Abstract

A fast full-wave method for computing radiation pressure force (RPF) exerted by shaped light beams on moving particles is presented. The problem of evaluating RPF exerted on a moving particle by a single excitation beam is converted into that of computing RPF’s exerted on a static particle by multiple beams. The discretization of different beams leads to distinct right hand sides (RHS’s) for the matrix system. To avoid solving each RHS by the brute-force manner, the algorithm conducts low-rank decomposition on the excitation matrix consisting of all RHS’s to figure out the so-called skeleton light beams by interpolative decomposition (ID). The peak memory requirement of the skeletonization is a bottle-neck if the particle is large. A two-level skeletonization scheme is proposed to solve this problem. Some numerical experiments on arbitrarily shaped homogeneous particles are performed to illustrate the performance and capability of the developed method.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. C. Neuman, S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
    [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef] [PubMed]
  3. A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330, 769–771 (1987).
    [CrossRef] [PubMed]
  4. O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nature Nanotech. 8, 807–819 (2013).
    [CrossRef]
  5. H. Shpaisman, D. B. Ruffner, D. G. Grier, “Light-driven three-dimensional rotational motion of dandelion-shaped microparticles,” Appl. Phys. Lett. 102, 071103 (2013).
    [CrossRef]
  6. G. Roosen, C. Imbert, “Optical levitation by means of two horizontal laser beams: A theoretical and experimental study,” Phys. Lett. A 59, 6–8 (1976).
    [CrossRef]
  7. J. S. Kim, S. S. Lee, “Radiation pressure on a dielectric sphere in a gaussian laser beam,” Opt. Acta 29, 801–806 (1982).
    [CrossRef]
  8. K. F. Ren, G. Greha, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a gaussian beam by using the generalized lorenz-mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
    [CrossRef]
  9. K. F. Ren, G. Grehan, G. Gouesbet, “Prediction of reverse radiation pressure by generalized lorenz-mie theory,” Appl. Opt. 35, 2702–2710 (1996).
    [CrossRef] [PubMed]
  10. F. Xu, K.-F. Ren, G. Gouesbet, X.-S. Cai, G. Grehan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).
    [CrossRef]
  11. B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
    [CrossRef]
  12. S. H. Simpson, S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84, 053808 (2011).
    [CrossRef]
  13. C.-F. Kuo, S.-C. Chu, “Numerical study of the properties of optical vortex array laser tweezers,” Opt. Express 21, 26418–26431 (2013).
    [CrossRef] [PubMed]
  14. M. I. Mishchenko, “Radiation force caused by scattering, absorption, and emission of light by nonspherical particles,” J. Quant. Spectrosc. Radiat. Transfer 70, 811–816 (2001).
    [CrossRef]
  15. F. Borghese, P. Denti, R. Saija, A. l. Maria, “Optical trapping of nonspherical particles in the t-matrix formalism,” Opt. Express 15, 11984–11998 (2007).
    [CrossRef] [PubMed]
  16. L. Bi, P. Yang, “Modeling of light scattering by biconcave and deformed red blood cells with the invariant imbedding T-matrix method,” J. Bio. Opt. 18, 055001 (2013).
    [CrossRef]
  17. M. L. Yang, K. F. Ren, M. J. Gou, X. Q. Sheng, “Computation of radiation pressure force on arbitrary shaped homogenous particles by multilevel fast multipole algorithm,” Opt. Lett. 38, 1784–1786 (2013).
    [CrossRef] [PubMed]
  18. R. Coifman, V. Rokhlin, S. Wandzura, “The fast multipole method for the wave equation: a pedestrian prescription,” IEEE Antennas Propag. Mag. 35, 7–12 (1993).
    [CrossRef]
  19. X. M. Pan, W. Pi, M. L. Yang, Z. Peng, X. Q. Sheng, “Solving problems with over one billion unknowns by the mlfma,” IEEE Trans. Antennas Propag. 60, 2571–2574 (2012).
    [CrossRef]
  20. O. Ergul, A. Arslan-Ergul, L. Gurel, “Computational study of scattering from healthy and diseased red blood cells,” J. Bio. Opt. 15, 045004(2010).
    [CrossRef]
  21. X. Q. Sheng, J. M. Jin, J. Song, W. C. Chew, C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).
    [CrossRef]
  22. X. Wang, D. H. Werner, “Improved model-based parameter estimation approach for accelerated periodic method of moments solutions with application to the analysis of convoluted frequency selected surfaces and metamaterials,” IEEE Trans. Antennas Propag. 58, 122–131 (2010).
    [CrossRef]
  23. B.-Y. Wu, X. Q. Sheng, “Application of asymptotic waveform evaluation to hybrid FE-BI-MLFMA for fast RCS computation over a frequency band,” IEEE Trans. Antennas Propag. 61, 2597–2604 (2013).
    [CrossRef]
  24. A. Schroder, H. D. Bruxns, C. Schuster, “A hybrid approach for rapid computation of two-dimensional monostatic radar cross section problems with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 60, 6058–6061 (2012).
    [CrossRef]
  25. P. D. Ledger, K. Morgan, “An adjoint enhanced reduced-order model for monostatic RCS computation,” Electromagnetics 28, 54–76 (2008).
    [CrossRef]
  26. P. Zhen, M. B. Stephanson, J. F. Lee, “Fast computation of angular responses of large-scale three-dimensional electromagnetic wave scattering,” IEEE Trans. Antennas Propag. 58, 3004–3012 (2010).
    [CrossRef]
  27. X. M. Pan, X. Q. Sheng, “Fast computation of two-dimensional spatial electromagnetic scattering from large-scale targets,” Computational Electromagnetics Workshop (CEM), 2013 pp. 1–3 (2013).
    [CrossRef]
  28. E. Liberty, F. Woolfe, P. G. Martinsson, V. Rokhlin, M. Tygert, “Randomized algorithms for the low-rank approximation of matrices,” Proc. Natl. Acad. Sci. USA 104, 20167–20172 (2007).
    [CrossRef] [PubMed]
  29. N. Halko, P. G. Martinsson, J. A. Tropp, “Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions,” SIAM Rev. 53, 72 (2011).
    [CrossRef]
  30. X. M. Pan, X. Q. Sheng, “Improved algebraic preconditioning for mom solutions of large-scale electromagnetic problems,” IEEE Antennas Wireless Propag. Lett. 13, 106–109 (2014).
    [CrossRef]
  31. K. L. Ho, L. Greengard, “A fast direct solver for structured linear systems by recursive skeletonization,” SIAM J. Sci. Comput. 34, A2507–A2532 (2012).
    [CrossRef]
  32. X. M. Pan, X. Q. Sheng, “Hierarchical interpolative decomposition multilevel fast multipole algorithm for dynamic electromagnetic simulations,” Progr. Electromagn. Res. 134, 79–94 (2013).
    [CrossRef]
  33. X. M. Pan, X. Q. Sheng, “Preconditioning technique in the interpolative decomposition multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 61, 3373–3377 (2013).
    [CrossRef]
  34. X. M. Pan, J. G. Wei, Z. Peng, X. Q. Sheng, “A fast algorithm for multiscale electromagnetic problems using interpolative decomposition and multilevel fast multipole algorithm,” Radio Sci. 47, RS1011 (2012).
    [CrossRef]
  35. M. G. Araujo, J. M. Taboada, D. M. Solis, J. Rivero, L. Landesa, F. Obelleiro, “Comparison of surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers,” Opt. Express 20, 9161–9171 (2012).
    [CrossRef] [PubMed]
  36. L. Landesa, M. G. Araujo, J. M. Taboada, L. Bote, F. Obelleiro, “Improving condition number and convergence of the surface integral-equation method of moments for penetrable bodies,” Opt. Express 20, 17237–17249 (2012).
    [CrossRef]
  37. S. M. Rao, D. R. Wilton, A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).
    [CrossRef]
  38. P. Yla-Oijala, M. Taskinen, S. Jarvenpaa, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci. 40, RS6002 (2005).
    [CrossRef]
  39. O. Ergul, L. Gurel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).
    [CrossRef]
  40. J. P. Barton, D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).
    [CrossRef]
  41. J. Q. Lu, P. Yang, X.-H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Bio. Opt. 10, 024022 (2005).
    [CrossRef]
  42. T. C. B. Schut, G. Hesselink, B. G. De Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
    [CrossRef] [PubMed]

