl. Phys. Lett. 76(7), 852–854 (2000).
[CrossRef]

Cloutier, S. G.

S. G. Cloutier, P. A. Kossyrev, J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4(12), 887–891 (2005).
[CrossRef] [PubMed]

Cohen, O.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Combrié, S.

N.-V.-Q. Tran, S. Combrié, A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[CrossRef]

Cristiano, F.

S. Boninelli, G. Impellizzeri, S. Mirabella, F. Priolo, E. Napolitani, N. Cherkashin, F. Cristiano, “Formation and evolution of F nanobubbles in amorphous and crystalline Si,” Appl. Phys. Lett. 93, 061906 (2008).

S. Boninelli, A. Claverie, G. Impellizzeri, S. Mirabella, F. Priolo, E. Napolitani, F. Cristiano, “Evidences of F-induced nanobubbles as sink for self-interstitials in Si,” Appl. Phys. Lett. 89, 171916 (2006).

Dal Negro, L.

Davydov, V. Yu.

A. V. Mudryi, F. P. Korshunov, A. I. Patuk, I. A. Shakin, T. P. Larionova, A. G. Ulyashin, R. Job, W. R. Fahrner, V. V. Emtsev, V. Yu. Davydov, G. Oganesyan, “Low-temperature photoluminescence characterization of defects formation in hydrogen and helium implanted silicon at post-implantation annealing,” Physica B 308–310, 181–184 (2001).
[CrossRef]

De Rossi, A.

N.-V.-Q. Tran, S. Combrié, A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[CrossRef]

Di Stefano, G.

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, P. G. Fallica, “Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett. 81(17), 3242–3244 (2002).
[CrossRef]

G. Franzò, A. Irrera, E. Ceretta Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys., A Mater. Sci. Process. 74(1), 1–5 (2002).
[CrossRef]

Dinescu, G.

C. Ghica, L. C. Nistor, S. Vizireanu, G. Dinescu, “Annealing of hydrogen-induced defects in RF-plasma-treated Si wafers: ex situ transmission electron microscopy studies,” J. Phys. D Appl. Phys. 44, 295401 (2011).

Dinescu, M.

C. Ghica, L. C. Nistor, M. Stefan, D. Ghica, B. Mironov, S. Vizireanu, A. Moldovan, M. Dinescu, “Specificity of defects induced in siliconby RF-plasma hydrogenation,” Appl. Phys., A Mater. Sci. Process. 98(4), 777–785 (2010).
[CrossRef]

Emtsev, V. V.

A. V. Mudryi, F. P. Korshunov, A. I. Patuk, I. A. Shakin, T. P. Larionova, A. G. Ulyashin, R. Job, W. R. Fahrner, V. V. Emtsev, V. Yu. Davydov, G. Oganesyan, “Low-temperature photoluminescence characterization of defects formation in hydrogen and helium implanted silicon at post-implantation annealing,” Physica B 308–310, 181–184 (2001).
[CrossRef]

Fahrner, W. R.

A. V. Mudryi, F. P. Korshunov, A. I. Patuk, I. A. Shakin, T. P. Larionova, A. G. Ulyashin, R. Job, W. R. Fahrner, V. V. Emtsev, V. Yu. Davydov, G. Oganesyan, “Low-temperature photoluminescence characterization of defects formation in hydrogen and helium implanted silicon at post-implantation annealing,” Physica B 308–310, 181–184 (2001).
[CrossRef]

Fallica, P. G.

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, P. G. Fallica, “Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett. 81(17), 3242–3244 (2002).
[CrossRef]

G. Franzò, A. Irrera, E. Ceretta Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys., A Mater. Sci. Process. 74(1), 1–5 (2002).
[CrossRef]

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Finley, J. J.

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12, 053005 (2010).

Fischer, T.

J. Weber, T. Fischer, E. Hieckmann, M. Hiller, E. V. Lavrov, “Properties of hydrogen induced voids,” J. Phys. Condens. Matter 17(22), S2303–S2314 (2005).
[CrossRef]

Franzò, G.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photonics Rev. 7(1), 114–121 (2013).
[CrossRef]

G. Franzò, A. Irrera, E. Ceretta Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys., A Mater. Sci. Process. 74(1), 1–5 (2002).
[CrossRef]

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, P. G. Fallica, “Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett. 81(17), 3242–3244 (2002).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Galli, M.

F. Priolo, T. Gregorkiewicz, M. Galli, T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[CrossRef] [PubMed]

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photonics Rev. 7(1), 114–121 (2013).
[CrossRef]

A. Shakoor, R. Lo Savio, S. L. Portalupi, D. Gerace, L. C. Andreani, M. Galli, T. F. Krauss, L. O’Faolain, “Enhancement of room temperature sub-bandgap light emission from silicon photic crystal nanocavity by Purcell effect,” Physica B 407(20), 4027–4031 (2012).
[CrossRef]

R. Lo Savio, S. L. Portalupi, D. Gerace, A. Shakoor, T. F. Krauss, L. O’Faolin, L. C. Andreani, M. Galli, “Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98, 201106 (2011).

