Abstract

We propose a new concept of fiber-integrated optical nano-tweezer on the basis of a single bowtie-aperture nano-antenna (BNA) fabricated at the apex of a metal-coated SNOM tip. We demonstrate 3D optical trapping of 0.5 micrometer latex beads with input power which does not exceed 1 mW. Optical forces induced by the BNA on tip are then analyzed numerically. They are found to be 103 times larger than the optical forces of a circular aperture of the same area. Such a fiber nanostructure provides a new path for manipulating nano-objects in a compact, flexible and versatile architecture and should thus open promising perspectives in physical, chemical and biomedical domains.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. Dziedzic, J. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  2. K. C. Neuman, S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [CrossRef]
  3. Z. Liu, C. Guo, J. Yang, L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express 14(25), 510–516 (2006).
    [CrossRef]
  4. J.-B. Decombe, S. Huant, J. Fick, “Single and dual fiber nano-tip optical tweezers: trapping and analysis,” Opt. Express 21(25), 521–531 (2013).
    [CrossRef]
  5. Z. Liu, L. Wang, P. Liang, Y. Zhang, J. Yang, L. Yuan, “Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment,” Opt. Lett. 38(14), 2617–2620 (2013).
    [CrossRef] [PubMed]
  6. H. Xin, Y. Li, L. Li, R. Xu, B. Li, “Optofluidic manipulation of Escherichia coli in a microfluidic channel using an abruptly tapered optical fiber,” Appl. Phys. Lett. 103(3), 033703 (2013).
    [CrossRef]
  7. C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photon. 1(12), 723–727 (2007).
    [CrossRef]
  8. S. K. Mondal, S. S. Pal, P. Kapur, “Optical fiber nano-tip and 3D bottle beam as non-plasmonic optical tweezers,” Opt. Express 20(15), 180–185 (2012).
    [CrossRef]
  9. Y. Liu, F. Stief, M. Yu, “Subwavelength optical trapping with a fiber-based surface plasmonic lens,” Opt. Lett. 38(5), 721–723 (2013).
    [CrossRef] [PubMed]
  10. M. Righini, G. Volpe, C. Girard, D. Petrov, R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
    [CrossRef] [PubMed]
  11. K. Wang, E. Schonbrun, P. Steinvurzel, K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10(9), 3506–3511 (2010).
    [CrossRef] [PubMed]
  12. W. Zhang, L. Huang, C. Santschi, O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
    [CrossRef] [PubMed]
  13. Y. Tanaka, K. Sasaki, “Optical trapping through the localized surface-plasmon resonance of engineered gold nanoblock pairs,” Opt. Express 19(18), 462–468 (2011).
    [CrossRef]
  14. Y. Pang, R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2011).
    [CrossRef] [PubMed]
  15. A. A. Saleh, J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12(11), 5581–5586 (2012).
    [CrossRef] [PubMed]
  16. M. Mivelle, I. A. Ibrahim, F. Baida, G. W. Burr, D. Nedeljkovic, D. Charraut, J.-Y. Rauch, R. Salut, T. Grosjean, “Bowtie nano-aperture as interfacebetween near-fields and a single-modefiber,” Opt. Express 18(15), 964–974 (2010).
    [CrossRef]
  17. T.-P. Vo, M. Mivelle, S. Callard, A. Rahmani, F. Baida, D. Charraut, A. Belarouci, D. Nedeljkovic, C. Seassal, G. Burr, T. Grosjean, “Near-field probing of slow Bloch modes on photonic crystals with a nanoantenna,” Opt. Express 20(4), 4124–4135 (2012).
    [CrossRef] [PubMed]
  18. M. Mivelle, T. S. van Zanten, L. Neumann, N. F. van Hulst, M. F. Garcia-Parajo, “Ultrabright bowtie nanoaperture antenna probes studied by single molecule fluorescence,” Nano Lett. 12(11), 5972–5978 (2012).
    [CrossRef] [PubMed]
  19. R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, D.-J. Lougnot, “Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization,” Appl. Opt. 40, 5860–5871 (2001).
    [CrossRef]
  20. I. Ibrahim, M. Mivelle, T. Grosjean, J.-T. Allegre, G. Burr, F. Baida, “The bowtie shaped nano-aperture: a modal study,” Opt. Lett. 35, 2448–2450 (2010).
    [CrossRef] [PubMed]
  21. A. Taflove, S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3 (Artech House, 2005).
  22. E. X. Jin, X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 106 (2005).
    [CrossRef]
  23. C. Filiâtre, C. Pignolet, A. Foissy, M. Zembala, P. Warszyński, “Electrodeposition of particles at nickel electrode surface in a laminar flow cell,” Colloids Surf., A 222(1), 55–63 (2003).
    [CrossRef]
  24. J. Jackson, Classical Electrodynamics (John Wiley, 1999).

