Abstract

Optical images are often corrupted by noise, low contrast, uneven illumination and artefacts, which may pose significant challenges to image analysis, particularly for dense fluids. Traditionally, noise removal and contrast enhancement are achieved by global arithmetic operations on the image as a whole, and/or by image convolution with various kernels. However, these methods work under very limited conditions and can compromise detail within the image. Here, we develop a new technique, texture analysis microscopy (TAM), to overcome these challenges based on the method of image correlation. TAM recasts an image by the statistical similarities between a raw image and a template feature (e.g. a Gaussian) that best approximates features in the image. We demonstrate the superiority of TAM by applying it to low-fidelity images under conditions where traditional methods fail or have deteriorative performance, for analyses including structural correlations, particle identification and sizing.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. B. Murphy, Fundamentals of light microscopy and electronic imaging (John Willey & Sons, Inc., 2001).
  2. P. Sebbah, ed., Waves and imaging through complex media (Kluwer, 2001).
  3. C. J. R. Sheppard, X. Gan, M. Gu, and M. Roy, “Signal-to-noise in confocal microscope” in Handbook of Biological Confocal Microscopy, 2nd ed., J. B. Pawley, eds. (Plenum, 1995).
  4. J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol. 185(7), 1135–1148 (2009).
    [CrossRef] [PubMed]
  5. B. D’aguanno, R. Klein, J. M. Mendez-Alcaraz, and G. Nagele, “Polydisperse complex fluids,” Lecture Notes in Physics 415, 149–176 (1993).
  6. W. M. Gelbart, A. Ben-Shaul, “The ‘new’ science of ‘complex fluids’,” J. Phys. Chem. 100(31), 13169–13189 (1996).
    [CrossRef]
  7. J. C. Crocker, D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
    [CrossRef]
  8. B. Shuang, J. Chen, L. Kisley, C. F. Landes, “Troika of single particle tracking programing: SNR enhancement, particle identification, and mapping,” Phys. Chem. Chem. Phys. 16(2), 624–634 (2013).
    [CrossRef] [PubMed]
  9. I. Izeddin, J. Boulanger, V. Racine, C. G. Specht, A. Kechkar, D. Nair, A. Triller, D. Choquet, M. Dahan, J. B. Sibarita, “Wavelet analysis for single molecule localization microscopy,” Opt. Express 20(3), 2081–2095 (2012).
    [CrossRef] [PubMed]
  10. R. M. Haralick, K. Shanmugam, I. Dinstein, “Textural features for imaging classification,” IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973).
    [CrossRef]
  11. V. Atlamazoglou, D. Yova, N. Kavantzas, S. Loukas, “Texture analysis of fluorescence microscopic images of colonic tissue sections,” Med. Biol. Eng. Comput. 39(2), 145–151 (2001).
    [CrossRef] [PubMed]
  12. A. P. Sviridov, Z. Ulissi, V. Chernomordik, M. Hassan, A. H. Gandjbakhche, “Visualization of biological texture using correlation coefficient images,” J. Biomed. Opt. 11(6), 060504 (2006).
    [CrossRef] [PubMed]
  13. P. Guenoun, R. Gastaud, F. Perrot, D. Beysens, “Spinodal decomposition patterns in an isodensity critical binary fluid: Direct-visualization and light-scattering analyses,” Phys. Rev. A 36(10), 4876–4890 (1987).
    [CrossRef] [PubMed]
  14. N. A. M. Verhaegh, J. S. van Duijneveldt, J. K. G. Dhont, H. N. W. Lekkerkerker, “Fluid-fluid phase separation in colloid-polymer mixtures studied with small angle light scattering and light microscopy,” Physica A 230(3-4), 409–436 (1996).
    [CrossRef]
  15. D. G. A. L. Aarts, R. P. A. Dullens, H. N. W. Lekkerkerker, “Interfacial dynamics in demixing systems with ultralow interfacial tension,” New J. Phys. 7, 40 (2005).
    [CrossRef]
  16. E. A. G. Jamie, R. P. A. Dullens, D. G. A. L. Aarts, “Tuning the demixing of colloid-polymer systems through the dispersing solvent,” J. Phys. Condens. Matter 23(19), 194115 (2011).
    [CrossRef] [PubMed]
  17. T. Gibaud, P. Schurtenberger, “A closer look at arrested spinodal decomposition in protein solutions,” J. Phys. Condens. Matter 21(32), 322201 (2009).
    [CrossRef] [PubMed]
  18. U. Gasser, E. R. Weeks, A. Schofield, P. N. Pusey, D. A. Weitz, “Real-space imaging of nucleation and growth in colloidal crystallization,” Science 292(5515), 258–262 (2001).
    [CrossRef] [PubMed]
  19. A. M. Alsayed, M. F. Islam, J. Zhang, P. J. Collings, A. G. Yodh, “Premelting at defects within bulk colloidal crystals,” Science 309(5738), 1207–1210 (2005).
    [CrossRef] [PubMed]
  20. V. W. A. de Villeneuve, R. P. A. Dullens, D. G. A. L. Aarts, E. Groeneveld, J. H. Scherff, W. K. Kegel, H. N. W. Lekkerkerker, “Colloidal hard-sphere crystal growth frustrated by large spherical impurities,” Science 309(5738), 1231–1233 (2005).
    [CrossRef] [PubMed]
  21. E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287(5453), 627–631 (2000).
    [CrossRef] [PubMed]
  22. J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, D. A. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85(4), 888–891 (2000).
    [CrossRef] [PubMed]
  23. G. Marty, O. Dauchot, “Subdiffusion and cage effect in a sheared granular material,” Phys. Rev. Lett. 94(1), 015701 (2005).
    [CrossRef] [PubMed]
  24. K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid, G. Danuser, “Robust single-particle tracking in live-cell time-lapse sequences,” Nat. Methods 5(8), 695–702 (2008).
    [CrossRef] [PubMed]
  25. A. Sergé, N. Bertaux, H. Rigneault, D. Marguet, “Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes,” Nat. Methods 5(8), 687–694 (2008).
    [CrossRef] [PubMed]
  26. M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [CrossRef] [PubMed]
  27. J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
    [CrossRef] [PubMed]
  28. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [CrossRef] [PubMed]
  29. S. T. Hess, T. P. K. Girirajan, M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
    [CrossRef] [PubMed]
  30. Y. Gao, M. L. Kilfoil, “Accurate detection and complete tracking of large populations of features in three dimensions,” Opt. Express 17(6), 4685–4704 (2009).
    [CrossRef] [PubMed]
  31. M. E. Helgeson, S. E. Moran, H. Z. An, P. S. Doyle, “Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions,” Nat. Mater. 11(4), 344–352 (2012).
    [CrossRef] [PubMed]
  32. J. Kim, Y. Gao, C. Hebebrand, E. Peirtsegaele, M. E. Helgeson, “Polymer-surfactant complexation as a generic route to responsive viscoelastic nanoemulsions,” Soft Matter 9(29), 6897–6910 (2013).
    [CrossRef]
  33. A. Kuijk, A. van Blaaderen, A. Imhof, “Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio,” J. Am. Chem. Soc. 133(8), 2346–2349 (2011).
    [CrossRef] [PubMed]
  34. A. E. Bailey, W. C. K. Poon, R. J. Christianson, A. B. Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L. Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta, T. Lorik, P. N. Pusey, D. A. Weitz, “Spinodal decomposition in a model colloid-polymer mixture in microgravity,” Phys. Rev. Lett. 99(20), 205701 (2007).
    [CrossRef] [PubMed]
  35. P. J. Lu, H. Oki, C. A. Frey, G. E. Chamitoff, L. Chiao, E. M. Fincke, C. M. Foale, S. H. Magnus, W. S. McArthur, D. M. Tani, P. A. Whitson, J. N. Williams, W. V. Meyer, R. J. Sicker, B. J. Au, M. Christiansen, A. B. Schofield, D. A. Weitz, “Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space Station,” J. Real-Time Image Process. 5(3), 179–193 (2010).
    [CrossRef]
  36. http://www.physics.emory.edu/~weeks/idl/tracking.html
  37. M. C. Jenkins, S. U. Egelhaaf, “Confocal microscopy of colloidal particles: towards reliable, optimum coordinates,” Adv. Colloid Interface Sci. 136(1-2), 65–92 (2008).
    [CrossRef] [PubMed]
  38. C. A. Schneider, W. S. Rasband, K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
    [CrossRef] [PubMed]

2013 (2)

B. Shuang, J. Chen, L. Kisley, C. F. Landes, “Troika of single particle tracking programing: SNR enhancement, particle identification, and mapping,” Phys. Chem. Chem. Phys. 16(2), 624–634 (2013).
[CrossRef] [PubMed]