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18(15), 16064–16073 (2010).
[CrossRef] [PubMed]

Gerace, D.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photonics Rev. 7(1), 114–121 (2013).
[CrossRef]

A. Shakoor, R. Lo Savio, S. L. Portalupi, D. Gerace, L. C. Andreani, M. Galli, T. F. Krauss, L. O’Faolain, “Enhancement of room temperature sub-bandgap light emission from silicon photic crystal nanocavity by Purcell effect,” Physica B 407(20), 4027–4031 (2012).
[CrossRef]

R. Lo Savio, S. L. Portalupi, D. Gerace, A. Shakoor, T. F. Krauss, L. O’Faolin, L. C. Andreani, M. Galli, “Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98, 201106 (2011).

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18(15), 16064–16073 (2010).
[CrossRef] [PubMed]

Ghica, C.

C. Ghica, L. C. Nistor, S. Vizireanu, G. Dinescu, “Annealing of hydrogen-induced defects in RF-plasma-treated Si wafers: ex situ transmission electron microscopy studies,” J. Phys. D Appl. Phys. 44, 295401 (2011).

C. Ghica, L. C. Nistor, M. Stefan, D. Ghica, B. Mironov, S. Vizireanu, A. Moldovan, M. Dinescu, “Specificity of defects induced in siliconby RF-plasma hydrogenation,” Appl. Phys., A Mater. Sci. Process. 98(4), 777–785 (2010).
[CrossRef]

Ghica, D.

C. Ghica, L. C. Nistor, M. Stefan, D. Ghica, B. Mironov, S. Vizireanu, A. Moldovan, M. Dinescu, “Specificity of defects induced in siliconby RF-plasma hydrogenation,” Appl. Phys., A Mater. Sci. Process. 98(4), 777–785 (2010).
[CrossRef]

Gong, Y.

Gregorkiewicz, T.

F. Priolo, T. Gregorkiewicz, M. Galli, T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[CrossRef] [PubMed]

Grisolia, J.

J. Grisolia, G. Ben Assayag, A. Claverie, B. Aspar, C. Lagahe, L. Laanab, “A transmission electron microscopy quantitative study of the growth kinetics of H platelets in Si,” Appl. Phys. Lett. 76(7), 852–854 (2000).
[CrossRef]

Gwilliam, R. M.

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, K. P. Homewood, “An efficient room-temperature Si-based light-emitting diode,” Nature 410, 192–194 (2001).

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Hauke, N.

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12, 053005 (2010).

Hebras, X.

X. Hebras, P. Nguyen, K. K. Bourdelle, F. Letertre, N. Cherkashin, A. Claverie, “Comparison of platelets formation in hydrogen and helium-implanted silicon,” Nucl. Instrum. Methods B 262(1), 24–28 (2007).
[CrossRef]

Hieckmann, E.

J. Weber, T. Fischer, E. Hieckmann, M. Hiller, E. V. Lavrov, “Properties of hydrogen induced voids,” J. Phys. Condens. Matter 17(22), S2303–S2314 (2005).
[CrossRef]

Hiller, M.

J. Weber, T. Fischer, E. Hieckmann, M. Hiller, E. V. Lavrov, “Properties of hydrogen induced voids,” J. Phys. Condens. Matter 17(22), S2303–S2314 (2005).
[CrossRef]

Höchbauer, T.

T. Höchbauer, A. Misra, M. Nastasi, J. W. Mayer, “Physical mechanisms behind the ion-cut in hydrogen implanted silicon,” J. Appl. Phys. 92(5), 2335–2342 (2002).
[CrossRef]

Homewood, K. P.

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, K. P. Homewood, “An efficient room-temperature Si-based light-emitting diode,” Nature 410, 192–194 (2001).

Iacona, F.

G. Franzò, A. Irrera, E. Ceretta Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys., A Mater. Sci. Process. 74(1), 1–5 (2002).
[CrossRef]

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, P. G. Fallica, “Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett. 81(17), 3242–3244 (2002).
[CrossRef]

Impellizzeri, G.

S. Boninelli, G. Impellizzeri, S. Mirabella, F. Priolo, E. Napolitani, N. Cherkashin, F. Cristiano, “Formation and evolution of F nanobubbles in amorphous and crystalline Si,” Appl. Phys. Lett. 93, 061906 (2008).

S. Boninelli, A. Claverie, G. Impellizzeri, S. Mirabella, F. Priolo, E. Napolitani, F. Cristiano, “Evidences of F-induced nanobubbles as sink for self-interstitials in Si,” Appl. Phys. Lett. 89, 171916 (2006).

