Abstract

We describe a dynamic Optical Frequency Domain Reflectometry (OFDR) system which enables real time, long range, acoustic sensing at high sampling rate. The system is based on a fast scanning laser and coherent detection scheme. Distributed sensing is obtained by probing the Rayleigh backscattered light. The system was tested by interrogation of a 10km communication type single mode fiber and successfully detected localized impulse and sinusoidal excitations.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Juarez, E. W. Maier, K. N. Choi, H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Lightwave Technol. 23(6), 2081–2087 (2005).
    [CrossRef]
  2. Z. Y. Zhang, X. Y. Bao, “Distributed optical fiber vibration sensor based on spectrum analysis of polarization-OTDR system,” Opt. Express 16(14), 10240–10247 (2008).
    [CrossRef] [PubMed]
  3. F. Tanimola, D. Hill, “Distributed fibre optic sensors for pipeline protection,” J. Nat. Gas Sci. Eng. 1(4-5), 134–143 (2009).
    [CrossRef]
  4. X. B. Hong, H. X. Guo, J. A. Wu, K. Xu, Y. Zuo, Y. Li, J. Lin, “An intrusion detection sensor based on coherent optical time domain reflector,” Microw. Opt. Technol. Lett. 52(12), 2746–2748 (2010).
    [CrossRef]
  5. Y. L. Lu, T. Zhu, L. A. Chen, X. Y. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28, 3243–3249 (2010).
  6. Z. G. Qin, T. Zhu, L. Chen, X. Y. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photon. Technol. Lett. 23(15), 1091–1093 (2011).
    [CrossRef]
  7. M. M. Chen, X. P. Zhang, F. Wang, X. C. Wang, “Development of distributed vibration sensing system based on polarization optical time domain reflectometry,” Sens. Lett. 10, 1536–1540 (2012).
  8. H. Wu, J. Wang, X. Wu, Y. Wu, “Real intrusion detection for distributed fiber fence in practical strong fluctuated noisy backgrounds,” Sens. Lett. 10(7), 1557–1563 (2012).
    [CrossRef]
  9. D. P. Zhou, Z. G. Qin, W. H. Li, L. Chen, X. Y. Bao, “Distributed vibration sensing with time-resolved optical frequency-domain reflectometry,” Opt. Express 20(12), 13138–13145 (2012).
    [CrossRef] [PubMed]
  10. T. Zhu, Q. He, X. H. Xiao, X. Y. Bao, “Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution,” Opt. Express 21(3), 2953–2963 (2013).
    [CrossRef] [PubMed]
  11. O. Y. Sagiv, D. Arbel, Y. Katz, Y. Grotas, and A. Eyal, “Dynamical strain sensing via discrete reflectors interrogated by optical frequency domain reflectometry,” Proc. SPIE 8421, OFS 2012 22nd International Conference on Optical Fiber Sensors, 84218L, Oct 4, 2012.
    [CrossRef]
  12. Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, H. Chen, “Long-range vibration sensor based on correlation analysis of optical frequency-domain reflectometry signals,” Opt. Express 20(27), 28319–28329 (2012).
    [CrossRef] [PubMed]
  13. Z. Y. Ding, X. S. Yao, T. G. Liu, Y. Du, K. Liu, J. F. Jiang, Z. Meng, H. Chen, “Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter,” Opt. Express 21(3), 3826–3834 (2013).
    [CrossRef] [PubMed]
  14. O. Y. Sagiv, D. Arbel, A. Eyal, “Correcting for spatial-resolution degradation mechanisms in OFDR via inline auxiliary points,” Opt. Express 20(25), 27465–27472 (2012).
    [CrossRef] [PubMed]
  15. Y. Koshikiya, X. Fan, F. Ito, “Influence of acoustic perturbation of fibers in phase noise compensated optical frequency domain Reflectometry,” J. Lightwave Technol. 28, 3323–3328 (2010).
  16. J. W. Goodman, Statistical Optics (Wiley, 1985).

2013

2012

2011

Z. G. Qin, T. Zhu, L. Chen, X. Y. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photon. Technol. Lett. 23(15), 1091–1093 (2011).
[CrossRef]

2010

2009

F. Tanimola, D. Hill, “Distributed fibre optic sensors for pipeline protection,” J. Nat. Gas Sci. Eng. 1(4-5), 134–143 (2009).
[CrossRef]

2008

2005

Arbel, D.

Bao, X. Y.

Chen, H.

Chen, L.

D. P. Zhou, Z. G. Qin, W. H. Li, L. Chen, X. Y. Bao, “Distributed vibration sensing with time-resolved optical frequency-domain reflectometry,” Opt. Express 20(12), 13138–13145 (2012).
[CrossRef] [PubMed]

Z. G. Qin, T. Zhu, L. Chen, X. Y. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photon. Technol. Lett. 23(15), 1091–1093 (2011).
[CrossRef]

Chen, L. A.