J. Kim, Y. Gao, C. Hebebrand, E. Peirtsegaele, M. E. Helgeson, “Polymer-surfactant complexation as a generic route to responsive viscoelastic nanoemulsions,” Soft Matter 9(29), 6897–6910 (2013).
[CrossRef]

2012 (3)

M. E. Helgeson, S. E. Moran, H. Z. An, P. S. Doyle, “Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions,” Nat. Mater. 11(4), 344–352 (2012).
[CrossRef] [PubMed]

C. A. Schneider, W. S. Rasband, K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[CrossRef] [PubMed]

I. Izeddin, J. Boulanger, V. Racine, C. G. Specht, A. Kechkar, D. Nair, A. Triller, D. Choquet, M. Dahan, J. B. Sibarita, “Wavelet analysis for single molecule localization microscopy,” Opt. Express 20(3), 2081–2095 (2012).
[CrossRef] [PubMed]

2011 (2)

E. A. G. Jamie, R. P. A. Dullens, D. G. A. L. Aarts, “Tuning the demixing of colloid-polymer systems through the dispersing solvent,” J. Phys. Condens. Matter 23(19), 194115 (2011).
[CrossRef] [PubMed]

A. Kuijk, A. van Blaaderen, A. Imhof, “Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio,” J. Am. Chem. Soc. 133(8), 2346–2349 (2011).
[CrossRef] [PubMed]

2010 (1)

P. J. Lu, H. Oki, C. A. Frey, G. E. Chamitoff, L. Chiao, E. M. Fincke, C. M. Foale, S. H. Magnus, W. S. McArthur, D. M. Tani, P. A. Whitson, J. N. Williams, W. V. Meyer, R. J. Sicker, B. J. Au, M. Christiansen, A. B. Schofield, D. A. Weitz, “Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space Station,” J. Real-Time Image Process. 5(3), 179–193 (2010).
[CrossRef]

2009 (3)

Y. Gao, M. L. Kilfoil, “Accurate detection and complete tracking of large populations of features in three dimensions,” Opt. Express 17(6), 4685–4704 (2009).
[CrossRef] [PubMed]

T. Gibaud, P. Schurtenberger, “A closer look at arrested spinodal decomposition in protein solutions,” J. Phys. Condens. Matter 21(32), 322201 (2009).
[CrossRef] [PubMed]

J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol. 185(7), 1135–1148 (2009).
[CrossRef] [PubMed]

2008 (4)

K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid, G. Danuser, “Robust single-particle tracking in live-cell time-lapse sequences,” Nat. Methods 5(8), 695–702 (2008).
[CrossRef] [PubMed]

A. Sergé, N. Bertaux, H. Rigneault, D. Marguet, “Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes,” Nat. Methods 5(8), 687–694 (2008).
[CrossRef] [PubMed]

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[CrossRef] [PubMed]

M. C. Jenkins, S. U. Egelhaaf, “Confocal microscopy of colloidal particles: towards reliable, optimum coordinates,” Adv. Colloid Interface Sci. 136(1-2), 65–92 (2008).
[CrossRef] [PubMed]

2007 (1)

A. E. Bailey, W. C. K. Poon, R. J. Christianson, A. B. Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L. Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta, T. Lorik, P. N. Pusey, D. A. Weitz, “Spinodal decomposition in a model colloid-polymer mixture in microgravity,” Phys. Rev. Lett. 99(20), 205701 (2007).
[CrossRef] [PubMed]

2006 (4)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

S. T. Hess, T. P. K. Girirajan, M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

A. P. Sviridov, Z. Ulissi, V. Chernomordik, M. Hassan, A. H. Gandjbakhche, “Visualization of biological texture using correlation coefficient images,” J. Biomed. Opt. 11(6), 060504 (2006).
[CrossRef] [PubMed]

2005 (4)

D. G. A. L. Aarts, R. P. A. Dullens, H. N. W. Lekkerkerker, “Interfacial dynamics in demixing systems with ultralow interfacial tension,” New J. Phys. 7, 40 (2005).
[CrossRef]

G. Marty, O. Dauchot, “Subdiffusion and cage effect in a sheared granular material,” Phys. Rev. Lett. 94(1), 015701 (2005).
[CrossRef] [PubMed]

A. M. Alsayed, M. F. Islam, J. Zhang, P. J. Collings, A. G. Yodh, “Premelting at defects within bulk colloidal crystals,” Science 309(5738), 1207–1210 (2005).
[CrossRef] [PubMed]

V. W. A. de Villeneuve, R. P. A. Dullens, D. G. A. L. Aarts, E. Groeneveld, J. H. Scherff, W. K. Kegel, H. N. W. Lekkerkerker, “Colloidal hard-sphere crystal growth frustrated by large spherical impurities,” Science 309(5738), 1231–1233 (2005).
[CrossRef] [PubMed]

2001 (2)

U. Gasser, E. R. Weeks, A. Schofield, P. N. Pusey, D. A. Weitz, “Real-space imaging of nucleation and growth in colloidal crystallization,” Science 292(5515), 258–262 (2001).
[CrossRef] [PubMed]

V. Atlamazoglou, D. Yova, N. Kavantzas, S. Loukas, “Texture analysis of fluorescence microscopic images of colonic tissue sections,” Med. Biol. Eng. Comput. 39(2), 145–151 (2001).
[CrossRef] [PubMed]

2000 (2)

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287(5453), 627–631 (2000).
[CrossRef] [PubMed]

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, D. A. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85(4), 888–891 (2000).
[CrossRef] [PubMed]

1996 (3)

N. A. M. Verhaegh, J. S. van Duijneveldt, J. K. G. Dhont, H. N. W. Lekkerkerker, “Fluid-fluid phase separation in colloid-polymer mixtures studied with small angle light scattering and light microscopy,” Physica A 230(3-4), 409–436 (1996).
[CrossRef]

W. M. Gelbart, A. Ben-Shaul, “The ‘new’ science of ‘complex fluids’,” J. Phys. Chem. 100(31), 13169–13189 (1996).
[CrossRef]

J. C. Crocker, D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
[CrossRef]

1987 (1)

P. Guenoun, R. Gastaud, F. Perrot, D. Beysens, “Spinodal decomposition patterns in an isodensity critical binary fluid: Direct-visualization and light-scattering analyses,” Phys. Rev. A 36(10), 4876–4890 (1987).
[CrossRef] [PubMed]

1973 (1)

R. M. Haralick, K. Shanmugam, I. Dinstein, “Textural features for imaging classification,” IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973).
[CrossRef]

Aarts, D. G. A. L.

E. A. G. Jamie, R. P. A. Dullens, D. G. A. L. Aarts, “Tuning the demixing of colloid-polymer systems through the dispersing solvent,” J. Phys. Condens. Matter 23(19), 194115 (2011).
[CrossRef] [PubMed]

D. G. A. L. Aarts, R. P. A. Dullens, H. N. W. Lekkerkerker, “Interfacial dynamics in demixing systems with ultralow interfacial tension,” New J. Phys. 7, 40 (2005).
[CrossRef]

V. W. A. de Villeneuve, R. P. A. Dullens, D. G. A. L. Aarts, E. Groeneveld, J. H. Scherff, W. K. Kegel, H. N. W. Lekkerkerker, “Colloidal hard-sphere crystal growth frustrated by large spherical impurities,” Science 309(5738), 1231–1233 (2005).
[CrossRef] [PubMed]

Alsayed, A. M.

A. M. Alsayed, M. F. Islam, J. Zhang, P. J. Collings, A. G. Yodh, “Premelting at defects within bulk colloidal crystals,” Science 309(5738), 1207–1210 (2005).
[CrossRef] [PubMed]

An, H. Z.

M. E. Helgeson, S. E. Moran, H. Z. An, P. S. Doyle, “Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions,” Nat. Mater. 11(4), 344–352 (2012).
[CrossRef] [PubMed]

Atlamazoglou, V.

V. Atlamazoglou, D. Yova, N. Kavantzas, S. Loukas, “Texture analysis of fluorescence microscopic images of colonic tissue sections,” Med. Biol. Eng. Comput. 39(2), 145–151 (2001).
[CrossRef] [PubMed]

Au, B. J.

P. J. Lu, H. Oki, C. A. Frey, G. E. Chamitoff, L. Chiao, E. M. Fincke, C. M. Foale, S. H. Magnus, W. S. McArthur, D. M. Tani, P. A. Whitson, J. N. Williams, W. V. Meyer, R. J. Sicker, B. J. Au, M. Christiansen, A. B. Schofield, D. A. Weitz, “Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space Station,” J. Real-Time Image Process. 5(3), 179–193 (2010).
[CrossRef]

Bailey, A. E.