2014 (1)

X. M. Pan, X. Q. Sheng, “Improved algebraic preconditioning for mom solutions of large-scale electromagnetic problems,” IEEE Antennas Wireless Propag. Lett. 13, 106–109 (2014).
[CrossRef]

2013 (8)

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nature Nanotech. 8, 807–819 (2013).
[CrossRef]

H. Shpaisman, D. B. Ruffner, D. G. Grier, “Light-driven three-dimensional rotational motion of dandelion-shaped microparticles,” Appl. Phys. Lett. 102, 071103 (2013).
[CrossRef]

X. M. Pan, X. Q. Sheng, “Hierarchical interpolative decomposition multilevel fast multipole algorithm for dynamic electromagnetic simulations,” Progr. Electromagn. Res. 134, 79–94 (2013).
[CrossRef]

X. M. Pan, X. Q. Sheng, “Preconditioning technique in the interpolative decomposition multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 61, 3373–3377 (2013).
[CrossRef]

B.-Y. Wu, X. Q. Sheng, “Application of asymptotic waveform evaluation to hybrid FE-BI-MLFMA for fast RCS computation over a frequency band,” IEEE Trans. Antennas Propag. 61, 2597–2604 (2013).
[CrossRef]

L. Bi, P. Yang, “Modeling of light scattering by biconcave and deformed red blood cells with the invariant imbedding T-matrix method,” J. Bio. Opt. 18, 055001 (2013).
[CrossRef]