Chen, M. M.

M. M. Chen, X. P. Zhang, F. Wang, X. C. Wang, “Development of distributed vibration sensing system based on polarization optical time domain reflectometry,” Sens. Lett. 10, 1536–1540 (2012).

Choi, K. N.

Ding, Z.

Ding, Z. Y.

Du, Y.

Eyal, A.

Fan, X.

Guo, H. X.

X. B. Hong, H. X. Guo, J. A. Wu, K. Xu, Y. Zuo, Y. Li, J. Lin, “An intrusion detection sensor based on coherent optical time domain reflector,” Microw. Opt. Technol. Lett. 52(12), 2746–2748 (2010).
[CrossRef]

Han, Q.

He, Q.

Hill, D.

F. Tanimola, D. Hill, “Distributed fibre optic sensors for pipeline protection,” J. Nat. Gas Sci. Eng. 1(4-5), 134–143 (2009).
[CrossRef]

Hong, X. B.

X. B. Hong, H. X. Guo, J. A. Wu, K. Xu, Y. Zuo, Y. Li, J. Lin, “An intrusion detection sensor based on coherent optical time domain reflector,” Microw. Opt. Technol. Lett. 52(12), 2746–2748 (2010).
[CrossRef]

Ito, F.

Jiang, J. F.

Juarez, J. C.

Koshikiya, Y.

Li, W. H.

Li, Y.

X. B. Hong, H. X. Guo, J. A. Wu, K. Xu, Y. Zuo, Y. Li, J. Lin, “An intrusion detection sensor based on coherent optical time domain reflector,” Microw. Opt. Technol. Lett. 52(12), 2746–2748 (2010).
[CrossRef]

Lin, J.

X. B. Hong, H. X. Guo, J. A. Wu, K. Xu, Y. Zuo, Y. Li, J. Lin, “An intrusion detection sensor based on coherent optical time domain reflector,” Microw. Opt. Technol. Lett. 52(12), 2746–2748 (2010).
[CrossRef]

Liu, K.

Liu, T.

Liu, T. G.

Lu, Y. L.

Maier, E. W.

Meng, Z.

Qin, Z. G.

D. P. Zhou, Z. G. Qin, W. H. Li, L. Chen, X. Y. Bao, “Distributed vibration sensing with time-resolved optical frequency-domain reflectometry,” Opt. Express 20(12), 13138–13145 (2012).
[CrossRef] [PubMed]

Z. G. Qin, T. Zhu, L. Chen, X. Y. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photon. Technol. Lett. 23(15), 1091–1093 (2011).
[CrossRef]

Sagiv, O. Y.

Tanimola, F.

F. Tanimola, D. Hill, “Distributed fibre optic sensors for pipeline protection,” J. Nat. Gas Sci. Eng. 1(4-5), 134–143 (2009).
[CrossRef]

Taylor, H. F.

Wang, F.

M. M. Chen, X. P. Zhang, F. Wang, X. C. Wang, “Development of distributed vibration sensing system based on polarization optical time domain reflectometry,” Sens. Lett. 10, 1536–1540 (2012).

Wang, J.

H. Wu, J. Wang, X. Wu, Y. Wu, “Real intrusion detection for distributed fiber fence in practical strong fluctuated noisy backgrounds,” Sens. Lett. 10(7), 1557–1563 (2012).
[CrossRef]

Wang, X. C.

M. M. Chen, X. P. Zhang, F. Wang, X. C. Wang, “Development of distributed vibration sensing system based on polarization optical time domain reflectometry,” Sens. Lett. 10, 1536–1540 (2012).

Wu, H.

H. Wu, J. Wang, X. Wu, Y. Wu, “Real intrusion detection for distributed fiber fence in practical strong fluctuated noisy backgrounds,” Sens. Lett. 10(7), 1557–1563 (2012).
[CrossRef]

Wu, J. A.

X. B. Hong, H. X. Guo, J. A. Wu, K. Xu, Y. Zuo, Y. Li, J. Lin, “An intrusion detection sensor based on coherent optical time domain reflector,” Microw. Opt. Technol. Lett. 52(12), 2746–2748 (2010).
[CrossRef]

Wu, X.

H. Wu, J. Wang, X. Wu, Y. Wu, “Real intrusion detection for distributed fiber fence in practical strong fluctuated noisy backgrounds,” Sens. Lett. 10(7), 1557–1563 (2012).
[CrossRef]

Wu, Y.