2013 (4)

J.-B. Decombe, S. Huant, J. Fick, “Single and dual fiber nano-tip optical tweezers: trapping and analysis,” Opt. Express 21(25), 521–531 (2013).
[CrossRef]

Z. Liu, L. Wang, P. Liang, Y. Zhang, J. Yang, L. Yuan, “Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment,” Opt. Lett. 38(14), 2617–2620 (2013).
[CrossRef] [PubMed]

H. Xin, Y. Li, L. Li, R. Xu, B. Li, “Optofluidic manipulation of Escherichia coli in a microfluidic channel using an abruptly tapered optical fiber,” Appl. Phys. Lett. 103(3), 033703 (2013).
[CrossRef]

Y. Liu, F. Stief, M. Yu, “Subwavelength optical trapping with a fiber-based surface plasmonic lens,” Opt. Lett. 38(5), 721–723 (2013).
[CrossRef] [PubMed]

2012 (4)

A. A. Saleh, J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[CrossRef] [PubMed]

S. K. Mondal, S. S. Pal, P. Kapur, “Optical fiber nano-tip and 3D bottle beam as non-plasmonic optical tweezers,” Opt. Express 20(15), 180–185 (2012).
[CrossRef]

T.-P. Vo, M. Mivelle, S. Callard, A. Rahmani, F. Baida, D. Charraut, A. Belarouci, D. Nedeljkovic, C. Seassal, G. Burr, T. Grosjean, “Near-field probing of slow Bloch modes on photonic crystals with a nanoantenna,” Opt. Express 20(4), 4124–4135 (2012).
[CrossRef] [PubMed]

M. Mivelle, T. S. van Zanten, L. Neumann, N. F. van Hulst, M. F. Garcia-Parajo, “Ultrabright bowtie nanoaperture antenna probes studied by single molecule fluorescence,” Nano Lett. 12(11), 5972–5978 (2012).
[CrossRef] [PubMed]

2011 (2)

Y. Tanaka, K. Sasaki, “Optical trapping through the localized surface-plasmon resonance of engineered gold nanoblock pairs,” Opt. Express 19(18), 462–468 (2011).
[CrossRef]

Y. Pang, R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2011).
[CrossRef] [PubMed]

2010 (4)

M. Mivelle, I. A. Ibrahim, F. Baida, G. W. Burr, D. Nedeljkovic, D. Charraut, J.-Y. Rauch, R. Salut, T. Grosjean, “Bowtie nano-aperture as interfacebetween near-fields and a single-modefiber,” Opt. Express 18(15), 964–974 (2010).
[CrossRef]

K. Wang, E. Schonbrun, P. Steinvurzel, K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10(9), 3506–3511 (2010).
[CrossRef] [PubMed]

W. Zhang, L. Huang, C. Santschi, O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

I. Ibrahim, M. Mivelle, T. Grosjean, J.-T. Allegre, G. Burr, F. Baida, “The bowtie shaped nano-aperture: a modal study,” Opt. Lett. 35, 2448–2450 (2010).
[CrossRef] [PubMed]

2008 (1)

M. Righini, G. Volpe, C. Girard, D. Petrov, R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[CrossRef] [PubMed]

2007 (1)

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photon. 1(12), 723–727 (2007).
[CrossRef]

2006 (1)

Z. Liu, C. Guo, J. Yang, L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express 14(25), 510–516 (2006).
[CrossRef]

2005 (1)

E. X. Jin, X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 106 (2005).
[CrossRef]

2004 (1)

K. C. Neuman, S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef]

2003 (1)

C. Filiâtre, C. Pignolet, A. Foissy, M. Zembala, P. Warszyński, “Electrodeposition of particles at nickel electrode surface in a laminar flow cell,” Colloids Surf., A 222(1), 55–63 (2003).
[CrossRef]

2001 (1)

1986 (1)

Allegre, J.-T.