M. L. Yang, K. F. Ren, M. J. Gou, X. Q. Sheng, “Computation of radiation pressure force on arbitrary shaped homogenous particles by multilevel fast multipole algorithm,” Opt. Lett. 38, 1784–1786 (2013).
[CrossRef] [PubMed]

C.-F. Kuo, S.-C. Chu, “Numerical study of the properties of optical vortex array laser tweezers,” Opt. Express 21, 26418–26431 (2013).
[CrossRef] [PubMed]

2012 (6)

M. G. Araujo, J. M. Taboada, D. M. Solis, J. Rivero, L. Landesa, F. Obelleiro, “Comparison of surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers,” Opt. Express 20, 9161–9171 (2012).
[CrossRef] [PubMed]

L. Landesa, M. G. Araujo, J. M. Taboada, L. Bote, F. Obelleiro, “Improving condition number and convergence of the surface integral-equation method of moments for penetrable bodies,” Opt. Express 20, 17237–17249 (2012).
[CrossRef]

A. Schroder, H. D. Bruxns, C. Schuster, “A hybrid approach for rapid computation of two-dimensional monostatic radar cross section problems with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 60, 6058–6061 (2012).
[CrossRef]

X. M. Pan, W. Pi, M. L. Yang, Z. Peng, X. Q. Sheng, “Solving problems with over one billion unknowns by the mlfma,” IEEE Trans. Antennas Propag. 60, 2571–2574 (2012).
[CrossRef]

X. M. Pan, J. G. Wei, Z. Peng, X. Q. Sheng, “A fast algorithm for multiscale electromagnetic problems using interpolative decomposition and multilevel fast multipole algorithm,” Radio Sci. 47, RS1011 (2012).
[CrossRef]

K. L. Ho, L. Greengard, “A fast direct solver for structured linear systems by recursive skeletonization,” SIAM J. Sci. Comput. 34, A2507–A2532 (2012).
[CrossRef]

2011 (2)

N. Halko, P. G. Martinsson, J. A. Tropp, “Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions,” SIAM Rev. 53, 72 (2011).
[CrossRef]

S. H. Simpson, S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84, 053808 (2011).
[CrossRef]

2010 (3)

O. Ergul, A. Arslan-Ergul, L. Gurel, “Computational study of scattering from healthy and diseased red blood cells,” J. Bio. Opt. 15, 045004(2010).
[CrossRef]

X. Wang, D. H. Werner, “Improved model-based parameter estimation approach for accelerated periodic method of moments solutions with application to the analysis of convoluted frequency selected surfaces and metamaterials,” IEEE Trans. Antennas Propag. 58, 122–131 (2010).
[CrossRef]

P. Zhen, M. B. Stephanson, J. F. Lee, “Fast computation of angular responses of large-scale three-dimensional electromagnetic wave scattering,” IEEE Trans. Antennas Propag. 58, 3004–3012 (2010).
[CrossRef]

2009 (1)

O. Ergul, L. Gurel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).
[CrossRef]

2008 (1)

P. D. Ledger, K. Morgan, “An adjoint enhanced reduced-order model for monostatic RCS computation,” Electromagnetics 28, 54–76 (2008).
[CrossRef]

2007 (3)

E. Liberty, F. Woolfe, P. G. Martinsson, V. Rokhlin, M. Tygert, “Randomized algorithms for the low-rank approximation of matrices,” Proc. Natl. Acad. Sci. USA 104, 20167–20172 (2007).
[CrossRef] [PubMed]

F. Borghese, P. Denti, R. Saija, A. l. Maria, “Optical trapping of nonspherical particles in the t-matrix formalism,” Opt. Express 15, 11984–11998 (2007).
[CrossRef] [PubMed]

F. Xu, K.-F. Ren, G. Gouesbet, X.-S. Cai, G. Grehan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).
[CrossRef]

2005 (2)

P. Yla-Oijala, M. Taskinen, S. Jarvenpaa, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci. 40, RS6002 (2005).
[CrossRef]

J. Q. Lu, P. Yang, X.-H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Bio. Opt. 10, 024022 (2005).
[CrossRef]

2004 (1)

K. C. Neuman, S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

2001 (1)

M. I. Mishchenko, “Radiation force caused by scattering, absorption, and emission of light by nonspherical particles,” J. Quant. Spectrosc. Radiat. Transfer 70, 811–816 (2001).
[CrossRef]

1998 (1)

X. Q. Sheng, J. M. Jin, J. Song, W. C. Chew, C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).
[CrossRef]

1996 (1)

1994 (2)

B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
[CrossRef]

K. F. Ren, G. Greha, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a gaussian beam by using the generalized lorenz-mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
[CrossRef]

1993 (1)

R. Coifman, V. Rokhlin, S. Wandzura, “The fast multipole method for the wave equation: a pedestrian prescription,” IEEE Antennas Propag. Mag. 35, 7–12 (1993).
[CrossRef]

1991 (1)

T. C. B. Schut, G. Hesselink, B. G. De Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[CrossRef] [PubMed]

1989 (1)

J. P. Barton, D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).
[CrossRef]

1987 (1)

A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330, 769–771 (1987).
[CrossRef] [PubMed]

1986 (1)

1982 (2)

J. S. Kim, S. S. Lee, “Radiation pressure on a dielectric sphere in a gaussian laser beam,” Opt. Acta 29, 801–806 (1982).
[CrossRef]

S. M. Rao, D. R. Wilton, A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).
[CrossRef]

1976 (1)

G. Roosen, C. Imbert, “Optical levitation by means of two horizontal laser beams: A theoretical and experimental study,” Phys. Lett. A 59, 6–8 (1976).
[CrossRef]

Alexander, D. R.