A. E. Bailey, W. C. K. Poon, R. J. Christianson, A. B. Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L. Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta, T. Lorik, P. N. Pusey, D. A. Weitz, “Spinodal decomposition in a model colloid-polymer mixture in microgravity,” Phys. Rev. Lett. 99(20), 205701 (2007).
[CrossRef] [PubMed]

Bates, M.

M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

Ben-Shaul, A.

W. M. Gelbart, A. Ben-Shaul, “The ‘new’ science of ‘complex fluids’,” J. Phys. Chem. 100(31), 13169–13189 (1996).
[CrossRef]

Bertaux, N.

A. Sergé, N. Bertaux, H. Rigneault, D. Marguet, “Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes,” Nat. Methods 5(8), 687–694 (2008).
[CrossRef] [PubMed]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Beysens, D.

P. Guenoun, R. Gastaud, F. Perrot, D. Beysens, “Spinodal decomposition patterns in an isodensity critical binary fluid: Direct-visualization and light-scattering analyses,” Phys. Rev. A 36(10), 4876–4890 (1987).
[CrossRef] [PubMed]

Bock, H.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[CrossRef] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Bossi, M.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[CrossRef] [PubMed]

Boulanger, J.

Bowen, J. P.

A. E. Bailey, W. C. K. Poon, R. J. Christianson, A. B. Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L. Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta, T. Lorik, P. N. Pusey, D. A. Weitz, “Spinodal decomposition in a model colloid-polymer mixture in microgravity,” Phys. Rev. Lett. 99(20), 205701 (2007).
[CrossRef] [PubMed]

Chamitoff, G. E.

P. J. Lu, H. Oki, C. A. Frey, G. E. Chamitoff, L. Chiao, E. M. Fincke, C. M. Foale, S. H. Magnus, W. S. McArthur, D. M. Tani, P. A. Whitson, J. N. Williams, W. V. Meyer, R. J. Sicker, B. J. Au, M. Christiansen, A. B. Schofield, D. A. Weitz, “Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space Station,” J. Real-Time Image Process. 5(3), 179–193 (2010).
[CrossRef]

Chen, J.

B. Shuang, J. Chen, L. Kisley, C. F. Landes, “Troika of single particle tracking programing: SNR enhancement, particle identification, and mapping,” Phys. Chem. Chem. Phys. 16(2), 624–634 (2013).
[CrossRef] [PubMed]

Chernomordik, V.

A. P. Sviridov, Z. Ulissi, V. Chernomordik, M. Hassan, A. H. Gandjbakhche, “Visualization of biological texture using correlation coefficient images,” J. Biomed. Opt. 11(6), 060504 (2006).
[CrossRef] [PubMed]

Chiao, L.

P. J. Lu, H. Oki, C. A. Frey, G. E. Chamitoff, L. Chiao, E. M. Fincke, C. M. Foale, S. H. Magnus, W. S. McArthur, D. M. Tani, P. A. Whitson, J. N. Williams, W. V. Meyer, R. J. Sicker, B. J. Au, M. Christiansen, A. B. Schofield, D. A. Weitz, “Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space Station,” J. Real-Time Image Process. 5(3), 179–193 (2010).
[CrossRef]

Choquet, D.

Christiansen, M.

P. J. Lu, H. Oki, C. A. Frey, G. E. Chamitoff, L. Chiao, E. M. Fincke, C. M. Foale, S. H. Magnus, W. S. McArthur, D. M. Tani, P. A. Whitson, J. N. Williams, W. V. Meyer, R. J. Sicker, B. J. Au, M. Christiansen, A. B. Schofield, D. A. Weitz, “Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space Station,” J. Real-Time Image Process. 5(3), 179–193 (2010).
[CrossRef]

Christianson, R. J.

A. E. Bailey, W. C. K. Poon, R. J. Christianson, A. B. Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L. Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta, T. Lorik, P. N. Pusey, D. A. Weitz, “Spinodal decomposition in a model colloid-polymer mixture in microgravity,” Phys. Rev. Lett. 99(20), 205701 (2007).
[CrossRef] [PubMed]

Cipelletti, L.

A. E. Bailey, W. C. K. Poon, R. J. Christianson, A. B. Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L. Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta, T. Lorik, P. N. Pusey, D. A. Weitz, “Spinodal decomposition in a model colloid-polymer mixture in microgravity,” Phys. Rev. Lett. 99(20), 205701 (2007).
[CrossRef] [PubMed]

Collings, P. J.

A. M. Alsayed, M. F. Islam, J. Zhang, P. J. Collings, A. G. Yodh, “Premelting at defects within bulk colloidal crystals,” Science 309(5738), 1207–1210 (2005).
[CrossRef] [PubMed]

Crocker, J. C.

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287(5453), 627–631 (2000).
[CrossRef] [PubMed]

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, D. A. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85(4), 888–891 (2000).
[CrossRef] [PubMed]

J. C. Crocker, D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
[CrossRef]

Dahan, M.

Danuser, G.

K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid, G. Danuser, “Robust single-particle tracking in live-cell time-lapse sequences,” Nat. Methods 5(8), 695–702 (2008).
[CrossRef] [PubMed]

Dauchot, O.

G. Marty, O. Dauchot, “Subdiffusion and cage effect in a sheared granular material,” Phys. Rev. Lett. 94(1), 015701 (2005).
[CrossRef] [PubMed]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

de Villeneuve, V. W. A.

V. W. A. de Villeneuve, R. P. A. Dullens, D. G. A. L. Aarts, E. Groeneveld, J. H. Scherff, W. K. Kegel, H. N. W. Lekkerkerker, “Colloidal hard-sphere crystal growth frustrated by large spherical impurities,” Science 309(5738), 1231–1233 (2005).
[CrossRef] [PubMed]

Dhont, J. K. G.

N. A. M. Verhaegh, J. S. van Duijneveldt, J. K. G. Dhont, H. N. W. Lekkerkerker, “Fluid-fluid phase separation in colloid-polymer mixtures studied with small angle light scattering and light microscopy,” Physica A 230(3-4), 409–436 (1996).
[CrossRef]

Dinstein, I.

R. M. Haralick, K. Shanmugam, I. Dinstein, “Textural features for imaging classification,” IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973).
[CrossRef]

Doherty, M. P.

A. E. Bailey, W. C. K. Poon, R. J. Christianson, A. B. Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L. Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta, T. Lorik, P. N. Pusey, D. A. Weitz, “Spinodal decomposition in a model colloid-polymer mixture in microgravity,” Phys. Rev. Lett. 99(20), 205701 (2007).
[CrossRef] [PubMed]

Doyle, P. S.

M. E. Helgeson, S. E. Moran, H. Z. An, P. S. Doyle, “Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions,” Nat. Mater. 11(4), 344–352 (2012).
[CrossRef] [PubMed]

Dullens, R. P. A.

E. A. G. Jamie, R. P. A. Dullens, D. G. A. L. Aarts, “Tuning the demixing of colloid-polymer systems through the dispersing solvent,” J. Phys. Condens. Matter 23(19), 194115 (2011).
[CrossRef] [PubMed]

D. G. A. L. Aarts, R. P. A. Dullens, H. N. W. Lekkerkerker, “Interfacial dynamics in demixing systems with ultralow interfacial tension,” New J. Phys. 7, 40 (2005).
[CrossRef]

V. W. A. de Villeneuve, R. P. A. Dullens, D. G. A. L. Aarts, E. Groeneveld, J. H. Scherff, W. K. Kegel, H. N. W. Lekkerkerker, “Colloidal hard-sphere crystal growth frustrated by large spherical impurities,” Science 309(5738), 1231–1233 (2005).
[CrossRef] [PubMed]

Egelhaaf, S. U.

M. C. Jenkins, S. U. Egelhaaf, “Confocal microscopy of colloidal particles: towards reliable, optimum coordinates,” Adv. Colloid Interface Sci. 136(1-2), 65–92 (2008).
[CrossRef] [PubMed]

Eggeling, C.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[CrossRef] [PubMed]

Eggers, J. C.

A. E. Bailey, W. C. K. Poon, R. J. Christianson, A. B. Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L. Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta, T. Lorik, P. N. Pusey, D. A. Weitz, “Spinodal decomposition in a model colloid-polymer mixture in microgravity,” Phys. Rev. Lett. 99(20), 205701 (2007).
[CrossRef] [PubMed]

Eliceiri, K. W.

C. A. Schneider, W. S. Rasband, K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[CrossRef] [PubMed]

Fincke, E. M.

