X. M. Pan, X. Q. Sheng, “Improved algebraic
preconditioning for mom solutions of large-scale electromagnetic problems,” IEEE Antennas Wireless Propag. Lett. 13, 106–109 (2014).

[CrossRef]

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,”
Nature Nanotech. 8, 807–819 (2013).

[CrossRef]

H. Shpaisman, D. B. Ruffner, D. G. Grier, “Light-driven three-dimensional rotational motion of dandelion-shaped microparticles,” Appl. Phys. Lett. 102, 071103 (2013).

[CrossRef]

X. M. Pan, X. Q. Sheng, “Hierarchical interpolative
decomposition multilevel fast multipole algorithm for dynamic electromagnetic simulations,” Progr. Electromagn. Res. 134, 79–94 (2013).

[CrossRef]

X. M. Pan, X. Q. Sheng, “Preconditioning technique in
the interpolative decomposition multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 61, 3373–3377 (2013).

[CrossRef]

B.-Y. Wu, X. Q. Sheng, “Application of asymptotic
waveform evaluation to hybrid FE-BI-MLFMA for fast RCS computation over a frequency band,” IEEE Trans. Antennas Propag. 61, 2597–2604 (2013).

[CrossRef]

L. Bi, P. Yang, “Modeling of light scattering by
biconcave and deformed red blood cells with the invariant imbedding T-matrix method,” J. Bio. Opt. 18, 055001 (2013).

[CrossRef]

M. L. Yang, K. F. Ren, M. J. Gou, X. Q. Sheng, “Computation of radiation pressure force on arbitrary shaped homogenous particles by multilevel fast multipole algorithm,”
Opt. Lett. 38, 1784–1786 (2013).

[CrossRef]
[PubMed]

C.-F. Kuo, S.-C. Chu, “Numerical study of the properties
of optical vortex array laser tweezers,” Opt. Express 21, 26418–26431 (2013).

[CrossRef]
[PubMed]

M. G. Araujo, J. M. Taboada, D. M. Solis, J. Rivero, L. Landesa, F. Obelleiro, “Comparison of
surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers,” Opt. Express 20, 9161–9171 (2012).

[CrossRef]
[PubMed]

L. Landesa, M. G. Araujo, J. M. Taboada, L. Bote, F. Obelleiro, “Improving condition number and convergence of the surface integral-equation method of
moments for penetrable bodies,” Opt. Express 20, 17237–17249 (2012).

[CrossRef]

A. Schroder, H. D. Bruxns, C. Schuster, “A hybrid approach for rapid computation of two-dimensional monostatic radar cross section problems with the multilevel fast multipole
algorithm,” IEEE Trans. Antennas Propag. 60, 6058–6061 (2012).

[CrossRef]

X. M. Pan, W. Pi, M. L. Yang, Z. Peng, X. Q. Sheng, “Solving problems with over one billion unknowns by the mlfma,”
IEEE Trans. Antennas Propag. 60, 2571–2574 (2012).

[CrossRef]

X. M. Pan, J. G. Wei, Z. Peng, X. Q. Sheng, “A fast algorithm for multiscale electromagnetic problems using interpolative
decomposition and multilevel fast multipole algorithm,” Radio Sci. 47, RS1011 (2012).

[CrossRef]

K. L. Ho, L. Greengard, “A fast direct solver for
structured linear systems by recursive skeletonization,” SIAM J. Sci. Comput. 34, A2507–A2532 (2012).

[CrossRef]

N. Halko, P. G. Martinsson, J. A. Tropp, “Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions,” SIAM Rev. 53, 72 (2011).

[CrossRef]

S. H. Simpson, S. Hanna, “Computational study of the
optical trapping of ellipsoidal particles,” Phys. Rev. A 84, 053808 (2011).

[CrossRef]

O. Ergul, A. Arslan-Ergul, L. Gurel, “Computational study of scattering from
healthy and diseased red blood cells,” J. Bio. Opt. 15, 045004(2010).

[CrossRef]

X. Wang, D. H. Werner, “Improved model-based parameter
estimation approach for accelerated periodic method of moments solutions with application to the analysis of convoluted frequency selected surfaces and metamaterials,” IEEE Trans. Antennas Propag. 58, 122–131 (2010).

[CrossRef]

P. Zhen, M. B. Stephanson, J. F. Lee, “Fast computation of angular responses of large-scale three-dimensional electromagnetic wave scattering,” IEEE Trans. Antennas Propag. 58, 3004–3012 (2010).