J. P. Barton, D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).
[CrossRef]

Araujo, M. G.

Arslan-Ergul, A.

O. Ergul, A. Arslan-Ergul, L. Gurel, “Computational study of scattering from healthy and diseased red blood cells,” J. Bio. Opt. 15, 045004(2010).
[CrossRef]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330, 769–771 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

Barton, J. P.

J. P. Barton, D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).
[CrossRef]

Bi, L.

L. Bi, P. Yang, “Modeling of light scattering by biconcave and deformed red blood cells with the invariant imbedding T-matrix method,” J. Bio. Opt. 18, 055001 (2013).
[CrossRef]

Bjorkholm, J. E.

Block, S. M.

K. C. Neuman, S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

Borghese, F.

Bote, L.

Bruxns, H. D.

A. Schroder, H. D. Bruxns, C. Schuster, “A hybrid approach for rapid computation of two-dimensional monostatic radar cross section problems with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 60, 6058–6061 (2012).
[CrossRef]

Cai, X.-S.

F. Xu, K.-F. Ren, G. Gouesbet, X.-S. Cai, G. Grehan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).
[CrossRef]

Chew, W. C.

X. Q. Sheng, J. M. Jin, J. Song, W. C. Chew, C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).
[CrossRef]

Chu, S.

Chu, S.-C.

Coifman, R.

R. Coifman, V. Rokhlin, S. Wandzura, “The fast multipole method for the wave equation: a pedestrian prescription,” IEEE Antennas Propag. Mag. 35, 7–12 (1993).
[CrossRef]

De Grooth, B. G.

T. C. B. Schut, G. Hesselink, B. G. De Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[CrossRef] [PubMed]

Denti, P.

Draine, B. T.

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330, 769–771 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

Ergul, O.

O. Ergul, A. Arslan-Ergul, L. Gurel, “Computational study of scattering from healthy and diseased red blood cells,” J. Bio. Opt. 15, 045004(2010).
[CrossRef]

O. Ergul, L. Gurel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).
[CrossRef]

Ferrari, A. C.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nature Nanotech. 8, 807–819 (2013).
[CrossRef]

Flatau, P. J.

Glisson, A. W.

S. M. Rao, D. R. Wilton, A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).
[CrossRef]

Gou, M. J.

Gouesbet, G.

F. Xu, K.-F. Ren, G. Gouesbet, X.-S. Cai, G. Grehan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).
[CrossRef]

K. F. Ren, G. Grehan, G. Gouesbet, “Prediction of reverse radiation pressure by generalized lorenz-mie theory,” Appl. Opt. 35, 2702–2710 (1996).
[CrossRef] [PubMed]

K. F. Ren, G. Greha, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a gaussian beam by using the generalized lorenz-mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
[CrossRef]

Greengard, L.

K. L. Ho, L. Greengard, “A fast direct solver for structured linear systems by recursive skeletonization,” SIAM J. Sci. Comput. 34, A2507–A2532 (2012).
[CrossRef]

Greha, G.

K. F. Ren, G. Greha, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a gaussian beam by using the generalized lorenz-mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
[CrossRef]

Grehan, G.

F. Xu, K.-F. Ren, G. Gouesbet, X.-S. Cai, G. Grehan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).
[CrossRef]

K. F. Ren, G. Grehan, G. Gouesbet, “Prediction of reverse radiation pressure by generalized lorenz-mie theory,” Appl. Opt. 35, 2702–2710 (1996).
[CrossRef] [PubMed]

Greve, J.

T. C. B. Schut, G. Hesselink, B. G. De Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[CrossRef] [PubMed]

Grier, D. G.

H. Shpaisman, D. B. Ruffner, D. G. Grier, “Light-driven three-dimensional rotational motion of dandelion-shaped microparticles,” Appl. Phys. Lett. 102, 071103 (2013).
[CrossRef]

Gucciardi, P. G.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nature Nanotech. 8, 807–819 (2013).
[CrossRef]

Gurel, L.

O. Ergul, A. Arslan-Ergul, L. Gurel, “Computational study of scattering from healthy and diseased red blood cells,” J. Bio. Opt. 15, 045004(2010).
[CrossRef]

O. Ergul, L. Gurel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).
[CrossRef]

Halko, N.

N. Halko, P. G. Martinsson, J. A. Tropp, “Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions,” SIAM Rev. 53, 72 (2011).
[CrossRef]

Hanna, S.