Irrera, A.

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, P. G. Fallica, “Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett. 81(17), 3242–3244 (2002).
[CrossRef]

G. Franzò, A. Irrera, E. Ceretta Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys., A Mater. Sci. Process. 74(1), 1–5 (2002).
[CrossRef]

Jeng, S. J.

H. Weman, B. Monemar, G. S. Oehrlein, S. J. Jeng, “Strain-induced quantum confinement of carriers due to extended defects in silicon,” Phys. Rev. B Condens. Matter 42(5), 3109–3112 (1990).
[CrossRef] [PubMed]

Job, R.

A. V. Mudryi, F. P. Korshunov, A. I. Patuk, I. A. Shakin, T. P. Larionova, A. G. Ulyashin, R. Job, W. R. Fahrner, V. V. Emtsev, V. Yu. Davydov, G. Oganesyan, “Low-temperature photoluminescence characterization of defects formation in hydrogen and helium implanted silicon at post-implantation annealing,” Physica B 308–310, 181–184 (2001).
[CrossRef]

Johnson, N. M.

N. M. Johnson, F. A. Ponce, R. A. Street, R. J. Nemaich, “Defects in single-crystal silicon induced by hydrogenation,” Phys. Rev. B Condens. Matter 35(8), 4166–4169 (1987).

Jones, R.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Kaniber, M.

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12, 053005 (2010).

Kimerling, L. C.

Korshunov, F. P.

A. V. Mudryi, F. P. Korshunov, A. I. Patuk, I. A. Shakin, T. P. Larionova, A. G. Ulyashin, R. Job, W. R. Fahrner, V. V. Emtsev, V. Yu. Davydov, G. Oganesyan, “Low-temperature photoluminescence characterization of defects formation in hydrogen and helium implanted silicon at post-implantation annealing,” Physica B 308–310, 181–184 (2001).
[CrossRef]

Kossyrev, P. A.

S. G. Cloutier, P. A. Kossyrev, J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4(12), 887–891 (2005).
[CrossRef] [PubMed]

Krauss, T. F.

F. Priolo, T. Gregorkiewicz, M. Galli, T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[CrossRef] [PubMed]

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photonics Rev. 7(1), 114–121 (2013).
[CrossRef]

A. Shakoor, R. Lo Savio, S. L. Portalupi, D. Gerace, L. C. Andreani, M. Galli, T. F. Krauss, L. O’Faolain, “Enhancement of room temperature sub-bandgap light emission from silicon photic crystal nanocavity by Purcell effect,” Physica B 407(20), 4027–4031 (2012).
[CrossRef]

R. Lo Savio, S. L. Portalupi, D. Gerace, A. Shakoor, T. F. Krauss, L. O’Faolin, L. C. Andreani, M. Galli, “Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98, 201106 (2011).

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18(15), 16064–16073 (2010).
[CrossRef] [PubMed]

Laanab, L.

J. Grisolia, G. Ben Assayag, A. Claverie, B. Aspar, C. Lagahe, L. Laanab, “A transmission electron microscopy quantitative study of the growth kinetics of H platelets in Si,” Appl. Phys. Lett. 76(7), 852–854 (2000).
[CrossRef]

Lagahe, C.

J. Grisolia, G. Ben Assayag, A. Claverie, B. Aspar, C. Lagahe, L. Laanab, “A transmission electron microscopy quantitative study of the growth kinetics of H platelets in Si,” Appl. Phys. Lett. 76(7), 852–854 (2000).
[CrossRef]

Larionova, T. P.

A. V. Mudryi, F. P. Korshunov, A. I. Patuk, I. A. Shakin, T. P. Larionova, A. G. Ulyashin, R. Job, W. R. Fahrner, V. V. Emtsev, V. Yu. Davydov, G. Oganesyan, “Low-temperature photoluminescence characterization of defects formation in hydrogen and helium implanted silicon at post-implantation annealing,” Physica B 308–310, 181–184 (2001).
[CrossRef]

Laucht, A.

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12, 053005 (2010).

Lavrov, E. V.

J. Weber, T. Fischer, E. Hieckmann, M. Hiller, E. V. Lavrov, “Properties of hydrogen induced voids,” J. Phys. Condens. Matter 17(22), S2303–S2314 (2005).
[CrossRef]

Ledain, S.

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, K. P. Homewood, “An efficient room-temperature Si-based light-emitting diode,” Nature 410, 192–194 (2001).

Letertre, F.

X. Hebras, P. Nguyen, K. K. Bourdelle, F. Letertre, N. Cherkashin, A. Claverie, “Comparison of platelets formation in hydrogen and helium-implanted silicon,” Nucl. Instrum. Methods B 262(1), 24–28 (2007).
[CrossRef]

Li, R.