Ashkin, A.

Bachelot, R.

Baida, F.

Belarouci, A.

Bjorkholm, J.

Block, S. M.

K. C. Neuman, S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef]

Bragheri, F.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photon. 1(12), 723–727 (2007).
[CrossRef]

Burr, G.

Burr, G. W.

M. Mivelle, I. A. Ibrahim, F. Baida, G. W. Burr, D. Nedeljkovic, D. Charraut, J.-Y. Rauch, R. Salut, T. Grosjean, “Bowtie nano-aperture as interfacebetween near-fields and a single-modefiber,” Opt. Express 18(15), 964–974 (2010).
[CrossRef]

Callard, S.

Charraut, D.

T.-P. Vo, M. Mivelle, S. Callard, A. Rahmani, F. Baida, D. Charraut, A. Belarouci, D. Nedeljkovic, C. Seassal, G. Burr, T. Grosjean, “Near-field probing of slow Bloch modes on photonic crystals with a nanoantenna,” Opt. Express 20(4), 4124–4135 (2012).
[CrossRef] [PubMed]

M. Mivelle, I. A. Ibrahim, F. Baida, G. W. Burr, D. Nedeljkovic, D. Charraut, J.-Y. Rauch, R. Salut, T. Grosjean, “Bowtie nano-aperture as interfacebetween near-fields and a single-modefiber,” Opt. Express 18(15), 964–974 (2010).
[CrossRef]

Chu, S.

Cristiani, I.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photon. 1(12), 723–727 (2007).
[CrossRef]

Crozier, K. B.

K. Wang, E. Schonbrun, P. Steinvurzel, K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10(9), 3506–3511 (2010).
[CrossRef] [PubMed]

De Angelis, F.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photon. 1(12), 723–727 (2007).
[CrossRef]

Decombe, J.-B.

J.-B. Decombe, S. Huant, J. Fick, “Single and dual fiber nano-tip optical tweezers: trapping and analysis,” Opt. Express 21(25), 521–531 (2013).
[CrossRef]

Deloeil, D.

Di Fabrizio, E.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photon. 1(12), 723–727 (2007).
[CrossRef]

Dionne, J. A.

A. A. Saleh, J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[CrossRef] [PubMed]

Dziedzic, J.

Ecoffet, C.

Fick, J.

J.-B. Decombe, S. Huant, J. Fick, “Single and dual fiber nano-tip optical tweezers: trapping and analysis,” Opt. Express 21(25), 521–531 (2013).
[CrossRef]

Filiâtre, C.

C. Filiâtre, C. Pignolet, A. Foissy, M. Zembala, P. Warszyński, “Electrodeposition of particles at nickel electrode surface in a laminar flow cell,” Colloids Surf., A 222(1), 55–63 (2003).
[CrossRef]

Foissy, A.

C. Filiâtre, C. Pignolet, A. Foissy, M. Zembala, P. Warszyński, “Electrodeposition of particles at nickel electrode surface in a laminar flow cell,” Colloids Surf., A 222(1), 55–63 (2003).
[CrossRef]

Garcia-Parajo, M. F.

M. Mivelle, T. S. van Zanten, L. Neumann, N. F. van Hulst, M. F. Garcia-Parajo, “Ultrabright bowtie nanoaperture antenna probes studied by single molecule fluorescence,” Nano Lett. 12(11), 5972–5978 (2012).
[CrossRef] [PubMed]

Girard, C.

M. Righini, G. Volpe, C. Girard, D. Petrov, R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[CrossRef] [PubMed]

Gordon, R.

Y. Pang, R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2011).
[CrossRef] [PubMed]

Grosjean, T.

Guo, C.

Z. Liu, C. Guo, J. Yang, L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express 14(25), 510–516 (2006).
[CrossRef]

Hagness, S.

A. Taflove, S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3 (Artech House, 2005).

Huang, L.

W. Zhang, L. Huang, C. Santschi, O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

Huant, S.

J.-B. Decombe, S. Huant, J. Fick, “Single and dual fiber nano-tip optical tweezers: trapping and analysis,” Opt. Express 21(25), 521–531 (2013).
[CrossRef]

Ibrahim, I.