S. H. Simpson, S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84, 053808 (2011).
[CrossRef]

Hesselink, G.

T. C. B. Schut, G. Hesselink, B. G. De Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[CrossRef] [PubMed]

Ho, K. L.

K. L. Ho, L. Greengard, “A fast direct solver for structured linear systems by recursive skeletonization,” SIAM J. Sci. Comput. 34, A2507–A2532 (2012).
[CrossRef]

Hu, X.-H.

J. Q. Lu, P. Yang, X.-H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Bio. Opt. 10, 024022 (2005).
[CrossRef]

Imbert, C.

G. Roosen, C. Imbert, “Optical levitation by means of two horizontal laser beams: A theoretical and experimental study,” Phys. Lett. A 59, 6–8 (1976).
[CrossRef]

Jarvenpaa, S.

P. Yla-Oijala, M. Taskinen, S. Jarvenpaa, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci. 40, RS6002 (2005).
[CrossRef]

Jin, J. M.

X. Q. Sheng, J. M. Jin, J. Song, W. C. Chew, C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).
[CrossRef]

Jones, P. H.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nature Nanotech. 8, 807–819 (2013).
[CrossRef]

Kim, J. S.

J. S. Kim, S. S. Lee, “Radiation pressure on a dielectric sphere in a gaussian laser beam,” Opt. Acta 29, 801–806 (1982).
[CrossRef]

Kuo, C.-F.

l. Maria, A.

Landesa, L.

Ledger, P. D.

P. D. Ledger, K. Morgan, “An adjoint enhanced reduced-order model for monostatic RCS computation,” Electromagnetics 28, 54–76 (2008).
[CrossRef]

Lee, J. F.

P. Zhen, M. B. Stephanson, J. F. Lee, “Fast computation of angular responses of large-scale three-dimensional electromagnetic wave scattering,” IEEE Trans. Antennas Propag. 58, 3004–3012 (2010).
[CrossRef]

Lee, S. S.

J. S. Kim, S. S. Lee, “Radiation pressure on a dielectric sphere in a gaussian laser beam,” Opt. Acta 29, 801–806 (1982).
[CrossRef]

Liberty, E.

E. Liberty, F. Woolfe, P. G. Martinsson, V. Rokhlin, M. Tygert, “Randomized algorithms for the low-rank approximation of matrices,” Proc. Natl. Acad. Sci. USA 104, 20167–20172 (2007).
[CrossRef] [PubMed]

Lu, C. C.

X. Q. Sheng, J. M. Jin, J. Song, W. C. Chew, C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).
[CrossRef]

Lu, J. Q.

J. Q. Lu, P. Yang, X.-H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Bio. Opt. 10, 024022 (2005).
[CrossRef]

Marago, O. M.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nature Nanotech. 8, 807–819 (2013).
[CrossRef]

Martinsson, P. G.

N. Halko, P. G. Martinsson, J. A. Tropp, “Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions,” SIAM Rev. 53, 72 (2011).
[CrossRef]

E. Liberty, F. Woolfe, P. G. Martinsson, V. Rokhlin, M. Tygert, “Randomized algorithms for the low-rank approximation of matrices,” Proc. Natl. Acad. Sci. USA 104, 20167–20172 (2007).
[CrossRef] [PubMed]

Mishchenko, M. I.

M. I. Mishchenko, “Radiation force caused by scattering, absorption, and emission of light by nonspherical particles,” J. Quant. Spectrosc. Radiat. Transfer 70, 811–816 (2001).
[CrossRef]

Morgan, K.

P. D. Ledger, K. Morgan, “An adjoint enhanced reduced-order model for monostatic RCS computation,” Electromagnetics 28, 54–76 (2008).
[CrossRef]

Neuman, K. C.

K. C. Neuman, S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

Obelleiro, F.

Pan, X. M.

X. M. Pan, X. Q. Sheng, “Improved algebraic preconditioning for mom solutions of large-scale electromagnetic problems,” IEEE Antennas Wireless Propag. Lett. 13, 106–109 (2014).
[CrossRef]

X. M. Pan, X. Q. Sheng, “Hierarchical interpolative decomposition multilevel fast multipole algorithm for dynamic electromagnetic simulations,” Progr. Electromagn. Res. 134, 79–94 (2013).
[CrossRef]

X. M. Pan, X. Q. Sheng, “Preconditioning technique in the interpolative decomposition multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 61, 3373–3377 (2013).
[CrossRef]

X. M. Pan, J. G. Wei, Z. Peng, X. Q. Sheng, “A fast algorithm for multiscale electromagnetic problems using interpolative decomposition and multilevel fast multipole algorithm,” Radio Sci. 47, RS1011 (2012).
[CrossRef]

X. M. Pan, W. Pi, M. L. Yang, Z. Peng, X. Q. Sheng, “Solving problems with over one billion unknowns by the mlfma,” IEEE Trans. Antennas Propag. 60, 2571–2574 (2012).
[CrossRef]

X. M. Pan, X. Q. Sheng, “Fast computation of two-dimensional spatial electromagnetic scattering from large-scale targets,” Computational Electromagnetics Workshop (CEM), 2013 pp. 1–3 (2013).
[CrossRef]

Peng, Z.