Lindström, J. L.

H. Weman, J. L. Lindström, G. S. Oerhlein, B. G. Svensson, “Reactive ion and plasma etching induced extended defects in silicon studied with photoluminescence,” J. Appl. Phys. 67(2), 1013–1021 (1990).
[CrossRef]

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Liu, J.

Lo Savio, R.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photonics Rev. 7(1), 114–121 (2013).
[CrossRef]

A. Shakoor, R. Lo Savio, S. L. Portalupi, D. Gerace, L. C. Andreani, M. Galli, T. F. Krauss, L. O’Faolain, “Enhancement of room temperature sub-bandgap light emission from silicon photic crystal nanocavity by Purcell effect,” Physica B 407(20), 4027–4031 (2012).
[CrossRef]

R. Lo Savio, S. L. Portalupi, D. Gerace, A. Shakoor, T. F. Krauss, L. O’Faolin, L. C. Andreani, M. Galli, “Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98, 201106 (2011).

Lourenço, M. A.

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, K. P. Homewood, “An efficient room-temperature Si-based light-emitting diode,” Nature 410, 192–194 (2001).

Makarova, M.

Marconi, A.

A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett. 94, 221110 (2009).

Mayer, J. W.

T. Höchbauer, A. Misra, M. Nastasi, J. W. Mayer, “Physical mechanisms behind the ion-cut in hydrogen implanted silicon,” J. Appl. Phys. 92(5), 2335–2342 (2002).
[CrossRef]

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Michel, J.

Mirabella, S.

S. Boninelli, G. Impellizzeri, S. Mirabella, F. Priolo, E. Napolitani, N. Cherkashin, F. Cristiano, “Formation and evolution of F nanobubbles in amorphous and crystalline Si,” Appl. Phys. Lett. 93, 061906 (2008).

S. Boninelli, A. Claverie, G. Impellizzeri, S. Mirabella, F. Priolo, E. Napolitani, F. Cristiano, “Evidences of F-induced nanobubbles as sink for self-interstitials in Si,” Appl. Phys. Lett. 89, 171916 (2006).

Miritello, M.

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, P. G. Fallica, “Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett. 81(17), 3242–3244 (2002).
[CrossRef]

G. Franzò, A. Irrera, E. Ceretta Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys., A Mater. Sci. Process. 74(1), 1–5 (2002).
[CrossRef]

Mironov, B.

C. Ghica, L. C. Nistor, M. Stefan, D. Ghica, B. Mironov, S. Vizireanu, A. Moldovan, M. Dinescu, “Specificity of defects induced in siliconby RF-plasma hydrogenation,” Appl. Phys., A Mater. Sci. Process. 98(4), 777–785 (2010).
[CrossRef]

Misra, A.

T. Höchbauer, A. Misra, M. Nastasi, J. W. Mayer, “Physical mechanisms behind the ion-cut in hydrogen implanted silicon,” J. Appl. Phys. 92(5), 2335–2342 (2002).
[CrossRef]

Moldovan, A.

C. Ghica, L. C. Nistor, M. Stefan, D. Ghica, B. Mironov, S. Vizireanu, A. Moldovan, M. Dinescu, “Specificity of defects induced in siliconby RF-plasma hydrogenation,” Appl. Phys., A Mater. Sci. Process. 98(4), 777–785 (2010).
[CrossRef]

Monemar, B.

H. Weman, B. Monemar, G. S. Oehrlein, S. J. Jeng, “Strain-induced quantum confinement of carriers due to extended defects in silicon,” Phys. Rev. B Condens. Matter 42(5), 3109–3112 (1990).
[CrossRef] [PubMed]

Mudryi, A. V.

A. V. Mudryi, F. P. Korshunov, A. I. Patuk, I. A. Shakin, T. P. Larionova, A. G. Ulyashin, R. Job, W. R. Fahrner, V. V. Emtsev, V. Yu. Davydov, G. Oganesyan, “Low-temperature photoluminescence characterization of defects formation in hydrogen and helium implanted silicon at post-implantation annealing,” Physica B 308–310, 181–184 (2001).
[CrossRef]

Müller, K.

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12, 053005 (2010).

Nam, S. W.

Napolitani, E.

S. Boninelli, G. Impellizzeri, S. Mirabella, F. Priolo, E. Napolitani, N. Cherkashin, F. Cristiano, “Formation and evolution of F nanobubbles in amorphous and crystalline Si,” Appl. Phys. Lett. 93, 061906 (2008).

S. Boninelli, A. Claverie, G. Impellizzeri, S. Mirabella, F. Priolo, E. Napolitani, F. Cristiano, “Evidences of F-induced nanobubbles as sink for self-interstitials in Si,” Appl. Phys. Lett. 89, 171916 (2006).

Nastasi, M.