Ibrahim, I. A.

M. Mivelle, I. A. Ibrahim, F. Baida, G. W. Burr, D. Nedeljkovic, D. Charraut, J.-Y. Rauch, R. Salut, T. Grosjean, “Bowtie nano-aperture as interfacebetween near-fields and a single-modefiber,” Opt. Express 18(15), 964–974 (2010).
[CrossRef]

Jackson, J.

J. Jackson, Classical Electrodynamics (John Wiley, 1999).

Jin, E. X.

E. X. Jin, X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 106 (2005).
[CrossRef]

Kapur, P.

S. K. Mondal, S. S. Pal, P. Kapur, “Optical fiber nano-tip and 3D bottle beam as non-plasmonic optical tweezers,” Opt. Express 20(15), 180–185 (2012).
[CrossRef]

Li, B.

H. Xin, Y. Li, L. Li, R. Xu, B. Li, “Optofluidic manipulation of Escherichia coli in a microfluidic channel using an abruptly tapered optical fiber,” Appl. Phys. Lett. 103(3), 033703 (2013).
[CrossRef]

Li, L.

H. Xin, Y. Li, L. Li, R. Xu, B. Li, “Optofluidic manipulation of Escherichia coli in a microfluidic channel using an abruptly tapered optical fiber,” Appl. Phys. Lett. 103(3), 033703 (2013).
[CrossRef]

Li, Y.

H. Xin, Y. Li, L. Li, R. Xu, B. Li, “Optofluidic manipulation of Escherichia coli in a microfluidic channel using an abruptly tapered optical fiber,” Appl. Phys. Lett. 103(3), 033703 (2013).
[CrossRef]

Liang, P.

Liberale, C.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photon. 1(12), 723–727 (2007).
[CrossRef]

Liu, Y.

Liu, Z.

Z. Liu, L. Wang, P. Liang, Y. Zhang, J. Yang, L. Yuan, “Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment,” Opt. Lett. 38(14), 2617–2620 (2013).
[CrossRef] [PubMed]

Z. Liu, C. Guo, J. Yang, L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express 14(25), 510–516 (2006).
[CrossRef]

Lougnot, D.-J.

Martin, O. J.

W. Zhang, L. Huang, C. Santschi, O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

Minzioni, P.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photon. 1(12), 723–727 (2007).
[CrossRef]

Mivelle, M.

M. Mivelle, T. S. van Zanten, L. Neumann, N. F. van Hulst, M. F. Garcia-Parajo, “Ultrabright bowtie nanoaperture antenna probes studied by single molecule fluorescence,” Nano Lett. 12(11), 5972–5978 (2012).
[CrossRef] [PubMed]

T.-P. Vo, M. Mivelle, S. Callard, A. Rahmani, F. Baida, D. Charraut, A. Belarouci, D. Nedeljkovic, C. Seassal, G. Burr, T. Grosjean, “Near-field probing of slow Bloch modes on photonic crystals with a nanoantenna,” Opt. Express 20(4), 4124–4135 (2012).
[CrossRef] [PubMed]

I. Ibrahim, M. Mivelle, T. Grosjean, J.-T. Allegre, G. Burr, F. Baida, “The bowtie shaped nano-aperture: a modal study,” Opt. Lett. 35, 2448–2450 (2010).
[CrossRef] [PubMed]

M. Mivelle, I. A. Ibrahim, F. Baida, G. W. Burr, D. Nedeljkovic, D. Charraut, J.-Y. Rauch, R. Salut, T. Grosjean, “Bowtie nano-aperture as interfacebetween near-fields and a single-modefiber,” Opt. Express 18(15), 964–974 (2010).
[CrossRef]

Mondal, S. K.

S. K. Mondal, S. S. Pal, P. Kapur, “Optical fiber nano-tip and 3D bottle beam as non-plasmonic optical tweezers,” Opt. Express 20(15), 180–185 (2012).
[CrossRef]

Nedeljkovic, D.