X. M. Pan, W. Pi, M. L. Yang, Z. Peng, X. Q. Sheng, “Solving problems with over one billion unknowns by the mlfma,” IEEE Trans. Antennas Propag. 60, 2571–2574 (2012).
[CrossRef]

X. M. Pan, J. G. Wei, Z. Peng, X. Q. Sheng, “A fast algorithm for multiscale electromagnetic problems using interpolative decomposition and multilevel fast multipole algorithm,” Radio Sci. 47, RS1011 (2012).
[CrossRef]

Pi, W.

X. M. Pan, W. Pi, M. L. Yang, Z. Peng, X. Q. Sheng, “Solving problems with over one billion unknowns by the mlfma,” IEEE Trans. Antennas Propag. 60, 2571–2574 (2012).
[CrossRef]

Rao, S. M.

S. M. Rao, D. R. Wilton, A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).
[CrossRef]

Ren, K. F.

Ren, K.-F.

F. Xu, K.-F. Ren, G. Gouesbet, X.-S. Cai, G. Grehan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).
[CrossRef]

Rivero, J.

Rokhlin, V.

E. Liberty, F. Woolfe, P. G. Martinsson, V. Rokhlin, M. Tygert, “Randomized algorithms for the low-rank approximation of matrices,” Proc. Natl. Acad. Sci. USA 104, 20167–20172 (2007).
[CrossRef] [PubMed]

R. Coifman, V. Rokhlin, S. Wandzura, “The fast multipole method for the wave equation: a pedestrian prescription,” IEEE Antennas Propag. Mag. 35, 7–12 (1993).
[CrossRef]

Roosen, G.

G. Roosen, C. Imbert, “Optical levitation by means of two horizontal laser beams: A theoretical and experimental study,” Phys. Lett. A 59, 6–8 (1976).
[CrossRef]

Ruffner, D. B.

H. Shpaisman, D. B. Ruffner, D. G. Grier, “Light-driven three-dimensional rotational motion of dandelion-shaped microparticles,” Appl. Phys. Lett. 102, 071103 (2013).
[CrossRef]

Saija, R.

Schroder, A.

A. Schroder, H. D. Bruxns, C. Schuster, “A hybrid approach for rapid computation of two-dimensional monostatic radar cross section problems with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 60, 6058–6061 (2012).
[CrossRef]

Schuster, C.

A. Schroder, H. D. Bruxns, C. Schuster, “A hybrid approach for rapid computation of two-dimensional monostatic radar cross section problems with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 60, 6058–6061 (2012).
[CrossRef]

Schut, T. C. B.

T. C. B. Schut, G. Hesselink, B. G. De Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[CrossRef] [PubMed]

Sheng, X. Q.

X. M. Pan, X. Q. Sheng, “Improved algebraic preconditioning for mom solutions of large-scale electromagnetic problems,” IEEE Antennas Wireless Propag. Lett. 13, 106–109 (2014).
[CrossRef]

M. L. Yang, K. F. Ren, M. J. Gou, X. Q. Sheng, “Computation of radiation pressure force on arbitrary shaped homogenous particles by multilevel fast multipole algorithm,” Opt. Lett. 38, 1784–1786 (2013).
[CrossRef] [PubMed]

B.-Y. Wu, X. Q. Sheng, “Application of asymptotic waveform evaluation to hybrid FE-BI-MLFMA for fast RCS computation over a frequency band,” IEEE Trans. Antennas Propag. 61, 2597–2604 (2013).
[CrossRef]

X. M. Pan, X. Q. Sheng, “Preconditioning technique in the interpolative decomposition multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 61, 3373–3377 (2013).
[CrossRef]

X. M. Pan, X. Q. Sheng, “Hierarchical interpolative decomposition multilevel fast multipole algorithm for dynamic electromagnetic simulations,” Progr. Electromagn. Res. 134, 79–94 (2013).
[CrossRef]

X. M. Pan, J. G. Wei, Z. Peng, X. Q. Sheng, “A fast algorithm for multiscale electromagnetic problems using interpolative decomposition and multilevel fast multipole algorithm,” Radio Sci. 47, RS1011 (2012).
[CrossRef]

X. M. Pan, W. Pi, M. L. Yang, Z. Peng, X. Q. Sheng, “Solving problems with over one billion unknowns by the mlfma,” IEEE Trans. Antennas Propag. 60, 2571–2574 (2012).
[CrossRef]

X. Q. Sheng, J. M. Jin, J. Song, W. C. Chew, C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).
[CrossRef]

X. M. Pan, X. Q. Sheng, “Fast computation of two-dimensional spatial electromagnetic scattering from large-scale targets,” Computational Electromagnetics Workshop (CEM), 2013 pp. 1–3 (2013).
[CrossRef]

Shpaisman, H.