T. Höchbauer, A. Misra, M. Nastasi, J. W. Mayer, “Physical mechanisms behind the ion-cut in hydrogen implanted silicon,” J. Appl. Phys. 92(5), 2335–2342 (2002).
[CrossRef]

Nemaich, R. J.

N. M. Johnson, F. A. Ponce, R. A. Street, R. J. Nemaich, “Defects in single-crystal silicon induced by hydrogenation,” Phys. Rev. B Condens. Matter 35(8), 4166–4169 (1987).

Ng, W. L.

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, K. P. Homewood, “An efficient room-temperature Si-based light-emitting diode,” Nature 410, 192–194 (2001).

Nguyen, P.

X. Hebras, P. Nguyen, K. K. Bourdelle, F. Letertre, N. Cherkashin, A. Claverie, “Comparison of platelets formation in hydrogen and helium-implanted silicon,” Nucl. Instrum. Methods B 262(1), 24–28 (2007).
[CrossRef]

Nistor, L. C.

C. Ghica, L. C. Nistor, S. Vizireanu, G. Dinescu, “Annealing of hydrogen-induced defects in RF-plasma-treated Si wafers: ex situ transmission electron microscopy studies,” J. Phys. D Appl. Phys. 44, 295401 (2011).

C. Ghica, L. C. Nistor, M. Stefan, D. Ghica, B. Mironov, S. Vizireanu, A. Moldovan, M. Dinescu, “Specificity of defects induced in siliconby RF-plasma hydrogenation,” Appl. Phys., A Mater. Sci. Process. 98(4), 777–785 (2010).
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

O’Faolain, L.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photonics Rev. 7(1), 114–121 (2013).
[CrossRef]

A. Shakoor, R. Lo Savio, S. L. Portalupi, D. Gerace, L. C. Andreani, M. Galli, T. F. Krauss, L. O’Faolain, “Enhancement of room temperature sub-bandgap light emission from silicon photic crystal nanocavity by Purcell effect,” Physica B 407(20), 4027–4031 (2012).
[CrossRef]

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18(15), 16064–16073 (2010).
[CrossRef] [PubMed]

O’Faolin, L.

R. Lo Savio, S. L. Portalupi, D. Gerace, A. Shakoor, T. F. Krauss, L. O’Faolin, L. C. Andreani, M. Galli, “Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98, 201106 (2011).

Oehrlein, G. S.

H. Weman, B. Monemar, G. S. Oehrlein, S. J. Jeng, “Strain-induced quantum confinement of carriers due to extended defects in silicon,” Phys. Rev. B Condens. Matter 42(5), 3109–3112 (1990).
[CrossRef] [PubMed]

Oerhlein, G. S.

H. Weman, J. L. Lindström, G. S. Oerhlein, B. G. Svensson, “Reactive ion and plasma etching induced extended defects in silicon studied with photoluminescence,” J. Appl. Phys. 67(2), 1013–1021 (1990).
[CrossRef]

Oganesyan, G.

A. V. Mudryi, F. P. Korshunov, A. I. Patuk, I. A. Shakin, T. P. Larionova, A. G. Ulyashin, R. Job, W. R. Fahrner, V. V. Emtsev, V. Yu. Davydov, G. Oganesyan, “Low-temperature photoluminescence characterization of defects formation in hydrogen and helium implanted silicon at post-implantation annealing,” Physica B 308–310, 181–184 (2001).
[CrossRef]

Pacifici, D.

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, P. G. Fallica, “Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett. 81(17), 3242–3244 (2002).
[CrossRef]

Paniccia, M.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Patel, N.

Patuk, A. I.

A. V. Mudryi, F. P. Korshunov, A. I. Patuk, I. A. Shakin, T. P. Larionova, A. G. Ulyashin, R. Job, W. R. Fahrner, V. V. Emtsev, V. Yu. Davydov, G. Oganesyan, “Low-temperature photoluminescence characterization of defects formation in hydrogen and helium implanted silicon at post-implantation annealing,” Physica B 308–310, 181–184 (2001).
[CrossRef]

Pavesi, L.

A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett. 94, 221110 (2009).

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Ponce, F. A.

N. M. Johnson, F. A. Ponce, R. A. Street, R. J. Nemaich, “Defects in single-crystal silicon induced by hydrogenation,” Phys. Rev. B Condens. Matter 35(8), 4166–4169 (1987).

Portalupi, S. L.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photonics Rev. 7(1), 114–121 (2013).
[CrossRef]

A. Shakoor, R. Lo Savio, S. L. Portalupi, D. Gerace, L. C. Andreani, M. Galli, T. F. Krauss, L. O’Faolain, “Enhancement of room temperature sub-bandgap light emission from silicon photic crystal nanocavity by Purcell effect,” Physica B 407(20), 4027–4031 (2012).
[CrossRef]

R. Lo Savio, S. L. Portalupi, D. Gerace, A. Shakoor, T. F. Krauss, L. O’Faolin, L. C. Andreani, M. Galli, “Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98, 201106 (2011).