[CrossRef]

O. Ergul, L. Gurel, “Comparison of integral-equation
formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).

[CrossRef]

P. D. Ledger, K. Morgan, “An adjoint enhanced
reduced-order model for monostatic RCS computation,” Electromagnetics 28, 54–76 (2008).

[CrossRef]

E. Liberty, F. Woolfe, P. G. Martinsson, V. Rokhlin, M. Tygert, “Randomized algorithms for the low-rank approximation of
matrices,” Proc. Natl. Acad. Sci. USA 104, 20167–20172 (2007).

[CrossRef]
[PubMed]

F. Borghese, P. Denti, R. Saija, A. l. Maria, “Optical trapping of nonspherical particles in the t-matrix formalism,” Opt. Express 15, 11984–11998 (2007).

[CrossRef]
[PubMed]

F. Xu, K.-F. Ren, G. Gouesbet, X.-S. Cai, G. Grehan,
“Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).

[CrossRef]

P. Yla-Oijala, M. Taskinen, S. Jarvenpaa, “Surface integral equation
formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci. 40, RS6002 (2005).

[CrossRef]

J. Q. Lu, P. Yang, X.-H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference
time-domain method,” J. Bio. Opt. 10, 024022 (2005).

[CrossRef]

K. C. Neuman, S. M. Block, “Optical
trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).

[CrossRef]

M. I. Mishchenko, “Radiation force caused by scattering, absorption, and emission of light by nonspherical
particles,” J. Quant. Spectrosc. Radiat. Transfer 70, 811–816 (2001).

[CrossRef]

X. Q. Sheng, J. M. Jin, J. Song, W. C. Chew, C. C. Lu, “Solution of
combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

B. T. Draine, P. J. Flatau, “Discrete-dipole
approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).

[CrossRef]

K. F. Ren, G. Greha, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a gaussian beam by
using the generalized lorenz-mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).

[CrossRef]

R. Coifman, V. Rokhlin, S. Wandzura, “The fast multipole method for the wave
equation: a pedestrian prescription,” IEEE Antennas Propag. Mag. 35, 7–12 (1993).

[CrossRef]

T. C. B. Schut, G. Hesselink, B. G. De Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical
traps,” Cytometry 12, 479–485 (1991).

[CrossRef]
[PubMed]

J. P. Barton, D. R. Alexander, “Fifth-order corrected
electromagnetic field components for a fundamental gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).

[CrossRef]

A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330, 769–771 (1987).

[CrossRef]
[PubMed]

J. S. Kim, S. S. Lee, “Radiation pressure on a
dielectric sphere in a gaussian laser beam,” Opt. Acta 29, 801–806 (1982).

[CrossRef]

S. M. Rao, D. R. Wilton, A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).

[CrossRef]

G. Roosen, C. Imbert, “Optical levitation by means of
two horizontal laser beams: A theoretical and experimental study,” Phys. Lett. A 59, 6–8 (1976).

[CrossRef]

J. P. Barton, D. R. Alexander, “Fifth-order corrected
electromagnetic field components for a fundamental gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).

[CrossRef]

L. Landesa, M. G. Araujo, J. M. Taboada, L. Bote, F. Obelleiro, “Improving condition number and convergence of the surface integral-equation method of
moments for penetrable bodies,” Opt. Express 20, 17237–17249 (2012).

[CrossRef]

M. G. Araujo, J. M. Taboada, D. M. Solis, J. Rivero, L. Landesa, F. Obelleiro, “Comparison of
surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers,” Opt. Express 20, 9161–9171 (2012).

[CrossRef]
[PubMed]

O. Ergul, A. Arslan-Ergul, L. Gurel, “Computational study of scattering from
healthy and diseased red blood cells,” J. Bio. Opt. 15, 045004(2010).

[CrossRef]

A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330, 769–771 (1987).

[CrossRef]
[PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).

[CrossRef]
[PubMed]

J. P. Barton, D. R. Alexander, “Fifth-order corrected
electromagnetic field components for a fundamental gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).

[CrossRef]

L. Bi, P. Yang, “Modeling of light scattering by
biconcave and deformed red blood cells with the invariant imbedding T-matrix method,” J. Bio. Opt. 18, 055001 (2013).

[CrossRef]

K. C. Neuman, S. M. Block, “Optical
trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).

[CrossRef]

A. Schroder, H. D. Bruxns, C. Schuster, “A hybrid approach for rapid computation of two-dimensional monostatic radar cross section problems with the multilevel fast multipole
algorithm,” IEEE Trans. Antennas Propag. 60, 6058–6061 (2012).