P. J. Lu, H. Oki, C. A. Frey, G. E. Chamitoff, L. Chiao, E. M. Fincke, C. M. Foale, S. H. Magnus, W. S. McArthur, D. M. Tani, P. A. Whitson, J. N. Williams, W. V. Meyer, R. J. Sicker, B. J. Au, M. Christiansen, A. B. Schofield, D. A. Weitz, “Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space Station,” J. Real-Time Image Process. 5(3), 179–193 (2010).
[CrossRef]

Foale, C. M.

P. J. Lu, H. Oki, C. A. Frey, G. E. Chamitoff, L. Chiao, E. M. Fincke, C. M. Foale, S. H. Magnus, W. S. McArthur, D. M. Tani, P. A. Whitson, J. N. Williams, W. V. Meyer, R. J. Sicker, B. J. Au, M. Christiansen, A. B. Schofield, D. A. Weitz, “Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space Station,” J. Real-Time Image Process. 5(3), 179–193 (2010).
[CrossRef]

Fölling, J.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[CrossRef] [PubMed]

Frey, C. A.

P. J. Lu, H. Oki, C. A. Frey, G. E. Chamitoff, L. Chiao, E. M. Fincke, C. M. Foale, S. H. Magnus, W. S. McArthur, D. M. Tani, P. A. Whitson, J. N. Williams, W. V. Meyer, R. J. Sicker, B. J. Au, M. Christiansen, A. B. Schofield, D. A. Weitz, “Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space Station,” J. Real-Time Image Process. 5(3), 179–193 (2010).
[CrossRef]

Gandjbakhche, A. H.

A. P. Sviridov, Z. Ulissi, V. Chernomordik, M. Hassan, A. H. Gandjbakhche, “Visualization of biological texture using correlation coefficient images,” J. Biomed. Opt. 11(6), 060504 (2006).
[CrossRef] [PubMed]

Gao, Y.

J. Kim, Y. Gao, C. Hebebrand, E. Peirtsegaele, M. E. Helgeson, “Polymer-surfactant complexation as a generic route to responsive viscoelastic nanoemulsions,” Soft Matter 9(29), 6897–6910 (2013).
[CrossRef]

Y. Gao, M. L. Kilfoil, “Accurate detection and complete tracking of large populations of features in three dimensions,” Opt. Express 17(6), 4685–4704 (2009).
[CrossRef] [PubMed]

Gasser, U.

A. E. Bailey, W. C. K. Poon, R. J. Christianson, A. B. Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L. Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta, T. Lorik, P. N. Pusey, D. A. Weitz, “Spinodal decomposition in a model colloid-polymer mixture in microgravity,” Phys. Rev. Lett. 99(20), 205701 (2007).
[CrossRef] [PubMed]

U. Gasser, E. R. Weeks, A. Schofield, P. N. Pusey, D. A. Weitz, “Real-space imaging of nucleation and growth in colloidal crystallization,” Science 292(5515), 258–262 (2001).
[CrossRef] [PubMed]

Gastaud, R.

P. Guenoun, R. Gastaud, F. Perrot, D. Beysens, “Spinodal decomposition patterns in an isodensity critical binary fluid: Direct-visualization and light-scattering analyses,” Phys. Rev. A 36(10), 4876–4890 (1987).
[CrossRef] [PubMed]

Gelbart, W. M.

W. M. Gelbart, A. Ben-Shaul, “The ‘new’ science of ‘complex fluids’,” J. Phys. Chem. 100(31), 13169–13189 (1996).
[CrossRef]

Gibaud, T.

T. Gibaud, P. Schurtenberger, “A closer look at arrested spinodal decomposition in protein solutions,” J. Phys. Condens. Matter 21(32), 322201 (2009).
[CrossRef] [PubMed]

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

Gisler, T.

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, D. A. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85(4), 888–891 (2000).
[CrossRef] [PubMed]

Grier, D. G.

J. C. Crocker, D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
[CrossRef]

Grinstein, S.

K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid, G. Danuser, “Robust single-particle tracking in live-cell time-lapse sequences,” Nat. Methods 5(8), 695–702 (2008).
[CrossRef] [PubMed]

Groeneveld, E.

V. W. A. de Villeneuve, R. P. A. Dullens, D. G. A. L. Aarts, E. Groeneveld, J. H. Scherff, W. K. Kegel, H. N. W. Lekkerkerker, “Colloidal hard-sphere crystal growth frustrated by large spherical impurities,” Science 309(5738), 1231–1233 (2005).
[CrossRef] [PubMed]

Guenoun, P.

P. Guenoun, R. Gastaud, F. Perrot, D. Beysens, “Spinodal decomposition patterns in an isodensity critical binary fluid: Direct-visualization and light-scattering analyses,” Phys. Rev. A 36(10), 4876–4890 (1987).
[CrossRef] [PubMed]

Haralick, R. M.

R. M. Haralick, K. Shanmugam, I. Dinstein, “Textural features for imaging classification,” IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973).
[CrossRef]

Hassan, M.

A. P. Sviridov, Z. Ulissi, V. Chernomordik, M. Hassan, A. H. Gandjbakhche, “Visualization of biological texture using correlation coefficient images,” J. Biomed. Opt. 11(6), 060504 (2006).
[CrossRef] [PubMed]

Hebebrand, C.

J. Kim, Y. Gao, C. Hebebrand, E. Peirtsegaele, M. E. Helgeson, “Polymer-surfactant complexation as a generic route to responsive viscoelastic nanoemulsions,” Soft Matter 9(29), 6897–6910 (2013).
[CrossRef]

Hein, B.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[CrossRef] [PubMed]

Helgeson, M. E.

J. Kim, Y. Gao, C. Hebebrand, E. Peirtsegaele, M. E. Helgeson, “Polymer-surfactant complexation as a generic route to responsive viscoelastic nanoemulsions,” Soft Matter 9(29), 6897–6910 (2013).
[CrossRef]

M. E. Helgeson, S. E. Moran, H. Z. An, P. S. Doyle, “Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions,” Nat. Mater. 11(4), 344–352 (2012).
[CrossRef] [PubMed]

Hell, S. W.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[CrossRef] [PubMed]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Hess, S. T.

S. T. Hess, T. P. K. Girirajan, M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

Imhof, A.

A. Kuijk, A. van Blaaderen, A. Imhof, “Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio,” J. Am. Chem. Soc. 133(8), 2346–2349 (2011).
[CrossRef] [PubMed]

Islam, M. F.

A. M. Alsayed, M. F. Islam, J. Zhang, P. J. Collings, A. G. Yodh, “Premelting at defects within bulk colloidal crystals,” Science 309(5738), 1207–1210 (2005).
[CrossRef] [PubMed]

Izeddin, I.

Jakobs, S.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[CrossRef] [PubMed]

Jamie, E. A. G.

E. A. G. Jamie, R. P. A. Dullens, D. G. A. L. Aarts, “Tuning the demixing of colloid-polymer systems through the dispersing solvent,” J. Phys. Condens. Matter 23(19), 194115 (2011).
[CrossRef] [PubMed]

Jankovsky, A. L.

A. E. Bailey, W. C. K. Poon, R. J. Christianson, A. B. Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L. Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta, T. Lorik, P. N. Pusey, D. A. Weitz, “Spinodal decomposition in a model colloid-polymer mixture in microgravity,” Phys. Rev. Lett. 99(20), 205701 (2007).
[CrossRef] [PubMed]

Jaqaman, K.

K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid, G. Danuser, “Robust single-particle tracking in live-cell time-lapse sequences,” Nat. Methods 5(8), 695–702 (2008).
[CrossRef] [PubMed]

Jenkins, M. C.

M. C. Jenkins, S. U. Egelhaaf, “Confocal microscopy of colloidal particles: towards reliable, optimum coordinates,” Adv. Colloid Interface Sci. 136(1-2), 65–92 (2008).
[CrossRef] [PubMed]

Kaplan, P. D.

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, D. A. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85(4), 888–891 (2000).
[CrossRef] [PubMed]

Kavantzas, N.

V. Atlamazoglou, D. Yova, N. Kavantzas, S. Loukas, “Texture analysis of fluorescence microscopic images of colonic tissue sections,” Med. Biol. Eng. Comput. 39(2), 145–151 (2001).
[CrossRef] [PubMed]

Kechkar, A.

Kegel, W. K.

V. W. A. de Villeneuve, R. P. A. Dullens, D. G. A. L. Aarts, E. Groeneveld, J. H. Scherff, W. K. Kegel, H. N. W. Lekkerkerker, “Colloidal hard-sphere crystal growth frustrated by large spherical impurities,” Science 309(5738), 1231–1233 (2005).
[CrossRef] [PubMed]

Kilfoil, M. L.

Kim, J.