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18(15), 16064–16073 (2010).
[CrossRef] [PubMed]

Priolo, F.

F. Priolo, T. Gregorkiewicz, M. Galli, T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[CrossRef] [PubMed]

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photonics Rev. 7(1), 114–121 (2013).
[CrossRef]

S. Boninelli, G. Impellizzeri, S. Mirabella, F. Priolo, E. Napolitani, N. Cherkashin, F. Cristiano, “Formation and evolution of F nanobubbles in amorphous and crystalline Si,” Appl. Phys. Lett. 93, 061906 (2008).

S. Boninelli, A. Claverie, G. Impellizzeri, S. Mirabella, F. Priolo, E. Napolitani, F. Cristiano, “Evidences of F-induced nanobubbles as sink for self-interstitials in Si,” Appl. Phys. Lett. 89, 171916 (2006).

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, P. G. Fallica, “Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett. 81(17), 3242–3244 (2002).
[CrossRef]

G. Franzò, A. Irrera, E. Ceretta Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys., A Mater. Sci. Process. 74(1), 1–5 (2002).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Pucker, G.

A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett. 94, 221110 (2009).

Reardon, C.

Romagnoli, M.

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Sanfilippo, D.

G. Franzò, A. Irrera, E. Ceretta Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys., A Mater. Sci. Process. 74(1), 1–5 (2002).
[CrossRef]

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, P. G. Fallica, “Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett. 81(17), 3242–3244 (2002).
[CrossRef]

Shakin, I. A.

A. V. Mudryi, F. P. Korshunov, A. I. Patuk, I. A. Shakin, T. P. Larionova, A. G. Ulyashin, R. Job, W. R. Fahrner, V. V. Emtsev, V. Yu. Davydov, G. Oganesyan, “Low-temperature photoluminescence characterization of defects formation in hydrogen and helium implanted silicon at post-implantation annealing,” Physica B 308–310, 181–184 (2001).
[CrossRef]

Shakoor, A.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photonics Rev. 7(1), 114–121 (2013).
[CrossRef]

A. Shakoor, R. Lo Savio, S. L. Portalupi, D. Gerace, L. C. Andreani, M. Galli, T. F. Krauss, L. O’Faolain, “Enhancement of room temperature sub-bandgap light emission from silicon photic crystal nanocavity by Purcell effect,” Physica B 407(20), 4027–4031 (2012).
[CrossRef]

R. Lo Savio, S. L. Portalupi, D. Gerace, A. Shakoor, T. F. Krauss, L. O’Faolin, L. C. Andreani, M. Galli, “Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98, 201106 (2011).

Shao, G.

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, K. P. Homewood, “An efficient room-temperature Si-based light-emitting diode,” Nature 410, 192–194 (2001).

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Stefan, M.

C. Ghica, L. C. Nistor, M. Stefan, D. Ghica, B. Mironov, S. Vizireanu, A. Moldovan, M. Dinescu, “Specificity of defects induced in siliconby RF-plasma hydrogenation,” Appl. Phys., A Mater. Sci. Process. 98(4), 777–785 (2010).
[CrossRef]

Stevens, M. J.

Street, R. A.

N. M. Johnson, F. A. Ponce, R. A. Street, R. J. Nemaich, “Defects in single-crystal silicon induced by hydrogenation,” Phys. Rev. B Condens. Matter 35(8), 4166–4169 (1987).

Sun, X.

Svensson, B. G.

H. Weman, J. L. Lindström, G. S. Oerhlein, B. G. Svensson, “Reactive ion and plasma etching induced extended defects in silicon studied with photoluminescence,” J. Appl. Phys. 67(2), 1013–1021 (1990).
[CrossRef]

Tran, N.-V.-Q.

N.-V.-Q. Tran, S. Combrié, A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[CrossRef]

Ulyashin, A. G.

A. V. Mudryi, F. P. Korshunov, A. I. Patuk, I. A. Shakin, T. P. Larionova, A. G. Ulyashin, R. Job, W. R. Fahrner, V. V. Emtsev, V. Yu. Davydov, G. Oganesyan, “Low-temperature photoluminescence characterization of defects formation in hydrogen and helium implanted silicon at post-implantation annealing,” Physica B 308–310, 181–184 (2001).
[CrossRef]

Vizireanu, S.

C. Ghica, L. C. Nistor, S. Vizireanu, G. Dinescu, “Annealing of hydrogen-induced defects in RF-plasma-treated Si wafers: ex situ transmission electron microscopy studies,” J. Phys. D Appl. Phys. 44, 295401 (2011).