[CrossRef]

F. Xu, K.-F. Ren, G. Gouesbet, X.-S. Cai, G. Grehan,
“Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).

[CrossRef]

X. Q. Sheng, J. M. Jin, J. Song, W. C. Chew, C. C. Lu, “Solution of
combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

R. Coifman, V. Rokhlin, S. Wandzura, “The fast multipole method for the wave
equation: a pedestrian prescription,” IEEE Antennas Propag. Mag. 35, 7–12 (1993).

[CrossRef]

T. C. B. Schut, G. Hesselink, B. G. De Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical
traps,” Cytometry 12, 479–485 (1991).

[CrossRef]
[PubMed]

A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330, 769–771 (1987).

[CrossRef]
[PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).

[CrossRef]
[PubMed]

O. Ergul, A. Arslan-Ergul, L. Gurel, “Computational study of scattering from
healthy and diseased red blood cells,” J. Bio. Opt. 15, 045004(2010).

[CrossRef]

O. Ergul, L. Gurel, “Comparison of integral-equation
formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).

[CrossRef]

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,”
Nature Nanotech. 8, 807–819 (2013).

[CrossRef]

S. M. Rao, D. R. Wilton, A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).

[CrossRef]

F. Xu, K.-F. Ren, G. Gouesbet, X.-S. Cai, G. Grehan,
“Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).

[CrossRef]

K. F. Ren, G. Grehan, G. Gouesbet, “Prediction of reverse radiation pressure by generalized lorenz-mie
theory,” Appl. Opt. 35, 2702–2710 (1996).

[CrossRef]
[PubMed]

K. F. Ren, G. Greha, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a gaussian beam by
using the generalized lorenz-mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).

[CrossRef]

K. L. Ho, L. Greengard, “A fast direct solver for
structured linear systems by recursive skeletonization,” SIAM J. Sci. Comput. 34, A2507–A2532 (2012).

[CrossRef]

K. F. Ren, G. Greha, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a gaussian beam by
using the generalized lorenz-mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).

[CrossRef]

F. Xu, K.-F. Ren, G. Gouesbet, X.-S. Cai, G. Grehan,
“Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).

[CrossRef]

K. F. Ren, G. Grehan, G. Gouesbet, “Prediction of reverse radiation pressure by generalized lorenz-mie
theory,” Appl. Opt. 35, 2702–2710 (1996).

[CrossRef]
[PubMed]

T. C. B. Schut, G. Hesselink, B. G. De Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical
traps,” Cytometry 12, 479–485 (1991).

[CrossRef]
[PubMed]

H. Shpaisman, D. B. Ruffner, D. G. Grier, “Light-driven three-dimensional rotational motion of dandelion-shaped microparticles,” Appl. Phys. Lett. 102, 071103 (2013).

[CrossRef]

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,”
Nature Nanotech. 8, 807–819 (2013).

[CrossRef]

O. Ergul, A. Arslan-Ergul, L. Gurel, “Computational study of scattering from
healthy and diseased red blood cells,” J. Bio. Opt. 15, 045004(2010).

[CrossRef]

O. Ergul, L. Gurel, “Comparison of integral-equation
formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).

[CrossRef]

N. Halko, P. G. Martinsson, J. A. Tropp, “Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions,” SIAM Rev. 53, 72 (2011).

[CrossRef]

S. H. Simpson, S. Hanna, “Computational study of the
optical trapping of ellipsoidal particles,” Phys. Rev. A 84, 053808 (2011).

[CrossRef]

T. C. B. Schut, G. Hesselink, B. G. De Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical
traps,” Cytometry 12, 479–485 (1991).

[CrossRef]
[PubMed]

K. L. Ho, L. Greengard, “A fast direct solver for
structured linear systems by recursive skeletonization,” SIAM J. Sci. Comput. 34, A2507–A2532 (2012).

[CrossRef]

J. Q. Lu, P. Yang, X.-H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference
time-domain method,” J. Bio. Opt. 10, 024022 (2005).

[CrossRef]

G. Roosen, C. Imbert, “Optical levitation by means of
two horizontal laser beams: A theoretical and experimental study,” Phys. Lett. A 59, 6–8 (1976).

[CrossRef]

P. Yla-Oijala, M. Taskinen, S. Jarvenpaa, “Surface integral equation
formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci. 40, RS6002 (2005).

[CrossRef]

X. Q. Sheng, J. M. Jin, J. Song, W. C. Chew, C. C. Lu, “Solution of
combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,”
Nature Nanotech. 8, 807–819 (2013).

[CrossRef]

J. S. Kim, S. S. Lee, “Radiation pressure on a
dielectric sphere in a gaussian laser beam,” Opt. Acta 29, 801–806 (1982).