H. Shpaisman, D. B. Ruffner, D. G. Grier, “Light-driven three-dimensional rotational motion of dandelion-shaped microparticles,” Appl. Phys. Lett. 102, 071103 (2013).
[CrossRef]

Simpson, S. H.

S. H. Simpson, S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84, 053808 (2011).
[CrossRef]

Solis, D. M.

Song, J.

X. Q. Sheng, J. M. Jin, J. Song, W. C. Chew, C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).
[CrossRef]

Stephanson, M. B.

P. Zhen, M. B. Stephanson, J. F. Lee, “Fast computation of angular responses of large-scale three-dimensional electromagnetic wave scattering,” IEEE Trans. Antennas Propag. 58, 3004–3012 (2010).
[CrossRef]

Taboada, J. M.

Taskinen, M.

P. Yla-Oijala, M. Taskinen, S. Jarvenpaa, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci. 40, RS6002 (2005).
[CrossRef]

Tropp, J. A.

N. Halko, P. G. Martinsson, J. A. Tropp, “Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions,” SIAM Rev. 53, 72 (2011).
[CrossRef]

Tygert, M.

E. Liberty, F. Woolfe, P. G. Martinsson, V. Rokhlin, M. Tygert, “Randomized algorithms for the low-rank approximation of matrices,” Proc. Natl. Acad. Sci. USA 104, 20167–20172 (2007).
[CrossRef] [PubMed]

Volpe, G.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nature Nanotech. 8, 807–819 (2013).
[CrossRef]

Wandzura, S.

R. Coifman, V. Rokhlin, S. Wandzura, “The fast multipole method for the wave equation: a pedestrian prescription,” IEEE Antennas Propag. Mag. 35, 7–12 (1993).
[CrossRef]

Wang, X.

X. Wang, D. H. Werner, “Improved model-based parameter estimation approach for accelerated periodic method of moments solutions with application to the analysis of convoluted frequency selected surfaces and metamaterials,” IEEE Trans. Antennas Propag. 58, 122–131 (2010).
[CrossRef]

Wei, J. G.

X. M. Pan, J. G. Wei, Z. Peng, X. Q. Sheng, “A fast algorithm for multiscale electromagnetic problems using interpolative decomposition and multilevel fast multipole algorithm,” Radio Sci. 47, RS1011 (2012).
[CrossRef]

Werner, D. H.

X. Wang, D. H. Werner, “Improved model-based parameter estimation approach for accelerated periodic method of moments solutions with application to the analysis of convoluted frequency selected surfaces and metamaterials,” IEEE Trans. Antennas Propag. 58, 122–131 (2010).
[CrossRef]

Wilton, D. R.

S. M. Rao, D. R. Wilton, A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).
[CrossRef]

Woolfe, F.

E. Liberty, F. Woolfe, P. G. Martinsson, V. Rokhlin, M. Tygert, “Randomized algorithms for the low-rank approximation of matrices,” Proc. Natl. Acad. Sci. USA 104, 20167–20172 (2007).
[CrossRef] [PubMed]

Wu, B.-Y.

B.-Y. Wu, X. Q. Sheng, “Application of asymptotic waveform evaluation to hybrid FE-BI-MLFMA for fast RCS computation over a frequency band,” IEEE Trans. Antennas Propag. 61, 2597–2604 (2013).
[CrossRef]

Xu, F.

F. Xu, K.-F. Ren, G. Gouesbet, X.-S. Cai, G. Grehan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).
[CrossRef]

Yamane, T.

A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330, 769–771 (1987).
[CrossRef] [PubMed]

Yang, M. L.

M. L. Yang, K. F. Ren, M. J. Gou, X. Q. Sheng, “Computation of radiation pressure force on arbitrary shaped homogenous particles by multilevel fast multipole algorithm,” Opt. Lett. 38, 1784–1786 (2013).
[CrossRef] [PubMed]

X. M. Pan, W. Pi, M. L. Yang, Z. Peng, X. Q. Sheng, “Solving problems with over one billion unknowns by the mlfma,” IEEE Trans. Antennas Propag. 60, 2571–2574 (2012).
[CrossRef]

Yang, P.

L. Bi, P. Yang, “Modeling of light scattering by biconcave and deformed red blood cells with the invariant imbedding T-matrix method,” J. Bio. Opt. 18, 055001 (2013).
[CrossRef]

J. Q. Lu, P. Yang, X.-H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Bio. Opt. 10, 024022 (2005).
[CrossRef]

Yla-Oijala, P.

P. Yla-Oijala, M. Taskinen, S. Jarvenpaa, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci. 40, RS6002 (2005).
[CrossRef]

Zhen, P.