C. Ghica, L. C. Nistor, M. Stefan, D. Ghica, B. Mironov, S. Vizireanu, A. Moldovan, M. Dinescu, “Specificity of defects induced in siliconby RF-plasma hydrogenation,” Appl. Phys., A Mater. Sci. Process. 98(4), 777–785 (2010).
[CrossRef]

Vuckovic, J.

Wang, M.

A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett. 94, 221110 (2009).

Weber, J.

J. Weber, T. Fischer, E. Hieckmann, M. Hiller, E. V. Lavrov, “Properties of hydrogen induced voids,” J. Phys. Condens. Matter 17(22), S2303–S2314 (2005).
[CrossRef]

J. Weber, “Defect generation during plasma treatment of semiconductors,” Physica B 170(1-4), 201–217 (1991).
[CrossRef]

Welna, K.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photonics Rev. 7(1), 114–121 (2013).
[CrossRef]

Weman, H.

H. Weman, J. L. Lindström, G. S. Oerhlein, B. G. Svensson, “Reactive ion and plasma etching induced extended defects in silicon studied with photoluminescence,” J. Appl. Phys. 67(2), 1013–1021 (1990).
[CrossRef]

H. Weman, B. Monemar, G. S. Oehrlein, S. J. Jeng, “Strain-induced quantum confinement of carriers due to extended defects in silicon,” Phys. Rev. B Condens. Matter 42(5), 3109–3112 (1990).
[CrossRef] [PubMed]

Xu, J.

S. G. Cloutier, P. A. Kossyrev, J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4(12), 887–891 (2005).
[CrossRef] [PubMed]

Yerci, S.

Zabel, T.

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12, 053005 (2010).

Appl. Phys. Lett.

J. Grisolia, G. Ben Assayag, A. Claverie, B. Aspar, C. Lagahe, L. Laanab, “A transmission electron microscopy quantitative study of the growth kinetics of H platelets in Si,” Appl. Phys. Lett. 76(7), 852–854 (2000).
[CrossRef]

R. Lo Savio, S. L. Portalupi, D. Gerace, A. Shakoor, T. F. Krauss, L. O’Faolin, L. C. Andreani, M. Galli, “Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98, 201106 (2011).

A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett. 94, 221110 (2009).

S. Boninelli, A. Claverie, G. Impellizzeri, S. Mirabella, F. Priolo, E. Napolitani, F. Cristiano, “Evidences of F-induced nanobubbles as sink for self-interstitials in Si,” Appl. Phys. Lett. 89, 171916 (2006).

S. Boninelli, G. Impellizzeri, S. Mirabella, F. Priolo, E. Napolitani, N. Cherkashin, F. Cristiano, “Formation and evolution of F nanobubbles in amorphous and crystalline Si,” Appl. Phys. Lett. 93, 061906 (2008).

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, P. G. Fallica, “Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett. 81(17), 3242–3244 (2002).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

C. Ghica, L. C. Nistor, M. Stefan, D. Ghica, B. Mironov, S. Vizireanu, A. Moldovan, M. Dinescu, “Specificity of defects induced in siliconby RF-plasma hydrogenation,” Appl. Phys., A Mater. Sci. Process. 98(4), 777–785 (2010).
[CrossRef]

G. Franzò, A. Irrera, E. Ceretta Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys., A Mater. Sci. Process. 74(1), 1–5 (2002).
[CrossRef]

J. Appl. Phys.

H. Weman, J. L. Lindström, G. S. Oerhlein, B. G. Svensson, “Reactive ion and plasma etching induced extended defects in silicon studied with photoluminescence,” J. Appl. Phys. 67(2), 1013–1021 (1990).
[CrossRef]

T. Höchbauer, A. Misra, M. Nastasi, J. W. Mayer, “Physical mechanisms behind the ion-cut in hydrogen implanted silicon,” J. Appl. Phys. 92(5), 2335–2342 (2002).
[CrossRef]

J. Phys. Condens. Matter

J. Weber, T. Fischer, E. Hieckmann, M. Hiller, E. V. Lavrov, “Properties of hydrogen induced voids,” J. Phys. Condens. Matter 17(22), S2303–S2314 (2005).
[CrossRef]

J. Phys. D Appl. Phys.

C. Ghica, L. C. Nistor, S. Vizireanu, G. Dinescu, “Annealing of hydrogen-induced defects in RF-plasma-treated Si wafers: ex situ transmission electron microscopy studies,” J. Phys. D Appl. Phys. 44, 295401 (2011).

Laser Photonics Rev.

A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths,” Laser Photonics Rev. 7(1), 114–121 (2013).
[CrossRef]

Nat. Mater.

S. G. Cloutier, P. A. Kossyrev, J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4(12), 887–891 (2005).
[CrossRef] [PubMed]

Nat. Nanotechnol.