[CrossRef]

L. Landesa, M. G. Araujo, J. M. Taboada, L. Bote, F. Obelleiro, “Improving condition number and convergence of the surface integral-equation method of
moments for penetrable bodies,” Opt. Express 20, 17237–17249 (2012).

[CrossRef]

M. G. Araujo, J. M. Taboada, D. M. Solis, J. Rivero, L. Landesa, F. Obelleiro, “Comparison of
surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers,” Opt. Express 20, 9161–9171 (2012).

[CrossRef]
[PubMed]

P. D. Ledger, K. Morgan, “An adjoint enhanced
reduced-order model for monostatic RCS computation,” Electromagnetics 28, 54–76 (2008).

[CrossRef]

P. Zhen, M. B. Stephanson, J. F. Lee, “Fast computation of angular responses of large-scale three-dimensional electromagnetic wave scattering,” IEEE Trans. Antennas Propag. 58, 3004–3012 (2010).

[CrossRef]

J. S. Kim, S. S. Lee, “Radiation pressure on a
dielectric sphere in a gaussian laser beam,” Opt. Acta 29, 801–806 (1982).

[CrossRef]

E. Liberty, F. Woolfe, P. G. Martinsson, V. Rokhlin, M. Tygert, “Randomized algorithms for the low-rank approximation of
matrices,” Proc. Natl. Acad. Sci. USA 104, 20167–20172 (2007).

[CrossRef]
[PubMed]

X. Q. Sheng, J. M. Jin, J. Song, W. C. Chew, C. C. Lu, “Solution of
combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

J. Q. Lu, P. Yang, X.-H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference
time-domain method,” J. Bio. Opt. 10, 024022 (2005).

[CrossRef]

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,”
Nature Nanotech. 8, 807–819 (2013).

[CrossRef]

N. Halko, P. G. Martinsson, J. A. Tropp, “Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions,” SIAM Rev. 53, 72 (2011).

[CrossRef]

E. Liberty, F. Woolfe, P. G. Martinsson, V. Rokhlin, M. Tygert, “Randomized algorithms for the low-rank approximation of
matrices,” Proc. Natl. Acad. Sci. USA 104, 20167–20172 (2007).

[CrossRef]
[PubMed]

M. I. Mishchenko, “Radiation force caused by scattering, absorption, and emission of light by nonspherical
particles,” J. Quant. Spectrosc. Radiat. Transfer 70, 811–816 (2001).

[CrossRef]

P. D. Ledger, K. Morgan, “An adjoint enhanced
reduced-order model for monostatic RCS computation,” Electromagnetics 28, 54–76 (2008).

[CrossRef]

K. C. Neuman, S. M. Block, “Optical
trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).

[CrossRef]

M. G. Araujo, J. M. Taboada, D. M. Solis, J. Rivero, L. Landesa, F. Obelleiro, “Comparison of
surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers,” Opt. Express 20, 9161–9171 (2012).

[CrossRef]
[PubMed]

L. Landesa, M. G. Araujo, J. M. Taboada, L. Bote, F. Obelleiro, “Improving condition number and convergence of the surface integral-equation method of
moments for penetrable bodies,” Opt. Express 20, 17237–17249 (2012).

[CrossRef]

X. M. Pan, X. Q. Sheng, “Improved algebraic
preconditioning for mom solutions of large-scale electromagnetic problems,” IEEE Antennas Wireless Propag. Lett. 13, 106–109 (2014).

[CrossRef]

X. M. Pan, X. Q. Sheng, “Hierarchical interpolative
decomposition multilevel fast multipole algorithm for dynamic electromagnetic simulations,” Progr. Electromagn. Res. 134, 79–94 (2013).

[CrossRef]

X. M. Pan, X. Q. Sheng, “Preconditioning technique in
the interpolative decomposition multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 61, 3373–3377 (2013).

[CrossRef]

X. M. Pan, J. G. Wei, Z. Peng, X. Q. Sheng, “A fast algorithm for multiscale electromagnetic problems using interpolative
decomposition and multilevel fast multipole algorithm,” Radio Sci. 47, RS1011 (2012).

[CrossRef]

X. M. Pan, W. Pi, M. L. Yang, Z. Peng, X. Q. Sheng, “Solving problems with over one billion unknowns by the mlfma,”
IEEE Trans. Antennas Propag. 60, 2571–2574 (2012).

[CrossRef]

X. M. Pan, X. Q. Sheng, “Fast computation of
two-dimensional spatial electromagnetic scattering from large-scale targets,” Computational Electromagnetics Workshop (CEM), 2013 pp. 1–3 (2013).