T.-P. Vo, M. Mivelle, S. Callard, A. Rahmani, F. Baida, D. Charraut, A. Belarouci, D. Nedeljkovic, C. Seassal, G. Burr, T. Grosjean, “Near-field probing of slow Bloch modes on photonic crystals with a nanoantenna,” Opt. Express 20(4), 4124–4135 (2012).
[CrossRef] [PubMed]

M. Mivelle, I. A. Ibrahim, F. Baida, G. W. Burr, D. Nedeljkovic, D. Charraut, J.-Y. Rauch, R. Salut, T. Grosjean, “Bowtie nano-aperture as interfacebetween near-fields and a single-modefiber,” Opt. Express 18(15), 964–974 (2010).
[CrossRef]

Neuman, K. C.

K. C. Neuman, S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef]

Neumann, L.

M. Mivelle, T. S. van Zanten, L. Neumann, N. F. van Hulst, M. F. Garcia-Parajo, “Ultrabright bowtie nanoaperture antenna probes studied by single molecule fluorescence,” Nano Lett. 12(11), 5972–5978 (2012).
[CrossRef] [PubMed]

Pal, S. S.

S. K. Mondal, S. S. Pal, P. Kapur, “Optical fiber nano-tip and 3D bottle beam as non-plasmonic optical tweezers,” Opt. Express 20(15), 180–185 (2012).
[CrossRef]

Pang, Y.

Y. Pang, R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2011).
[CrossRef] [PubMed]

Petrov, D.

M. Righini, G. Volpe, C. Girard, D. Petrov, R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[CrossRef] [PubMed]

Pignolet, C.

C. Filiâtre, C. Pignolet, A. Foissy, M. Zembala, P. Warszyński, “Electrodeposition of particles at nickel electrode surface in a laminar flow cell,” Colloids Surf., A 222(1), 55–63 (2003).
[CrossRef]

Quidant, R.

M. Righini, G. Volpe, C. Girard, D. Petrov, R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[CrossRef] [PubMed]

Rahmani, A.

Rauch, J.-Y.

M. Mivelle, I. A. Ibrahim, F. Baida, G. W. Burr, D. Nedeljkovic, D. Charraut, J.-Y. Rauch, R. Salut, T. Grosjean, “Bowtie nano-aperture as interfacebetween near-fields and a single-modefiber,” Opt. Express 18(15), 964–974 (2010).
[CrossRef]

Righini, M.

M. Righini, G. Volpe, C. Girard, D. Petrov, R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[CrossRef] [PubMed]

Royer, P.

Saleh, A. A.

A. A. Saleh, J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[CrossRef] [PubMed]

Salut, R.

M. Mivelle, I. A. Ibrahim, F. Baida, G. W. Burr, D. Nedeljkovic, D. Charraut, J.-Y. Rauch, R. Salut, T. Grosjean, “Bowtie nano-aperture as interfacebetween near-fields and a single-modefiber,” Opt. Express 18(15), 964–974 (2010).
[CrossRef]

Santschi, C.

W. Zhang, L. Huang, C. Santschi, O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

Sasaki, K.

Y. Tanaka, K. Sasaki, “Optical trapping through the localized surface-plasmon resonance of engineered gold nanoblock pairs,” Opt. Express 19(18), 462–468 (2011).
[CrossRef]

Schonbrun, E.

K. Wang, E. Schonbrun, P. Steinvurzel, K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10(9), 3506–3511 (2010).
[CrossRef] [PubMed]

Seassal, C.

Steinvurzel, P.

K. Wang, E. Schonbrun, P. Steinvurzel, K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10(9), 3506–3511 (2010).
[CrossRef] [PubMed]

Stief, F.

Taflove, A.

A. Taflove, S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3 (Artech House, 2005).

Tanaka, Y.

Y. Tanaka, K. Sasaki, “Optical trapping through the localized surface-plasmon resonance of engineered gold nanoblock pairs,” Opt. Express 19(18), 462–468 (2011).
[CrossRef]

van Hulst, N. F.

M. Mivelle, T. S. van Zanten, L. Neumann, N. F. van Hulst, M. F. Garcia-Parajo, “Ultrabright bowtie nanoaperture antenna probes studied by single molecule fluorescence,” Nano Lett. 12(11), 5972–5978 (2012).
[CrossRef] [PubMed]

van Zanten, T. S.

M. Mivelle, T. S. van Zanten, L. Neumann, N. F. van Hulst, M. F. Garcia-Parajo, “Ultrabright bowtie nanoaperture antenna probes studied by single molecule fluorescence,” Nano Lett. 12(11), 5972–5978 (2012).
[CrossRef] [PubMed]

Vo, T.-P.