J. Kim, Y. Gao, C. Hebebrand, E. Peirtsegaele, M. E. Helgeson, “Polymer-surfactant complexation as a generic route to responsive viscoelastic nanoemulsions,” Soft Matter 9(29), 6897–6910 (2013).
[CrossRef]

Kisley, L.

B. Shuang, J. Chen, L. Kisley, C. F. Landes, “Troika of single particle tracking programing: SNR enhancement, particle identification, and mapping,” Phys. Chem. Chem. Phys. 16(2), 624–634 (2013).
[CrossRef] [PubMed]

Kuijk, A.

A. Kuijk, A. van Blaaderen, A. Imhof, “Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio,” J. Am. Chem. Soc. 133(8), 2346–2349 (2011).
[CrossRef] [PubMed]

Kurta, C.

A. E. Bailey, W. C. K. Poon, R. J. Christianson, A. B. Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L. Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta, T. Lorik, P. N. Pusey, D. A. Weitz, “Spinodal decomposition in a model colloid-polymer mixture in microgravity,” Phys. Rev. Lett. 99(20), 205701 (2007).
[CrossRef] [PubMed]

Kuwata, H.

K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid, G. Danuser, “Robust single-particle tracking in live-cell time-lapse sequences,” Nat. Methods 5(8), 695–702 (2008).
[CrossRef] [PubMed]

Landes, C. F.

B. Shuang, J. Chen, L. Kisley, C. F. Landes, “Troika of single particle tracking programing: SNR enhancement, particle identification, and mapping,” Phys. Chem. Chem. Phys. 16(2), 624–634 (2013).
[CrossRef] [PubMed]

Lekkerkerker, H. N. W.

V. W. A. de Villeneuve, R. P. A. Dullens, D. G. A. L. Aarts, E. Groeneveld, J. H. Scherff, W. K. Kegel, H. N. W. Lekkerkerker, “Colloidal hard-sphere crystal growth frustrated by large spherical impurities,” Science 309(5738), 1231–1233 (2005).
[CrossRef] [PubMed]

D. G. A. L. Aarts, R. P. A. Dullens, H. N. W. Lekkerkerker, “Interfacial dynamics in demixing systems with ultralow interfacial tension,” New J. Phys. 7, 40 (2005).
[CrossRef]

N. A. M. Verhaegh, J. S. van Duijneveldt, J. K. G. Dhont, H. N. W. Lekkerkerker, “Fluid-fluid phase separation in colloid-polymer mixtures studied with small angle light scattering and light microscopy,” Physica A 230(3-4), 409–436 (1996).
[CrossRef]

Levitt, A. C.

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287(5453), 627–631 (2000).
[CrossRef] [PubMed]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Loerke, D.

K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid, G. Danuser, “Robust single-particle tracking in live-cell time-lapse sequences,” Nat. Methods 5(8), 695–702 (2008).
[CrossRef] [PubMed]

Lorik, T.

A. E. Bailey, W. C. K. Poon, R. J. Christianson, A. B. Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L. Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta, T. Lorik, P. N. Pusey, D. A. Weitz, “Spinodal decomposition in a model colloid-polymer mixture in microgravity,” Phys. Rev. Lett. 99(20), 205701 (2007).
[CrossRef] [PubMed]

Loukas, S.

V. Atlamazoglou, D. Yova, N. Kavantzas, S. Loukas, “Texture analysis of fluorescence microscopic images of colonic tissue sections,” Med. Biol. Eng. Comput. 39(2), 145–151 (2001).
[CrossRef] [PubMed]

Lu, P. J.

P. J. Lu, H. Oki, C. A. Frey, G. E. Chamitoff, L. Chiao, E. M. Fincke, C. M. Foale, S. H. Magnus, W. S. McArthur, D. M. Tani, P. A. Whitson, J. N. Williams, W. V. Meyer, R. J. Sicker, B. J. Au, M. Christiansen, A. B. Schofield, D. A. Weitz, “Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space Station,” J. Real-Time Image Process. 5(3), 179–193 (2010).
[CrossRef]

Magnus, S. H.

P. J. Lu, H. Oki, C. A. Frey, G. E. Chamitoff, L. Chiao, E. M. Fincke, C. M. Foale, S. H. Magnus, W. S. McArthur, D. M. Tani, P. A. Whitson, J. N. Williams, W. V. Meyer, R. J. Sicker, B. J. Au, M. Christiansen, A. B. Schofield, D. A. Weitz, “Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space Station,” J. Real-Time Image Process. 5(3), 179–193 (2010).
[CrossRef]

Manley, S.

A. E. Bailey, W. C. K. Poon, R. J. Christianson, A. B. Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L. Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta, T. Lorik, P. N. Pusey, D. A. Weitz, “Spinodal decomposition in a model colloid-polymer mixture in microgravity,” Phys. Rev. Lett. 99(20), 205701 (2007).
[CrossRef] [PubMed]

Marguet, D.

A. Sergé, N. Bertaux, H. Rigneault, D. Marguet, “Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes,” Nat. Methods 5(8), 687–694 (2008).
[CrossRef] [PubMed]

Marty, G.

G. Marty, O. Dauchot, “Subdiffusion and cage effect in a sheared granular material,” Phys. Rev. Lett. 94(1), 015701 (2005).
[CrossRef] [PubMed]

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

McArthur, W. S.

P. J. Lu, H. Oki, C. A. Frey, G. E. Chamitoff, L. Chiao, E. M. Fincke, C. M. Foale, S. H. Magnus, W. S. McArthur, D. M. Tani, P. A. Whitson, J. N. Williams, W. V. Meyer, R. J. Sicker, B. J. Au, M. Christiansen, A. B. Schofield, D. A. Weitz, “Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space Station,” J. Real-Time Image Process. 5(3), 179–193 (2010).
[CrossRef]

Medda, R.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[CrossRef] [PubMed]

Mettlen, M.

K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid, G. Danuser, “Robust single-particle tracking in live-cell time-lapse sequences,” Nat. Methods 5(8), 695–702 (2008).
[CrossRef] [PubMed]

Meyer, W. V.

P. J. Lu, H. Oki, C. A. Frey, G. E. Chamitoff, L. Chiao, E. M. Fincke, C. M. Foale, S. H. Magnus, W. S. McArthur, D. M. Tani, P. A. Whitson, J. N. Williams, W. V. Meyer, R. J. Sicker, B. J. Au, M. Christiansen, A. B. Schofield, D. A. Weitz, “Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space Station,” J. Real-Time Image Process. 5(3), 179–193 (2010).
[CrossRef]

A. E. Bailey, W. C. K. Poon, R. J. Christianson, A. B. Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L. Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta, T. Lorik, P. N. Pusey, D. A. Weitz, “Spinodal decomposition in a model colloid-polymer mixture in microgravity,” Phys. Rev. Lett. 99(20), 205701 (2007).
[CrossRef] [PubMed]

Moran, S. E.

M. E. Helgeson, S. E. Moran, H. Z. An, P. S. Doyle, “Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions,” Nat. Mater. 11(4), 344–352 (2012).
[CrossRef] [PubMed]

Nair, D.

Oki, H.

P. J. Lu, H. Oki, C. A. Frey, G. E. Chamitoff, L. Chiao, E. M. Fincke, C. M. Foale, S. H. Magnus, W. S. McArthur, D. M. Tani, P. A. Whitson, J. N. Williams, W. V. Meyer, R. J. Sicker, B. J. Au, M. Christiansen, A. B. Schofield, D. A. Weitz, “Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space Station,” J. Real-Time Image Process. 5(3), 179–193 (2010).
[CrossRef]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Peirtsegaele, E.

J. Kim, Y. Gao, C. Hebebrand, E. Peirtsegaele, M. E. Helgeson, “Polymer-surfactant complexation as a generic route to responsive viscoelastic nanoemulsions,” Soft Matter 9(29), 6897–6910 (2013).
[CrossRef]

Perrot, F.

P. Guenoun, R. Gastaud, F. Perrot, D. Beysens, “Spinodal decomposition patterns in an isodensity critical binary fluid: Direct-visualization and light-scattering analyses,” Phys. Rev. A 36(10), 4876–4890 (1987).
[CrossRef] [PubMed]

Poon, W. C. K.

A. E. Bailey, W. C. K. Poon, R. J. Christianson, A. B. Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L. Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta, T. Lorik, P. N. Pusey, D. A. Weitz, “Spinodal decomposition in a model colloid-polymer mixture in microgravity,” Phys. Rev. Lett. 99(20), 205701 (2007).
[CrossRef] [PubMed]

Prasad, V.