[CrossRef]

X. M. Pan, W. Pi, M. L. Yang, Z. Peng, X. Q. Sheng, “Solving problems with over one billion unknowns by the mlfma,”
IEEE Trans. Antennas Propag. 60, 2571–2574 (2012).

[CrossRef]

X. M. Pan, J. G. Wei, Z. Peng, X. Q. Sheng, “A fast algorithm for multiscale electromagnetic problems using interpolative
decomposition and multilevel fast multipole algorithm,” Radio Sci. 47, RS1011 (2012).

[CrossRef]

X. M. Pan, W. Pi, M. L. Yang, Z. Peng, X. Q. Sheng, “Solving problems with over one billion unknowns by the mlfma,”
IEEE Trans. Antennas Propag. 60, 2571–2574 (2012).

[CrossRef]

S. M. Rao, D. R. Wilton, A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).

[CrossRef]

M. L. Yang, K. F. Ren, M. J. Gou, X. Q. Sheng, “Computation of radiation pressure force on arbitrary shaped homogenous particles by multilevel fast multipole algorithm,”
Opt. Lett. 38, 1784–1786 (2013).

[CrossRef]
[PubMed]

K. F. Ren, G. Grehan, G. Gouesbet, “Prediction of reverse radiation pressure by generalized lorenz-mie
theory,” Appl. Opt. 35, 2702–2710 (1996).

[CrossRef]
[PubMed]

K. F. Ren, G. Greha, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a gaussian beam by
using the generalized lorenz-mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).

[CrossRef]

F. Xu, K.-F. Ren, G. Gouesbet, X.-S. Cai, G. Grehan,
“Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).

[CrossRef]

E. Liberty, F. Woolfe, P. G. Martinsson, V. Rokhlin, M. Tygert, “Randomized algorithms for the low-rank approximation of
matrices,” Proc. Natl. Acad. Sci. USA 104, 20167–20172 (2007).

[CrossRef]
[PubMed]

R. Coifman, V. Rokhlin, S. Wandzura, “The fast multipole method for the wave
equation: a pedestrian prescription,” IEEE Antennas Propag. Mag. 35, 7–12 (1993).

[CrossRef]

G. Roosen, C. Imbert, “Optical levitation by means of
two horizontal laser beams: A theoretical and experimental study,” Phys. Lett. A 59, 6–8 (1976).

[CrossRef]

H. Shpaisman, D. B. Ruffner, D. G. Grier, “Light-driven three-dimensional rotational motion of dandelion-shaped microparticles,” Appl. Phys. Lett. 102, 071103 (2013).

[CrossRef]

A. Schroder, H. D. Bruxns, C. Schuster, “A hybrid approach for rapid computation of two-dimensional monostatic radar cross section problems with the multilevel fast multipole
algorithm,” IEEE Trans. Antennas Propag. 60, 6058–6061 (2012).

[CrossRef]

A. Schroder, H. D. Bruxns, C. Schuster, “A hybrid approach for rapid computation of two-dimensional monostatic radar cross section problems with the multilevel fast multipole
algorithm,” IEEE Trans. Antennas Propag. 60, 6058–6061 (2012).

[CrossRef]

T. C. B. Schut, G. Hesselink, B. G. De Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical
traps,” Cytometry 12, 479–485 (1991).

[CrossRef]
[PubMed]

X. M. Pan, X. Q. Sheng, “Improved algebraic
preconditioning for mom solutions of large-scale electromagnetic problems,” IEEE Antennas Wireless Propag. Lett. 13, 106–109 (2014).

[CrossRef]

M. L. Yang, K. F. Ren, M. J. Gou, X. Q. Sheng, “Computation of radiation pressure force on arbitrary shaped homogenous particles by multilevel fast multipole algorithm,”
Opt. Lett. 38, 1784–1786 (2013).

[CrossRef]
[PubMed]

B.-Y. Wu, X. Q. Sheng, “Application of asymptotic
waveform evaluation to hybrid FE-BI-MLFMA for fast RCS computation over a frequency band,” IEEE Trans. Antennas Propag. 61, 2597–2604 (2013).

[CrossRef]

X. M. Pan, X. Q. Sheng, “Preconditioning technique in
the interpolative decomposition multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 61, 3373–3377 (2013).

[CrossRef]

X. M. Pan, X. Q. Sheng, “Hierarchical interpolative
decomposition multilevel fast multipole algorithm for dynamic electromagnetic simulations,” Progr. Electromagn. Res. 134, 79–94 (2013).