Volpe, G.

M. Righini, G. Volpe, C. Girard, D. Petrov, R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[CrossRef] [PubMed]

Wang, K.

K. Wang, E. Schonbrun, P. Steinvurzel, K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10(9), 3506–3511 (2010).
[CrossRef] [PubMed]

Wang, L.

Warszynski, P.

C. Filiâtre, C. Pignolet, A. Foissy, M. Zembala, P. Warszyński, “Electrodeposition of particles at nickel electrode surface in a laminar flow cell,” Colloids Surf., A 222(1), 55–63 (2003).
[CrossRef]

Xin, H.

H. Xin, Y. Li, L. Li, R. Xu, B. Li, “Optofluidic manipulation of Escherichia coli in a microfluidic channel using an abruptly tapered optical fiber,” Appl. Phys. Lett. 103(3), 033703 (2013).
[CrossRef]

Xu, R.

H. Xin, Y. Li, L. Li, R. Xu, B. Li, “Optofluidic manipulation of Escherichia coli in a microfluidic channel using an abruptly tapered optical fiber,” Appl. Phys. Lett. 103(3), 033703 (2013).
[CrossRef]

Xu, X.

E. X. Jin, X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 106 (2005).
[CrossRef]

Yang, J.

Z. Liu, L. Wang, P. Liang, Y. Zhang, J. Yang, L. Yuan, “Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment,” Opt. Lett. 38(14), 2617–2620 (2013).
[CrossRef] [PubMed]

Z. Liu, C. Guo, J. Yang, L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express 14(25), 510–516 (2006).
[CrossRef]

Yu, M.

Yuan, L.

Z. Liu, L. Wang, P. Liang, Y. Zhang, J. Yang, L. Yuan, “Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment,” Opt. Lett. 38(14), 2617–2620 (2013).
[CrossRef] [PubMed]

Z. Liu, C. Guo, J. Yang, L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express 14(25), 510–516 (2006).
[CrossRef]

Zembala, M.

C. Filiâtre, C. Pignolet, A. Foissy, M. Zembala, P. Warszyński, “Electrodeposition of particles at nickel electrode surface in a laminar flow cell,” Colloids Surf., A 222(1), 55–63 (2003).
[CrossRef]

Zhang, W.

W. Zhang, L. Huang, C. Santschi, O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

Zhang, Y.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. Xin, Y. Li, L. Li, R. Xu, B. Li, “Optofluidic manipulation of Escherichia coli in a microfluidic channel using an abruptly tapered optical fiber,” Appl. Phys. Lett. 103(3), 033703 (2013).
[CrossRef]

E. X. Jin, X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 106 (2005).
[CrossRef]

Colloids Surf., A (1)

C. Filiâtre, C. Pignolet, A. Foissy, M. Zembala, P. Warszyński, “Electrodeposition of particles at nickel electrode surface in a laminar flow cell,” Colloids Surf., A 222(1), 55–63 (2003).
[CrossRef]

Nano Lett. (5)

M. Mivelle, T. S. van Zanten, L. Neumann, N. F. van Hulst, M. F. Garcia-Parajo, “Ultrabright bowtie nanoaperture antenna probes studied by single molecule fluorescence,” Nano Lett. 12(11), 5972–5978 (2012).
[CrossRef] [PubMed]

K. Wang, E. Schonbrun, P. Steinvurzel, K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10(9), 3506–3511 (2010).
[CrossRef] [PubMed]

W. Zhang, L. Huang, C. Santschi, O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

Y. Pang, R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2011).
[CrossRef] [PubMed]

A. A. Saleh, J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[CrossRef] [PubMed]

Nat. Photon. (1)

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photon. 1(12), 723–727 (2007).
[CrossRef]

Opt. Express (6)

S. K. Mondal, S. S. Pal, P. Kapur, “Optical fiber nano-tip and 3D bottle beam as non-plasmonic optical tweezers,” Opt. Express 20(15), 180–185 (2012).
[CrossRef]

Z. Liu, C. Guo, J. Yang, L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express 14(25), 510–516 (2006).
[CrossRef]

J.-B. Decombe, S. Huant, J. Fick, “Single and dual fiber nano-tip optical tweezers: trapping and analysis,” Opt. Express 21(25), 521–531 (2013).
[CrossRef]