A. E. Bailey, W. C. K. Poon, R. J. Christianson, A. B. Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L. Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta, T. Lorik, P. N. Pusey, D. A. Weitz, “Spinodal decomposition in a model colloid-polymer mixture in microgravity,” Phys. Rev. Lett. 99(20), 205701 (2007).
[CrossRef] [PubMed]

Pusey, P. N.

A. E. Bailey, W. C. K. Poon, R. J. Christianson, A. B. Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L. Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta, T. Lorik, P. N. Pusey, D. A. Weitz, “Spinodal decomposition in a model colloid-polymer mixture in microgravity,” Phys. Rev. Lett. 99(20), 205701 (2007).
[CrossRef] [PubMed]

U. Gasser, E. R. Weeks, A. Schofield, P. N. Pusey, D. A. Weitz, “Real-space imaging of nucleation and growth in colloidal crystallization,” Science 292(5515), 258–262 (2001).
[CrossRef] [PubMed]

Racine, V.

Rasband, W. S.

C. A. Schneider, W. S. Rasband, K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[CrossRef] [PubMed]

Rigneault, H.

A. Sergé, N. Bertaux, H. Rigneault, D. Marguet, “Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes,” Nat. Methods 5(8), 687–694 (2008).
[CrossRef] [PubMed]

Rust, M. J.

M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

Sankaran, S.

A. E. Bailey, W. C. K. Poon, R. J. Christianson, A. B. Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L. Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta, T. Lorik, P. N. Pusey, D. A. Weitz, “Spinodal decomposition in a model colloid-polymer mixture in microgravity,” Phys. Rev. Lett. 99(20), 205701 (2007).
[CrossRef] [PubMed]

Scherff, J. H.

V. W. A. de Villeneuve, R. P. A. Dullens, D. G. A. L. Aarts, E. Groeneveld, J. H. Scherff, W. K. Kegel, H. N. W. Lekkerkerker, “Colloidal hard-sphere crystal growth frustrated by large spherical impurities,” Science 309(5738), 1231–1233 (2005).
[CrossRef] [PubMed]

Schmid, S. L.

K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid, G. Danuser, “Robust single-particle tracking in live-cell time-lapse sequences,” Nat. Methods 5(8), 695–702 (2008).
[CrossRef] [PubMed]

Schneider, C. A.

C. A. Schneider, W. S. Rasband, K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[CrossRef] [PubMed]

Schofield, A.

U. Gasser, E. R. Weeks, A. Schofield, P. N. Pusey, D. A. Weitz, “Real-space imaging of nucleation and growth in colloidal crystallization,” Science 292(5515), 258–262 (2001).
[CrossRef] [PubMed]

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287(5453), 627–631 (2000).
[CrossRef] [PubMed]

Schofield, A. B.

P. J. Lu, H. Oki, C. A. Frey, G. E. Chamitoff, L. Chiao, E. M. Fincke, C. M. Foale, S. H. Magnus, W. S. McArthur, D. M. Tani, P. A. Whitson, J. N. Williams, W. V. Meyer, R. J. Sicker, B. J. Au, M. Christiansen, A. B. Schofield, D. A. Weitz, “Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space Station,” J. Real-Time Image Process. 5(3), 179–193 (2010).
[CrossRef]

A. E. Bailey, W. C. K. Poon, R. J. Christianson, A. B. Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L. Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta, T. Lorik, P. N. Pusey, D. A. Weitz, “Spinodal decomposition in a model colloid-polymer mixture in microgravity,” Phys. Rev. Lett. 99(20), 205701 (2007).
[CrossRef] [PubMed]

Schurtenberger, P.

T. Gibaud, P. Schurtenberger, “A closer look at arrested spinodal decomposition in protein solutions,” J. Phys. Condens. Matter 21(32), 322201 (2009).
[CrossRef] [PubMed]

Segre, P. N.

A. E. Bailey, W. C. K. Poon, R. J. Christianson, A. B. Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L. Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta, T. Lorik, P. N. Pusey, D. A. Weitz, “Spinodal decomposition in a model colloid-polymer mixture in microgravity,” Phys. Rev. Lett. 99(20), 205701 (2007).
[CrossRef] [PubMed]

Sergé, A.

A. Sergé, N. Bertaux, H. Rigneault, D. Marguet, “Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes,” Nat. Methods 5(8), 687–694 (2008).
[CrossRef] [PubMed]

Shanmugam, K.

R. M. Haralick, K. Shanmugam, I. Dinstein, “Textural features for imaging classification,” IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973).
[CrossRef]

Shiley, W. L.

A. E. Bailey, W. C. K. Poon, R. J. Christianson, A. B. Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L. Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta, T. Lorik, P. N. Pusey, D. A. Weitz, “Spinodal decomposition in a model colloid-polymer mixture in microgravity,” Phys. Rev. Lett. 99(20), 205701 (2007).
[CrossRef] [PubMed]

Shuang, B.

B. Shuang, J. Chen, L. Kisley, C. F. Landes, “Troika of single particle tracking programing: SNR enhancement, particle identification, and mapping,” Phys. Chem. Chem. Phys. 16(2), 624–634 (2013).
[CrossRef] [PubMed]

Sibarita, J. B.

Sicker, R. J.

P. J. Lu, H. Oki, C. A. Frey, G. E. Chamitoff, L. Chiao, E. M. Fincke, C. M. Foale, S. H. Magnus, W. S. McArthur, D. M. Tani, P. A. Whitson, J. N. Williams, W. V. Meyer, R. J. Sicker, B. J. Au, M. Christiansen, A. B. Schofield, D. A. Weitz, “Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space Station,” J. Real-Time Image Process. 5(3), 179–193 (2010).
[CrossRef]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Specht, C. G.

Sviridov, A. P.

A. P. Sviridov, Z. Ulissi, V. Chernomordik, M. Hassan, A. H. Gandjbakhche, “Visualization of biological texture using correlation coefficient images,” J. Biomed. Opt. 11(6), 060504 (2006).
[CrossRef] [PubMed]

Tani, D. M.

P. J. Lu, H. Oki, C. A. Frey, G. E. Chamitoff, L. Chiao, E. M. Fincke, C. M. Foale, S. H. Magnus, W. S. McArthur, D. M. Tani, P. A. Whitson, J. N. Williams, W. V. Meyer, R. J. Sicker, B. J. Au, M. Christiansen, A. B. Schofield, D. A. Weitz, “Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space Station,” J. Real-Time Image Process. 5(3), 179–193 (2010).
[CrossRef]

Triller, A.

Ulissi, Z.

A. P. Sviridov, Z. Ulissi, V. Chernomordik, M. Hassan, A. H. Gandjbakhche, “Visualization of biological texture using correlation coefficient images,” J. Biomed. Opt. 11(6), 060504 (2006).
[CrossRef] [PubMed]

Valentine, M. T.

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, D. A. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85(4), 888–891 (2000).
[CrossRef] [PubMed]

van Blaaderen, A.

A. Kuijk, A. van Blaaderen, A. Imhof, “Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio,” J. Am. Chem. Soc. 133(8), 2346–2349 (2011).
[CrossRef] [PubMed]

van Duijneveldt, J. S.

N. A. M. Verhaegh, J. S. van Duijneveldt, J. K. G. Dhont, H. N. W. Lekkerkerker, “Fluid-fluid phase separation in colloid-polymer mixtures studied with small angle light scattering and light microscopy,” Physica A 230(3-4), 409–436 (1996).
[CrossRef]

Verhaegh, N. A. M.

N. A. M. Verhaegh, J. S. van Duijneveldt, J. K. G. Dhont, H. N. W. Lekkerkerker, “Fluid-fluid phase separation in colloid-polymer mixtures studied with small angle light scattering and light microscopy,” Physica A 230(3-4), 409–436 (1996).
[CrossRef]

Waters, J. C.

J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol. 185(7), 1135–1148 (2009).
[CrossRef] [PubMed]

Weeks, E. R.

U. Gasser, E. R. Weeks, A. Schofield, P. N. Pusey, D. A. Weitz, “Real-space imaging of nucleation and growth in colloidal crystallization,” Science 292(5515), 258–262 (2001).
[CrossRef] [PubMed]

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, D. A. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85(4), 888–891 (2000).
[CrossRef] [PubMed]

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287(5453), 627–631 (2000).
[CrossRef] [PubMed]

Weitz, D. A.