[CrossRef]

X. M. Pan, J. G. Wei, Z. Peng, X. Q. Sheng, “A fast algorithm for multiscale electromagnetic problems using interpolative
decomposition and multilevel fast multipole algorithm,” Radio Sci. 47, RS1011 (2012).

[CrossRef]

X. M. Pan, W. Pi, M. L. Yang, Z. Peng, X. Q. Sheng, “Solving problems with over one billion unknowns by the mlfma,”
IEEE Trans. Antennas Propag. 60, 2571–2574 (2012).

[CrossRef]

X. Q. Sheng, J. M. Jin, J. Song, W. C. Chew, C. C. Lu, “Solution of
combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

X. M. Pan, X. Q. Sheng, “Fast computation of
two-dimensional spatial electromagnetic scattering from large-scale targets,” Computational Electromagnetics Workshop (CEM), 2013 pp. 1–3 (2013).

[CrossRef]

H. Shpaisman, D. B. Ruffner, D. G. Grier, “Light-driven three-dimensional rotational motion of dandelion-shaped microparticles,” Appl. Phys. Lett. 102, 071103 (2013).

[CrossRef]

S. H. Simpson, S. Hanna, “Computational study of the
optical trapping of ellipsoidal particles,” Phys. Rev. A 84, 053808 (2011).

[CrossRef]

X. Q. Sheng, J. M. Jin, J. Song, W. C. Chew, C. C. Lu, “Solution of
combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

P. Zhen, M. B. Stephanson, J. F. Lee, “Fast computation of angular responses of large-scale three-dimensional electromagnetic wave scattering,” IEEE Trans. Antennas Propag. 58, 3004–3012 (2010).

[CrossRef]

L. Landesa, M. G. Araujo, J. M. Taboada, L. Bote, F. Obelleiro, “Improving condition number and convergence of the surface integral-equation method of
moments for penetrable bodies,” Opt. Express 20, 17237–17249 (2012).

[CrossRef]

M. G. Araujo, J. M. Taboada, D. M. Solis, J. Rivero, L. Landesa, F. Obelleiro, “Comparison of
surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers,” Opt. Express 20, 9161–9171 (2012).

[CrossRef]
[PubMed]

P. Yla-Oijala, M. Taskinen, S. Jarvenpaa, “Surface integral equation
formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci. 40, RS6002 (2005).

[CrossRef]

N. Halko, P. G. Martinsson, J. A. Tropp, “Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions,” SIAM Rev. 53, 72 (2011).

[CrossRef]

E. Liberty, F. Woolfe, P. G. Martinsson, V. Rokhlin, M. Tygert, “Randomized algorithms for the low-rank approximation of
matrices,” Proc. Natl. Acad. Sci. USA 104, 20167–20172 (2007).

[CrossRef]
[PubMed]

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,”
Nature Nanotech. 8, 807–819 (2013).

[CrossRef]

R. Coifman, V. Rokhlin, S. Wandzura, “The fast multipole method for the wave
equation: a pedestrian prescription,” IEEE Antennas Propag. Mag. 35, 7–12 (1993).

[CrossRef]

X. Wang, D. H. Werner, “Improved model-based parameter
estimation approach for accelerated periodic method of moments solutions with application to the analysis of convoluted frequency selected surfaces and metamaterials,” IEEE Trans. Antennas Propag. 58, 122–131 (2010).

[CrossRef]

X. M. Pan, J. G. Wei, Z. Peng, X. Q. Sheng, “A fast algorithm for multiscale electromagnetic problems using interpolative
decomposition and multilevel fast multipole algorithm,” Radio Sci. 47, RS1011 (2012).

[CrossRef]

X. Wang, D. H. Werner, “Improved model-based parameter
estimation approach for accelerated periodic method of moments solutions with application to the analysis of convoluted frequency selected surfaces and metamaterials,” IEEE Trans. Antennas Propag. 58, 122–131 (2010).

[CrossRef]

S. M. Rao, D. R. Wilton, A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).

[CrossRef]

E. Liberty, F. Woolfe, P. G. Martinsson, V. Rokhlin, M. Tygert, “Randomized algorithms for the low-rank approximation of
matrices,” Proc. Natl. Acad. Sci. USA 104, 20167–20172 (2007).

[CrossRef]
[PubMed]

B.-Y. Wu, X. Q. Sheng, “Application of asymptotic
waveform evaluation to hybrid FE-BI-MLFMA for fast RCS computation over a frequency band,” IEEE Trans. Antennas Propag. 61, 2597–2604 (2013).

