Abstract

We first use numerical simulations to show that bending losses of hollow antiresonant fibers are a strong function of their geometrical structure. We then demonstrate this by fabricating a hollow antiresonant fiber which presents a bending loss as low as 0.25dB/turn at a wavelength of 3.35μm and a bend radius of 2.5cm. This fiber has a relatively low attenuation (<200dB/km) over 600nm mid-infrared spectral range.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
    [CrossRef] [PubMed]
  2. A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, P. St. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
    [CrossRef] [PubMed]
  3. F. Benabid, P. J. Roberts, F. Couny, P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. 4, 09004 (2009).
    [CrossRef]
  4. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, D. J. Richardson, “Towards high-capacity fibre optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
    [CrossRef]
  5. J. Anthony, R. Leonhardt, S. G. Leon-Saval, A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express 19(19), 18470–18478 (2011).
    [CrossRef] [PubMed]
  6. P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21(19), 22742–22753 (2013).
    [CrossRef] [PubMed]
  7. A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4(2), 193–205 (2013).
    [CrossRef] [PubMed]
  8. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
    [CrossRef] [PubMed]
  9. F. Yu, W. J. Wadsworth, J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [CrossRef] [PubMed]
  10. N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. N. Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber,” Opt. Lett. 39(2), 295–298 (2014).
    [CrossRef] [PubMed]
  11. A. A. P. Boechat, D. Su, D. R. Hall, J. D. C. Jones, “Bend loss in large core multimode optical fiber beam delivery systems,” Appl. Opt. 30(3), 321–327 (1991).
    [CrossRef] [PubMed]
  12. L. Faustini, G. Martini, “Bend loss in single mode fibers,” J. Lightwave Technnol. 15(4), 671–679 (1997).
    [CrossRef]
  13. J. C. Knight, J. Broeng, T. A. Birks, P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
    [CrossRef] [PubMed]
  14. M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
    [CrossRef]
  15. N. M. Litchinitser, A. K. Abeeluck, C. Headley, B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [CrossRef] [PubMed]
  16. W. Belardi, J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express 21(19), 21912–21917 (2013).
    [CrossRef] [PubMed]
  17. A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
    [CrossRef] [PubMed]
  18. G. Calingaert, S. Heron, R. Stair, “Sapphire and other new combustion-chamber window materials,” SAE J. 39, 448–450 (1936).
  19. A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, W. Rudolph, “Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review,” Opt. Mater. Express 2, 948–961 (2012).

2014

2013

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, P. St. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, D. J. Richardson, “Towards high-capacity fibre optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4(2), 193–205 (2013).
[CrossRef] [PubMed]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[CrossRef] [PubMed]

W. Belardi, J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express 21(19), 21912–21917 (2013).
[CrossRef] [PubMed]

P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21(19), 22742–22753 (2013).
[CrossRef] [PubMed]

2012

2011

2009

F. Benabid, P. J. Roberts, F. Couny, P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. 4, 09004 (2009).
[CrossRef]

2002

1999

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

1998

J. C. Knight, J. Broeng, T. A. Birks, P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

1997

L. Faustini, G. Martini, “Bend loss in single mode fibers,” J. Lightwave Technnol. 15(4), 671–679 (1997).
[CrossRef]

1991

1986

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

1936

G. Calingaert, S. Heron, R. Stair, “Sapphire and other new combustion-chamber window materials,” SAE J. 39, 448–450 (1936).

Abeeluck, A. K.

Alharbi, M.

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Anthony, J.

Argyros, A.

Baddela, N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, D. J. Richardson, “Towards high-capacity fibre optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Baddela, N. K.

Baumgart, B.

Belardi, W.

Benabid, F.

Biriukov, A. S.

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

Boechat, A. A. P.

Bradley, T.

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

Calingaert, G.

G. Calingaert, S. Heron, R. Stair, “Sapphire and other new combustion-chamber window materials,” SAE J. 39, 448–450 (1936).

Campbell, N.

Corwin, K. L.

Couny, F.

F. Benabid, P. J. Roberts, F. Couny, P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. 4, 09004 (2009).
[CrossRef]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Cubillas, A. M.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, P. St. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

Dadashzadeh, N.

Dianov, E. M.

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Eggleton, B. J.

Etzold, B. J.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, P. St. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

Euser, T. G.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, P. St. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

Faustini, L.

L. Faustini, G. Martini, “Bend loss in single mode fibers,” J. Lightwave Technnol. 15(4), 671–679 (1997).
[CrossRef]

Fokoua, E. N.

N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. N. Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber,” Opt. Lett. 39(2), 295–298 (2014).
[CrossRef] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, D. J. Richardson, “Towards high-capacity fibre optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Fourcade-Dutin, C.

Gray, D. R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, D. J. Richardson, “Towards high-capacity fibre optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Hall, D. R.

Hand, D. P.

Hayes, J. R.

N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. N. Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber,” Opt. Lett. 39(2), 295–298 (2014).
[CrossRef] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, D. J. Richardson, “Towards high-capacity fibre optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Headley, C.