P. J. Lu, H. Oki, C. A. Frey, G. E. Chamitoff, L. Chiao, E. M. Fincke, C. M. Foale, S. H. Magnus, W. S. McArthur, D. M. Tani, P. A. Whitson, J. N. Williams, W. V. Meyer, R. J. Sicker, B. J. Au, M. Christiansen, A. B. Schofield, D. A. Weitz, “Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space Station,” J. Real-Time Image Process. 5(3), 179–193 (2010).
[CrossRef]

A. E. Bailey, W. C. K. Poon, R. J. Christianson, A. B. Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L. Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta, T. Lorik, P. N. Pusey, D. A. Weitz, “Spinodal decomposition in a model colloid-polymer mixture in microgravity,” Phys. Rev. Lett. 99(20), 205701 (2007).
[CrossRef] [PubMed]

U. Gasser, E. R. Weeks, A. Schofield, P. N. Pusey, D. A. Weitz, “Real-space imaging of nucleation and growth in colloidal crystallization,” Science 292(5515), 258–262 (2001).
[CrossRef] [PubMed]

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287(5453), 627–631 (2000).
[CrossRef] [PubMed]

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, D. A. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85(4), 888–891 (2000).
[CrossRef] [PubMed]

Whitson, P. A.

P. J. Lu, H. Oki, C. A. Frey, G. E. Chamitoff, L. Chiao, E. M. Fincke, C. M. Foale, S. H. Magnus, W. S. McArthur, D. M. Tani, P. A. Whitson, J. N. Williams, W. V. Meyer, R. J. Sicker, B. J. Au, M. Christiansen, A. B. Schofield, D. A. Weitz, “Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space Station,” J. Real-Time Image Process. 5(3), 179–193 (2010).
[CrossRef]

Williams, J. N.

P. J. Lu, H. Oki, C. A. Frey, G. E. Chamitoff, L. Chiao, E. M. Fincke, C. M. Foale, S. H. Magnus, W. S. McArthur, D. M. Tani, P. A. Whitson, J. N. Williams, W. V. Meyer, R. J. Sicker, B. J. Au, M. Christiansen, A. B. Schofield, D. A. Weitz, “Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space Station,” J. Real-Time Image Process. 5(3), 179–193 (2010).
[CrossRef]

Wurm, C. A.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[CrossRef] [PubMed]

Yodh, A. G.

A. M. Alsayed, M. F. Islam, J. Zhang, P. J. Collings, A. G. Yodh, “Premelting at defects within bulk colloidal crystals,” Science 309(5738), 1207–1210 (2005).
[CrossRef] [PubMed]

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, D. A. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85(4), 888–891 (2000).
[CrossRef] [PubMed]

Yova, D.

V. Atlamazoglou, D. Yova, N. Kavantzas, S. Loukas, “Texture analysis of fluorescence microscopic images of colonic tissue sections,” Med. Biol. Eng. Comput. 39(2), 145–151 (2001).
[CrossRef] [PubMed]

Zhang, J.

A. M. Alsayed, M. F. Islam, J. Zhang, P. J. Collings, A. G. Yodh, “Premelting at defects within bulk colloidal crystals,” Science 309(5738), 1207–1210 (2005).
[CrossRef] [PubMed]

Zhuang, X.

M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

Adv. Colloid Interface Sci. (1)

M. C. Jenkins, S. U. Egelhaaf, “Confocal microscopy of colloidal particles: towards reliable, optimum coordinates,” Adv. Colloid Interface Sci. 136(1-2), 65–92 (2008).
[CrossRef] [PubMed]

Biophys. J. (1)

S. T. Hess, T. P. K. Girirajan, M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

IEEE Trans. Syst. Man Cybern. (1)

R. M. Haralick, K. Shanmugam, I. Dinstein, “Textural features for imaging classification,” IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973).
[CrossRef]

J. Am. Chem. Soc. (1)

A. Kuijk, A. van Blaaderen, A. Imhof, “Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio,” J. Am. Chem. Soc. 133(8), 2346–2349 (2011).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

A. P. Sviridov, Z. Ulissi, V. Chernomordik, M. Hassan, A. H. Gandjbakhche, “Visualization of biological texture using correlation coefficient images,” J. Biomed. Opt. 11(6), 060504 (2006).
[CrossRef] [PubMed]

J. Cell Biol. (1)

J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol. 185(7), 1135–1148 (2009).
[CrossRef] [PubMed]

J. Colloid Interface Sci. (1)

J. C. Crocker, D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996).
[CrossRef]

J. Phys. Chem. (1)

W. M. Gelbart, A. Ben-Shaul, “The ‘new’ science of ‘complex fluids’,” J. Phys. Chem. 100(31), 13169–13189 (1996).
[CrossRef]

J. Phys. Condens. Matter (2)

E. A. G. Jamie, R. P. A. Dullens, D. G. A. L. Aarts, “Tuning the demixing of colloid-polymer systems through the dispersing solvent,” J. Phys. Condens. Matter 23(19), 194115 (2011).
[CrossRef] [PubMed]

T. Gibaud, P. Schurtenberger, “A closer look at arrested spinodal decomposition in protein solutions,” J. Phys. Condens. Matter 21(32), 322201 (2009).
[CrossRef] [PubMed]

J. Real-Time Image Process. (1)

P. J. Lu, H. Oki, C. A. Frey, G. E. Chamitoff, L. Chiao, E. M. Fincke, C. M. Foale, S. H. Magnus, W. S. McArthur, D. M. Tani, P. A. Whitson, J. N. Williams, W. V. Meyer, R. J. Sicker, B. J. Au, M. Christiansen, A. B. Schofield, D. A. Weitz, “Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space Station,” J. Real-Time Image Process. 5(3), 179–193 (2010).
[CrossRef]

Med. Biol. Eng. Comput. (1)

V. Atlamazoglou, D. Yova, N. Kavantzas, S. Loukas, “Texture analysis of fluorescence microscopic images of colonic tissue sections,” Med. Biol. Eng. Comput. 39(2), 145–151 (2001).
[CrossRef] [PubMed]

Nat. Mater. (1)

M. E. Helgeson, S. E. Moran, H. Z. An, P. S. Doyle, “Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions,” Nat. Mater. 11(4), 344–352 (2012).
[CrossRef] [PubMed]

Nat. Methods (5)

C. A. Schneider, W. S. Rasband, K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[CrossRef] [PubMed]

K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid, G. Danuser, “Robust single-particle tracking in live-cell time-lapse sequences,” Nat. Methods 5(8), 695–702 (2008).
[CrossRef] [PubMed]

A. Sergé, N. Bertaux, H. Rigneault, D. Marguet, “Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes,” Nat. Methods 5(8), 687–694 (2008).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[CrossRef] [PubMed]

New J. Phys. (1)

D. G. A. L. Aarts, R. P. A. Dullens, H. N. W. Lekkerkerker, “Interfacial dynamics in demixing systems with ultralow interfacial tension,” New J. Phys. 7, 40 (2005).
[CrossRef]

Opt. Express (2)

Phys. Chem. Chem. Phys. (1)

B. Shuang, J. Chen, L. Kisley, C. F. Landes, “Troika of single particle tracking programing: SNR enhancement, particle identification, and mapping,” Phys. Chem. Chem. Phys. 16(2), 624–634 (2013).
[CrossRef] [PubMed]

Phys. Rev. A (1)

P. Guenoun, R. Gastaud, F. Perrot, D. Beysens, “Spinodal decomposition patterns in an isodensity critical binary fluid: Direct-visualization and light-scattering analyses,” Phys. Rev. A 36(10), 4876–4890 (1987).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, D. A. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85(4), 888–891 (2000).
[CrossRef] [PubMed]

G. Marty, O. Dauchot, “Subdiffusion and cage effect in a sheared granular material,” Phys. Rev. Lett. 94(1), 015701 (2005).
[CrossRef] [PubMed]

A. E. Bailey, W. C. K. Poon, R. J. Christianson, A. B. Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L. Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L. Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta, T. Lorik, P. N. Pusey, D. A. Weitz, “Spinodal decomposition in a model colloid-polymer mixture in microgravity,” Phys. Rev. Lett. 99(20), 205701 (2007).
[CrossRef] [PubMed]

Physica A (1)

N. A. M. Verhaegh, J. S. van Duijneveldt, J. K. G. Dhont, H. N. W. Lekkerkerker, “Fluid-fluid phase separation in colloid-polymer mixtures studied with small angle light scattering and light microscopy,” Physica A 230(3-4), 409–436 (1996).
[CrossRef]

Science (5)

U. Gasser, E. R. Weeks, A. Schofield, P. N. Pusey, D. A. Weitz, “Real-space imaging of nucleation and growth in colloidal crystallization,” Science 292(5515), 258–262 (2001).
[CrossRef] [PubMed]

A. M. Alsayed, M. F. Islam, J. Zhang, P. J. Collings, A. G. Yodh, “Premelting at defects within bulk colloidal crystals,” Science 309(5738), 1207–1210 (2005).
[CrossRef] [PubMed]

V. W. A. de Villeneuve, R. P. A. Dullens, D. G. A. L. Aarts, E. Groeneveld, J. H. Scherff, W. K. Kegel, H. N. W. Lekkerkerker, “Colloidal hard-sphere crystal growth frustrated by large spherical impurities,” Science 309(5738), 1231–1233 (2005).
[CrossRef] [PubMed]

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287(5453), 627–631 (2000).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Soft Matter (1)

J. Kim, Y. Gao, C. Hebebrand, E. Peirtsegaele, M. E. Helgeson, “Polymer-surfactant complexation as a generic route to responsive viscoelastic nanoemulsions,” Soft Matter 9(29), 6897–6910 (2013).
[CrossRef]

Other (5)

http://www.physics.emory.edu/~weeks/idl/tracking.html

B. D’aguanno, R. Klein, J. M. Mendez-Alcaraz, and G. Nagele, “Polydisperse complex fluids,” Lecture Notes in Physics 415, 149–176 (1993).