[CrossRef]

F. Xu, K.-F. Ren, G. Gouesbet, X.-S. Cai, G. Grehan,
“Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).

[CrossRef]

A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330, 769–771 (1987).

[CrossRef]
[PubMed]

M. L. Yang, K. F. Ren, M. J. Gou, X. Q. Sheng, “Computation of radiation pressure force on arbitrary shaped homogenous particles by multilevel fast multipole algorithm,”
Opt. Lett. 38, 1784–1786 (2013).

[CrossRef]
[PubMed]

X. M. Pan, W. Pi, M. L. Yang, Z. Peng, X. Q. Sheng, “Solving problems with over one billion unknowns by the mlfma,”
IEEE Trans. Antennas Propag. 60, 2571–2574 (2012).

[CrossRef]

L. Bi, P. Yang, “Modeling of light scattering by
biconcave and deformed red blood cells with the invariant imbedding T-matrix method,” J. Bio. Opt. 18, 055001 (2013).

[CrossRef]

J. Q. Lu, P. Yang, X.-H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference
time-domain method,” J. Bio. Opt. 10, 024022 (2005).

[CrossRef]

P. Yla-Oijala, M. Taskinen, S. Jarvenpaa, “Surface integral equation
formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci. 40, RS6002 (2005).

[CrossRef]

P. Zhen, M. B. Stephanson, J. F. Lee, “Fast computation of angular responses of large-scale three-dimensional electromagnetic wave scattering,” IEEE Trans. Antennas Propag. 58, 3004–3012 (2010).

[CrossRef]

H. Shpaisman, D. B. Ruffner, D. G. Grier, “Light-driven three-dimensional rotational motion of dandelion-shaped microparticles,” Appl. Phys. Lett. 102, 071103 (2013).

[CrossRef]

T. C. B. Schut, G. Hesselink, B. G. De Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical
traps,” Cytometry 12, 479–485 (1991).

[CrossRef]
[PubMed]

P. D. Ledger, K. Morgan, “An adjoint enhanced
reduced-order model for monostatic RCS computation,” Electromagnetics 28, 54–76 (2008).

[CrossRef]

R. Coifman, V. Rokhlin, S. Wandzura, “The fast multipole method for the wave
equation: a pedestrian prescription,” IEEE Antennas Propag. Mag. 35, 7–12 (1993).

[CrossRef]

X. M. Pan, X. Q. Sheng, “Improved algebraic
preconditioning for mom solutions of large-scale electromagnetic problems,” IEEE Antennas Wireless Propag. Lett. 13, 106–109 (2014).

[CrossRef]

X. M. Pan, X. Q. Sheng, “Preconditioning technique in
the interpolative decomposition multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 61, 3373–3377 (2013).

[CrossRef]

X. M. Pan, W. Pi, M. L. Yang, Z. Peng, X. Q. Sheng, “Solving problems with over one billion unknowns by the mlfma,”
IEEE Trans. Antennas Propag. 60, 2571–2574 (2012).

[CrossRef]

P. Zhen, M. B. Stephanson, J. F. Lee, “Fast computation of angular responses of large-scale three-dimensional electromagnetic wave scattering,” IEEE Trans. Antennas Propag. 58, 3004–3012 (2010).

[CrossRef]

X. Q. Sheng, J. M. Jin, J. Song, W. C. Chew, C. C. Lu, “Solution of
combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

X. Wang, D. H. Werner, “Improved model-based parameter
estimation approach for accelerated periodic method of moments solutions with application to the analysis of convoluted frequency selected surfaces and metamaterials,” IEEE Trans. Antennas Propag. 58, 122–131 (2010).

[CrossRef]

B.-Y. Wu, X. Q. Sheng, “Application of asymptotic
waveform evaluation to hybrid FE-BI-MLFMA for fast RCS computation over a frequency band,” IEEE Trans. Antennas Propag. 61, 2597–2604 (2013).

[CrossRef]

A. Schroder, H. D. Bruxns, C. Schuster, “A hybrid approach for rapid computation of two-dimensional monostatic radar cross section problems with the multilevel fast multipole
algorithm,” IEEE Trans. Antennas Propag. 60, 6058–6061 (2012).

[CrossRef]

S. M. Rao, D. R. Wilton, A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).

[CrossRef]

O. Ergul, L. Gurel, “Comparison of integral-equation
formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).

[CrossRef]

J. P. Barton, D. R. Alexander, “Fifth-order corrected
electromagnetic field components for a fundamental gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).

[CrossRef]

J. Q. Lu, P. Yang, X.-H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference
time-domain method,” J. Bio. Opt. 10, 024022 (2005).