H. Wu, J. Wang, X. Wu, Y. Wu, “Real intrusion detection for distributed fiber fence in practical strong fluctuated noisy backgrounds,” Sens. Lett. 10(7), 1557–1563 (2012).
[CrossRef]

Xiao, X. H.

Xu, K.

X. B. Hong, H. X. Guo, J. A. Wu, K. Xu, Y. Zuo, Y. Li, J. Lin, “An intrusion detection sensor based on coherent optical time domain reflector,” Microw. Opt. Technol. Lett. 52(12), 2746–2748 (2010).
[CrossRef]

Yao, X. S.

Zhang, X. P.

M. M. Chen, X. P. Zhang, F. Wang, X. C. Wang, “Development of distributed vibration sensing system based on polarization optical time domain reflectometry,” Sens. Lett. 10, 1536–1540 (2012).

Zhang, Z. Y.

Zhou, D. P.

Zhu, T.

Zuo, Y.

X. B. Hong, H. X. Guo, J. A. Wu, K. Xu, Y. Zuo, Y. Li, J. Lin, “An intrusion detection sensor based on coherent optical time domain reflector,” Microw. Opt. Technol. Lett. 52(12), 2746–2748 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

Z. G. Qin, T. Zhu, L. Chen, X. Y. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photon. Technol. Lett. 23(15), 1091–1093 (2011).
[CrossRef]

J. Lightwave Technol.

J. Nat. Gas Sci. Eng.

F. Tanimola, D. Hill, “Distributed fibre optic sensors for pipeline protection,” J. Nat. Gas Sci. Eng. 1(4-5), 134–143 (2009).
[CrossRef]

Microw. Opt. Technol. Lett.

X. B. Hong, H. X. Guo, J. A. Wu, K. Xu, Y. Zuo, Y. Li, J. Lin, “An intrusion detection sensor based on coherent optical time domain reflector,” Microw. Opt. Technol. Lett. 52(12), 2746–2748 (2010).
[CrossRef]

Opt. Express

Sens. Lett.

M. M. Chen, X. P. Zhang, F. Wang, X. C. Wang, “Development of distributed vibration sensing system based on polarization optical time domain reflectometry,” Sens. Lett. 10, 1536–1540 (2012).

H. Wu, J. Wang, X. Wu, Y. Wu, “Real intrusion detection for distributed fiber fence in practical strong fluctuated noisy backgrounds,” Sens. Lett. 10(7), 1557–1563 (2012).
[CrossRef]

Other

O. Y. Sagiv, D. Arbel, Y. Katz, Y. Grotas, and A. Eyal, “Dynamical strain sensing via discrete reflectors interrogated by optical frequency domain reflectometry,” Proc. SPIE 8421, OFS 2012 22nd International Conference on Optical Fiber Sensors, 84218L, Oct 4, 2012.
[CrossRef]

J. W. Goodman, Statistical Optics (Wiley, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The experimental setup.

Fig. 2
Fig. 2

A 10km sensing fiber.

Fig. 3
Fig. 3

Sinusoidal excitation with PZT.

Fig. 4
Fig. 4

Responses to impulses at four separated points.

Fig. 5
Fig. 5

(a) The total response to impulses (b) a seismogram representation of a subsection.

Fig. 6
Fig. 6

(a) The response at the vicinity of the third spool. (b) Response of the short spool at the end of the sensing fiber.

Fig. 7
Fig. 7

40Hz sinusoidal excitation at z = 1230 m and z = 5109 m. (a) The total response in the space-frequency domain. (b) A horizontal cross-section of the response at 35Hz (green) and 40Hz (blue). (c) Vertical cross-section at 4700m (green), z = 5109 m (blue) and the spectrum of exp { j [ 0.55 sin ( 2 π 40 t ) + sin ( 2 π 50 t ) ] } (red).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = E 0 exp [ j ( ω 0 t + π γ t 2 ) ] rect ( t T )
E S ( t ) = r ( z ) E ( t 2 z c )
V ( t ) = a r ( z ) exp { j [ 2 π γ 2 z c t + φ ( z ) ] } rect ( t z / c T 2 z / c )
V ( t ) = a 0 L r ( z ' ) exp { j [ 2 π γ 2 z ' c t + φ ( z ' ) ] } rect ( t z ' / c T 2 z ' / c ) d z '
rect ( t z ' / c T 2 z ' / c ) rect ( t T )
V ˜ ( ω ) = a T 2 π r ˜ ( ω ) sin c ( ω T 2 π ) = a T 2 π r ˜ ( ω ' ) sin c [ ( ω ω ) T 2 π ] d ω
r ˜ ( ω ) = r ( z ) exp [ j φ ( z ) ] | z = ω c / 4 π γ

Metrics