F. Priolo, T. Gregorkiewicz, M. Galli, T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[CrossRef] [PubMed]

Nature

Y. Akahane, T. Asano, B.-S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, K. P. Homewood, “An efficient room-temperature Si-based light-emitting diode,” Nature 410, 192–194 (2001).

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

New J. Phys.

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12, 053005 (2010).

Nucl. Instrum. Methods B

X. Hebras, P. Nguyen, K. K. Bourdelle, F. Letertre, N. Cherkashin, A. Claverie, “Comparison of platelets formation in hydrogen and helium-implanted silicon,” Nucl. Instrum. Methods B 262(1), 24–28 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

N.-V.-Q. Tran, S. Combrié, A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[CrossRef]

Phys. Rev. B Condens. Matter

N. M. Johnson, F. A. Ponce, R. A. Street, R. J. Nemaich, “Defects in single-crystal silicon induced by hydrogenation,” Phys. Rev. B Condens. Matter 35(8), 4166–4169 (1987).

H. Weman, B. Monemar, G. S. Oehrlein, S. J. Jeng, “Strain-induced quantum confinement of carriers due to extended defects in silicon,” Phys. Rev. B Condens. Matter 42(5), 3109–3112 (1990).
[CrossRef] [PubMed]

Physica B

J. Weber, “Defect generation during plasma treatment of semiconductors,” Physica B 170(1-4), 201–217 (1991).
[CrossRef]

A. V. Mudryi, F. P. Korshunov, A. I. Patuk, I. A. Shakin, T. P. Larionova, A. G. Ulyashin, R. Job, W. R. Fahrner, V. V. Emtsev, V. Yu. Davydov, G. Oganesyan, “Low-temperature photoluminescence characterization of defects formation in hydrogen and helium implanted silicon at post-implantation annealing,” Physica B 308–310, 181–184 (2001).
[CrossRef]

A. Shakoor, R. Lo Savio, S. L. Portalupi, D. Gerace, L. C. Andreani, M. Galli, T. F. Krauss, L. O’Faolain, “Enhancement of room temperature sub-bandgap light emission from silicon photic crystal nanocavity by Purcell effect,” Physica B 407(20), 4027–4031 (2012).
[CrossRef]

Other

A. Shakoor, “Silicon nanocavity light emitters at 1.3-1.5 µm wavelength,” PhD thesis, University of St. Andrews (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Cross sectional TEM of SOI after the exposure to a 40 W plasma treatment for 30 min in Ar (a) and H2 (b).

Fig. 2
Fig. 2

Photoluminescence spectra of H-plasma (red triangles) and Ar-plasma treated (green squares) samples compared to that of an untreated SOI taken as a reference (blue circles).

Fig. 3
Fig. 3

Cross sectional TEM of the H-plasma treated SOI after annealing at 350 °C (a) and 500 °C (b) for 30 min in forming gas.

Fig. 4
Fig. 4

H chemical profiles, as obtained by SIMS, of the H-plasma treated sample (black squares and line), after annealing at 350 °C for 30 min (red circles and line) and at 500 °C for 30 min (blue triangles and lines) in forming gas ambient.

Fig. 5
Fig. 5

Photoluminescence spectra of as-treated H-plasma SOI (blue squares and line) and after annealing at 350 °C (red circles and line) and 500 °C (black squares and line) in forming gas ambient.

Fig. 6
Fig. 6

Cross sectional TEM images of SOI implanted with 8 keV H to a dose of 1x1014 H/cm2 and annealed at 300 °C (a), to a dose of 5x1015 H/cm2 and annealed at 300 °C (b) and 500 °C (c). The CS TEM image of a SOI sample after multiple H implants and annealed at 300 °C is reported in (d).

Fig. 7
Fig. 7

H chemical profiles, as obtained by SIMS, of a SOI implanted with 5x1015 H/cm2 and annealed at 350 °C (red squares and line) and at 500 °C (blue circles and line).

Fig. 8
Fig. 8

Photoluminescence spectra of SOI samples implanted with a dose of 1x1014 H/cm2 at 8 keV and annealed at 300 °C (light blue line), a dose of 5x1015 H/cm2 and annealed at 300 °C (black line) and 500 °C (blue line). The PL spectrum of the SOI sample after multiple H implants and annealed at 300 °C is also reported (red line).

Fig. 9
Fig. 9

SEM micrograph of a L3 PhC cavity.

Fig. 10
Fig. 10

Photoluminescence spectra of L3 PhC nanocavities having different lattice constant a, (a) H-plasma treated PhC cavities (b) H-implanted PhC cavities followed by thermal treatment in forming gas.

Fig. 11
Fig. 11

Weak beam dark field cross sectional TEM (g = 400, g, 2g) of the H-plasma treated PhC cavity (a) and bright field CS TEM of the PhC cavity after multiple H implantation (b).

Metrics