D. B. Murphy, Fundamentals of light microscopy and electronic imaging (John Willey & Sons, Inc., 2001).

P. Sebbah, ed., Waves and imaging through complex media (Kluwer, 2001).

C. J. R. Sheppard, X. Gan, M. Gu, and M. Roy, “Signal-to-noise in confocal microscope” in Handbook of Biological Confocal Microscopy, 2nd ed., J. B. Pawley, eds. (Plenum, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) Low-contrast bright-field image of a fluid undergoing phase separation. (b) Inverted confocal image of a layer of colloidal rods sitting on a coverslip with uneven illumination. (c) Optical image of a 2D colloidal crystal with uneven illumination and bright optical artefacts at defects. (d) Optical image of a concentrated colloidal system with binary size distribution.

Fig. 2
Fig. 2

Texture analysis and optimization. (a) Representative bright-field optical image of a colloidal fluid undergoing spinodal phase separation. Inset shows a Gaussian template matrix, G(w,wg). (b) Correlation coefficient map for the original image constructed based on the template matrix in (a). (c) We identify the local maxima of correlation coefficients (blue dots) using the Crocker and Grier centroid localization algorithms. (d) Template matrixes of various sizes and edge sharpness used to construct correlation coefficient map. (e) The average values of local maxima in correlation coefficient maps constructed based on the templates in (d).

Fig. 3
Fig. 3

Texture analysis applied to fluids of disks, ϕ = 0.01 and 0.5, generated through MD simulation. (a) Rendered image with a Gaussian-like intensity profile of w = 10 and wg = 6; ϕ = 0.01. (b) Image of (a) with a Gaussian background noise. (c) Correlation coefficient map with the optimum template of w = 10 and wg = 6. (d) Remove artefacts from (c) by assigning correlation coefficient value below 0 to 0. (e) Radially averaged Fourier Transforms of (a)-(d), which correspond to red, black, blue and orange, respectively. (f) Same as (e), but applied to ϕ = 0.5.

Fig. 4
Fig. 4

Texture analysis applied to a colloid-polymer mixture. (a) Original time series of images (left column) and corresponding textural maps of the system undergoing spinodal decomposition (right column). (b) Structure functions constructed based on FFT of original images (left) and correlation maps (right). (c) Comparison of characteristic length scales extracted from TAM and regular FFT. Inset shows the ratio (R) of length scales extracted from textural analysis to those from original images as a function of time. Solid line is the average ratio, which is approximately 0.9.

Fig. 5
Fig. 5

Texture analysis applied to a nanoemulsion under spinodal decomposition. (a) Bright-field optical image. (b) Correlation coefficient map with the optimum template of w = 11and wg = 7. (c) Remove possible artefacts by assigning correlation coefficient value below −0.6 to −0.6. (d) Remove possible artefacts by assigning correlation coefficient value below 0.2 to 0.2. (e) Radially averaged Fourier transforms.

Fig. 6
Fig. 6

Effect of image size. (a) Full size; scalebar represents 50 μm. (b) Half size. (c) A quarter of full size. (d) 1/16 of full size. (e) Radially averaged Fourier transforms of (a)-(d).

Fig. 7
Fig. 7

Effect of pixel size. (a) Raw images (left) and corresponding textural analysis (right). From top to bottom, the pixel size is 0.1612, 0.3224, 0.6448, and 1.2896 μm. Scalebar represents 20 μm. For visualization purpose, only a quarter of the images are shown. (b) Power spectrum of Fourier transforms of textural maps in (a).

Fig. 8
Fig. 8

Textural analysis applied to anisotropic rod-shape features. (a) Inverted fluorescence confocal image of a layer of colloidal rods. Scale bar represents 10 μm. (b) Corresponding textural analysis. Insets are the Fourier transforms. Two bands (or ranges) over which we perform an azimuthal average are highlighted by yellow and green dashed lines. (c) Radially averaged Fourier transforms. (d) Azimuthally averaged Fourier transforms. For visualization purpose, the yellow curves are shifted upwards by 0.8.

Fig. 9
Fig. 9

Centroid localization in noisy images using the TAM and C-G algorithms. First column: original simulated images at various signal-to-noise ratios. Second column: correlation maps from TAM. Third column: cleaned correlation maps by removing pixels with correlation coefficient lower than the mean of all positive values. Fourth column: the bandpassed images after convolving the cleaned images in the third column with the kernel described by Eq. (4) in [7] for further removing noise and background. Fifth column: the bandpassed images after convolving the original images with the kernel described by Eq. (4) in [7], i.e., as in the traditionally used in C-G algorithm. Sixth column: overlay of centroid identified by TAM (red dots) and C-G (blue circles) on top of the uncorrupted images for performance comparison. For visualization purpose, only one quarter of the simulated images are shown. SNR of 5, 1 and 0.6 correspond to SNRdB of 14, 0 and −4.4.

Fig. 10
Fig. 10

Fidelity of centroid localization in simulated images of various signal-to-noise ratios. (a) The fraction of false detections as a function of signal-to-noise ratio. (b) Comparing detection accuracy as a function of signal-to-noise ratio between TAM and the C-G algorithm. Dotted lines designate the SNR below which the C-G algorithm fails.

Fig. 11
Fig. 11

Comparing localization performance between TAM and the C-G algorithm applied to a 2D colloidal crystal. (a) Difference in detections between the C-G algorithm and TAM relative to TAM when adjusting in small steps the cutoff values of Iint, Rg and e to remove spurious features. Dotted line indicates where the C-G algorithm reaches its best agreement with TAM. (b)-(d) show the results of the C-G algorithm for this point. (b) Radial distribution functions calculated from particle coordinates obtained from TAM, the C-G algorithm and TAM with added random noise (see text for details). Different detections between the two algorithms are highlighted as large red circles overlaid on top of the raw image, with (c) false positives and (d) false negatives. The results of TAM are shown as small black circles. For visualization purpose, only a small fraction of the original image is shown.

Fig. 12
Fig. 12

TAM and ImageJ analysis applied to computer simulated images of a binary colloidal system to extract size distribution. (a)-(d): computer generated images at decreased level of SNRs. Features identified from the two methods are overlaid on top of the original images, red dots for TAM and blue circles for ImageJ. Arrows indicate where ImageJ have false identifications. (e)-(f): Particle size distributions extracted by TAM and ImageJ, respectively.

Fig. 13
Fig. 13

Comparison of TAM and ImageJ for particle sizing in an optical image of a binary colloidal system. (a) Green and red circles indicate the sizes of w and wg for large particles, while purple and blue ones represent those of small particles. Feature centroids extracted from ImageJ are overlaid for comparison as yellow dots. Green arrows indicate false identifications from ImageJ. (b) The distribution of feature size extracted based on TAM (red bars) and ImageJ (yellow bars).

Fig. 14
Fig. 14

TAM and ImageJ are applied to extract size distribution of features in a low-fidelity optical image in which features are not well defined. (a) Results from TAM are overlaid on top of the raw image, with green circles indicating the size of w and red ones indicating wg. Results from ImageJ are overlaid as yellow circles. (b) The probability distribution of w and wg are compared to the size distribution extracted from ImageJ.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ρ( x,y,w, w g )=corr[ B( x,y,w ),G( w, w g ) ]= i=1 2w+1 j=1 2w+1 ( B i,j B ¯ )( G i,j G ¯ ) ( 2w+1 ) 2 σ B σ G
w ¯ =w ρ ¯ ( w, w g ) w =0 and 2 ρ ¯ ( w, w g ) w 2 <0 w ¯ g = w g ρ ¯ ( w, w g ) w g =0 and 2 ρ ¯ ( w, w g ) w g 2 <0
I( x,y )= I max exp[ x 2 + y 2 2 w g 2 ]+ I B + I noise

Metrics