M. Mivelle, I. A. Ibrahim, F. Baida, G. W. Burr, D. Nedeljkovic, D. Charraut, J.-Y. Rauch, R. Salut, T. Grosjean, “Bowtie nano-aperture as interfacebetween near-fields and a single-modefiber,” Opt. Express 18(15), 964–974 (2010).
[CrossRef]

T.-P. Vo, M. Mivelle, S. Callard, A. Rahmani, F. Baida, D. Charraut, A. Belarouci, D. Nedeljkovic, C. Seassal, G. Burr, T. Grosjean, “Near-field probing of slow Bloch modes on photonic crystals with a nanoantenna,” Opt. Express 20(4), 4124–4135 (2012).
[CrossRef] [PubMed]

Y. Tanaka, K. Sasaki, “Optical trapping through the localized surface-plasmon resonance of engineered gold nanoblock pairs,” Opt. Express 19(18), 462–468 (2011).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

M. Righini, G. Volpe, C. Girard, D. Petrov, R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

K. C. Neuman, S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef]

Other (2)

A. Taflove, S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3 (Artech House, 2005).

J. Jackson, Classical Electrodynamics (John Wiley, 1999).

Supplementary Material (1)

» Media 1: MOV (4106 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a–d) SEM micrographs of the fiber-integrated nano-tweezer based on a BNA fabricated at the apex of a SNOM tip: side view of the fiber metal-coated SNOM tip (a) before and (b) after initial FIB processing to flatten the tip apex: the rough metallic surface of the rounded apex is milled from the side to be finely polished. (c) and (d) side and top views of the BNA at the tip apex, respectively (obtained by FIB milling from the top). (e) theoretical resonance spectrum of the BNA-on-tip immersed in water: electric intensity enhancement due to the BNA. An excitation gaussian beam is injected into the 2 micrometer long end portion of the tip considered in the simulation. The optical waves are linearly polarized along the polarization axis of the BNA (see the white arrow shown in the figure inset). (f,g) Simulation of the distribution of optical electric field (amplitude) in a transverse plane (perpendicular to the tip axis) taken 10 nm away from the tip (λ=1064 nm), for two perpendicular polarization directions of the incoming waves (see arrows in insets). (h,i) Far-field experimental images of the fiber tip output for two perpendicular polarization directions of the in-fiber illumination (BNA on and off resonance, see arrows in the insets).

Fig. 2
Fig. 2

Scheme of the experimental set-up.

Fig. 3
Fig. 3

Demonstration of the 3D optical trapping of a 0.5 micrometer latex bead with a BNA on fiber tip. (a–c) The polarization of the in-fiber illumination (λ=1064 nm) is parallel to the polarization axis of the BNA: a particle is trapped at the tip apex by the BNA resonantly excited (time range from 0 to 15 seconds). (d–f) The input polarization is turned by 90°: the BNA is off-resonance. The initially trapped particle leaves the tip apex. The image contrast has been enhanced numerically, whereas the media file is made with raw data (see Media 1).

Fig. 4
Fig. 4

Optical force induced by the BNA on tip (on resonance) onto a 0.5 micrometer dielectric nanoparticle (n=1.45) positioned (a) along the tip axis (0z), and (b) and (c) along the two orthogonal transverse axis (0x) and (0y) perpendicular to (0z), respectively (see inset of (b) for axis orientation with respect to the BNA). (a) The longitudinal component Fz of the optical force (along the tip axis) is plotted as a function of the distance d between the BNA and the nanoparticle. The positive value of Fz means that it points toward the tip apex, which is in favor of 3D optical trapping. The transverse components of the force Fx and Fy (perpendicular to the tip axis) are negligible for these particle positions. Figure inset: longitudinal component of the optical force as a function of d for a circular aperture whose area is the same as that of the BNA (the transverse force is negligible). Forces displayed in (b) and (c) are plotted for various bead positions along (0x) and (0y), at a particle/tip spacing of 45 nm. Fz is still taken positive when it points toward the tip. The environment is water (n=1.315).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T i j = ε ( E i * E j 1 2 δ i j | E | 2 ) + μ ( H i * H j 1 2 δ i j | H | 2 ) ,

Metrics