Heidt, A. M.

Heron, S.

G. Calingaert, S. Heron, R. Stair, “Sapphire and other new combustion-chamber window materials,” SAE J. 39, 448–450 (1936).

Jaworski, P.

Jones, A. C.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, P. St. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

Jones, A. M.

Jones, J. D. C.

Knight, J. C.

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Kolyadin, A. N.

Kosolapov, A. F.

Leonhardt, R.

Leon-Saval, S. G.

Light, P. S.

F. Benabid, P. J. Roberts, F. Couny, P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. 4, 09004 (2009).
[CrossRef]

Litchinitser, N. M.

Maier, R. R. J.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Mao, C.

Martini, G.

L. Faustini, G. Martini, “Bend loss in single mode fibers,” J. Lightwave Technnol. 15(4), 671–679 (1997).
[CrossRef]

Nampoothiri, A. V. V.

Petrovich, M. N.

N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. N. Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber,” Opt. Lett. 39(2), 295–298 (2014).
[CrossRef] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, D. J. Richardson, “Towards high-capacity fibre optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Plotnichenko, V. G.

Poletti, F.

N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. N. Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber,” Opt. Lett. 39(2), 295–298 (2014).
[CrossRef] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, D. J. Richardson, “Towards high-capacity fibre optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Pryamikov, A. D.

Richardson, D. J.

N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. N. Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber,” Opt. Lett. 39(2), 295–298 (2014).
[CrossRef] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, D. J. Richardson, “Towards high-capacity fibre optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Roberts, P. J.

F. Benabid, P. J. Roberts, F. Couny, P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. 4, 09004 (2009).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Rudolph, W.

Russell, P. S. J.

J. C. Knight, J. Broeng, T. A. Birks, P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

Russell, P. St. J.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, P. St. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Sadler, P. J.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, P. St. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

Sandoghchi, S. R.

Semjonov, S. L.

Shephard, J. D.

Stair, R.

G. Calingaert, S. Heron, R. Stair, “Sapphire and other new combustion-chamber window materials,” SAE J. 39, 448–450 (1936).

Su, D.

Unterkofler, S.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, P. St. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

Urich, A.

Wadsworth, W. J.

Wang, Y. Y.

Washburn, B. R.

Wasserscheid, P.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, P. St. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

Wheeler, N. V.

N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. N. Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber,” Opt. Lett. 39(2), 295–298 (2014).
[CrossRef] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, D. J. Richardson, “Towards high-capacity fibre optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Yu, F.

Appl. Opt.

Appl. Phys. Lett.

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Biomed. Opt. Express

Chem. Soc. Rev.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, P. St. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[CrossRef] [PubMed]

J. Eur. Opt. Soc.

F. Benabid, P. J. Roberts, F. Couny, P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. 4, 09004 (2009).
[CrossRef]

J. Lightwave Technnol.

L. Faustini, G. Martini, “Bend loss in single mode fibers,” J. Lightwave Technnol. 15(4), 671–679 (1997).
[CrossRef]

Nat. Photonics

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, D. J. Richardson, “Towards high-capacity fibre optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater. Express

SAE J.

G. Calingaert, S. Heron, R. Stair, “Sapphire and other new combustion-chamber window materials,” SAE J. 39, 448–450 (1936).

Science

J. C. Knight, J. Broeng, T. A. Birks, P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Structure B is a typical ARF design. This is modified by changing the parameter δ (the difference between the new and the original cladding tube diameter: δ = d0-d). The core diameter Dc and the wall thickness t are fixed for all structures while the cladding tube diameter d changes. Structure A has δ<0. B is an imaginary structure with δ = 0. C is a structure with a “free” core boundary (δ>0).

Fig. 2
Fig. 2

Impact of the modification of the δ parameter on the losses of ARFs. The red dashed line represents the leakage losses. The blue full line shows the losses when the silica material absorption is included in our simulations.

Fig. 3
Fig. 3

Bending losses for different ARFs with δ > 0. The bending losses of the considered ARFs can be greatly reduced by increasing the cladding tube separation. Note that all considered structures have the same core radius Rc = Dc/2 and the same wall thickness t.

Fig. 4
Fig. 4

On the left hand side is shown a SEM of the fabricated ARF. The measured fiber attenuation is shown on the right hand side. The minimum loss is around 100dB/km at 3.1μm. The inset on the right shows the simulated optical mode travelling into the fiber at 3.1μm.

Fig. 5
Fig. 5

Bending loss measurements: on the left hand side (a), the fiber transmission spectrum obtained by bending the fiber half a full turn, as in Fig. 5 of [9]; on the right hand side (b), we have adopted a different configuration by measuring the net fiber attenuation obtained by bending our fabricated fiber by 5 full turns. As in Fig. 3 of [10], bending losses are lower than 0.25dB/turn for wavelengths longer than 3.35μm and a bend radius of 2.5cm. The measured bending losses are lower than 0.5dB/turn over more than 450 nm bandwidth.

Metrics