[CrossRef]

L. Bi, P. Yang, “Modeling of light scattering by
biconcave and deformed red blood cells with the invariant imbedding T-matrix method,” J. Bio. Opt. 18, 055001 (2013).

[CrossRef]

O. Ergul, A. Arslan-Ergul, L. Gurel, “Computational study of scattering from
healthy and diseased red blood cells,” J. Bio. Opt. 15, 045004(2010).

[CrossRef]

M. I. Mishchenko, “Radiation force caused by scattering, absorption, and emission of light by nonspherical
particles,” J. Quant. Spectrosc. Radiat. Transfer 70, 811–816 (2001).

[CrossRef]

A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330, 769–771 (1987).

[CrossRef]
[PubMed]

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,”
Nature Nanotech. 8, 807–819 (2013).

[CrossRef]

J. S. Kim, S. S. Lee, “Radiation pressure on a
dielectric sphere in a gaussian laser beam,” Opt. Acta 29, 801–806 (1982).

[CrossRef]

K. F. Ren, G. Greha, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a gaussian beam by
using the generalized lorenz-mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).

[CrossRef]

F. Borghese, P. Denti, R. Saija, A. l. Maria, “Optical trapping of nonspherical particles in the t-matrix formalism,” Opt. Express 15, 11984–11998 (2007).

[CrossRef]
[PubMed]

M. G. Araujo, J. M. Taboada, D. M. Solis, J. Rivero, L. Landesa, F. Obelleiro, “Comparison of
surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers,” Opt. Express 20, 9161–9171 (2012).

[CrossRef]
[PubMed]

L. Landesa, M. G. Araujo, J. M. Taboada, L. Bote, F. Obelleiro, “Improving condition number and convergence of the surface integral-equation method of
moments for penetrable bodies,” Opt. Express 20, 17237–17249 (2012).

[CrossRef]

C.-F. Kuo, S.-C. Chu, “Numerical study of the properties
of optical vortex array laser tweezers,” Opt. Express 21, 26418–26431 (2013).

[CrossRef]
[PubMed]

M. L. Yang, K. F. Ren, M. J. Gou, X. Q. Sheng, “Computation of radiation pressure force on arbitrary shaped homogenous particles by multilevel fast multipole algorithm,”
Opt. Lett. 38, 1784–1786 (2013).

[CrossRef]
[PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).

[CrossRef]
[PubMed]

G. Roosen, C. Imbert, “Optical levitation by means of
two horizontal laser beams: A theoretical and experimental study,” Phys. Lett. A 59, 6–8 (1976).

[CrossRef]

S. H. Simpson, S. Hanna, “Computational study of the
optical trapping of ellipsoidal particles,” Phys. Rev. A 84, 053808 (2011).

[CrossRef]

F. Xu, K.-F. Ren, G. Gouesbet, X.-S. Cai, G. Grehan,
“Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).

[CrossRef]

E. Liberty, F. Woolfe, P. G. Martinsson, V. Rokhlin, M. Tygert, “Randomized algorithms for the low-rank approximation of
matrices,” Proc. Natl. Acad. Sci. USA 104, 20167–20172 (2007).

[CrossRef]
[PubMed]

X. M. Pan, X. Q. Sheng, “Hierarchical interpolative
decomposition multilevel fast multipole algorithm for dynamic electromagnetic simulations,” Progr. Electromagn. Res. 134, 79–94 (2013).

[CrossRef]

P. Yla-Oijala, M. Taskinen, S. Jarvenpaa, “Surface integral equation
formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci. 40, RS6002 (2005).

[CrossRef]

X. M. Pan, J. G. Wei, Z. Peng, X. Q. Sheng, “A fast algorithm for multiscale electromagnetic problems using interpolative
decomposition and multilevel fast multipole algorithm,” Radio Sci. 47, RS1011 (2012).

[CrossRef]

K. C. Neuman, S. M. Block, “Optical
trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).

[CrossRef]

K. L. Ho, L. Greengard, “A fast direct solver for
structured linear systems by recursive skeletonization,” SIAM J. Sci. Comput. 34, A2507–A2532 (2012).

[CrossRef]

N. Halko, P. G. Martinsson, J. A. Tropp, “Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions,” SIAM Rev. 53, 72 (2011).

[CrossRef]

X. M. Pan, X. Q. Sheng, “Fast computation of
two-dimensional spatial electromagnetic scattering from large-scale targets,” Computational Electromagnetics Workshop (CEM), 2013 pp. 1–3 (2013).

[CrossRef]