P. Zhen, M. B. Stephanson, J. F. Lee, “Fast computation of angular responses of large-scale three-dimensional electromagnetic wave scattering,” IEEE Trans. Antennas Propag. 58, 3004–3012 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Shpaisman, D. B. Ruffner, D. G. Grier, “Light-driven three-dimensional rotational motion of dandelion-shaped microparticles,” Appl. Phys. Lett. 102, 071103 (2013).
[CrossRef]

Cytometry (1)

T. C. B. Schut, G. Hesselink, B. G. De Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).
[CrossRef] [PubMed]

Electromagnetics (1)

P. D. Ledger, K. Morgan, “An adjoint enhanced reduced-order model for monostatic RCS computation,” Electromagnetics 28, 54–76 (2008).
[CrossRef]

IEEE Antennas Propag. Mag. (1)

R. Coifman, V. Rokhlin, S. Wandzura, “The fast multipole method for the wave equation: a pedestrian prescription,” IEEE Antennas Propag. Mag. 35, 7–12 (1993).
[CrossRef]

IEEE Antennas Wireless Propag. Lett. (1)

X. M. Pan, X. Q. Sheng, “Improved algebraic preconditioning for mom solutions of large-scale electromagnetic problems,” IEEE Antennas Wireless Propag. Lett. 13, 106–109 (2014).
[CrossRef]

IEEE Trans. Antennas Propag. (9)

X. M. Pan, X. Q. Sheng, “Preconditioning technique in the interpolative decomposition multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 61, 3373–3377 (2013).
[CrossRef]

X. M. Pan, W. Pi, M. L. Yang, Z. Peng, X. Q. Sheng, “Solving problems with over one billion unknowns by the mlfma,” IEEE Trans. Antennas Propag. 60, 2571–2574 (2012).
[CrossRef]

P. Zhen, M. B. Stephanson, J. F. Lee, “Fast computation of angular responses of large-scale three-dimensional electromagnetic wave scattering,” IEEE Trans. Antennas Propag. 58, 3004–3012 (2010).
[CrossRef]

X. Q. Sheng, J. M. Jin, J. Song, W. C. Chew, C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).
[CrossRef]

X. Wang, D. H. Werner, “Improved model-based parameter estimation approach for accelerated periodic method of moments solutions with application to the analysis of convoluted frequency selected surfaces and metamaterials,” IEEE Trans. Antennas Propag. 58, 122–131 (2010).
[CrossRef]

B.-Y. Wu, X. Q. Sheng, “Application of asymptotic waveform evaluation to hybrid FE-BI-MLFMA for fast RCS computation over a frequency band,” IEEE Trans. Antennas Propag. 61, 2597–2604 (2013).
[CrossRef]

A. Schroder, H. D. Bruxns, C. Schuster, “A hybrid approach for rapid computation of two-dimensional monostatic radar cross section problems with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 60, 6058–6061 (2012).
[CrossRef]

S. M. Rao, D. R. Wilton, A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).
[CrossRef]

O. Ergul, L. Gurel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).
[CrossRef]

J. Appl. Phys. (1)

J. P. Barton, D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).
[CrossRef]

J. Bio. Opt. (3)

J. Q. Lu, P. Yang, X.-H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Bio. Opt. 10, 024022 (2005).
[CrossRef]

L. Bi, P. Yang, “Modeling of light scattering by biconcave and deformed red blood cells with the invariant imbedding T-matrix method,” J. Bio. Opt. 18, 055001 (2013).
[CrossRef]

O. Ergul, A. Arslan-Ergul, L. Gurel, “Computational study of scattering from healthy and diseased red blood cells,” J. Bio. Opt. 15, 045004(2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

M. I. Mishchenko, “Radiation force caused by scattering, absorption, and emission of light by nonspherical particles,” J. Quant. Spectrosc. Radiat. Transfer 70, 811–816 (2001).
[CrossRef]

Nature (1)

A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330, 769–771 (1987).
[CrossRef] [PubMed]

Nature Nanotech. (1)

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nature Nanotech. 8, 807–819 (2013).
[CrossRef]

Opt. Acta (1)

J. S. Kim, S. S. Lee, “Radiation pressure on a dielectric sphere in a gaussian laser beam,” Opt. Acta 29, 801–806 (1982).
[CrossRef]

Opt. Commun. (1)

K. F. Ren, G. Greha, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a gaussian beam by using the generalized lorenz-mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Lett. A (1)

G. Roosen, C. Imbert, “Optical levitation by means of two horizontal laser beams: A theoretical and experimental study,” Phys. Lett. A 59, 6–8 (1976).
[CrossRef]

Phys. Rev. A (1)

S. H. Simpson, S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84, 053808 (2011).
[CrossRef]

Phys. Rev. E (1)

F. Xu, K.-F. Ren, G. Gouesbet, X.-S. Cai, G. Grehan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

E. Liberty, F. Woolfe, P. G. Martinsson, V. Rokhlin, M. Tygert, “Randomized algorithms for the low-rank approximation of matrices,” Proc. Natl. Acad. Sci. USA 104, 20167–20172 (2007).
[CrossRef] [PubMed]

Progr. Electromagn. Res. (1)

X. M. Pan, X. Q. Sheng, “Hierarchical interpolative decomposition multilevel fast multipole algorithm for dynamic electromagnetic simulations,” Progr. Electromagn. Res. 134, 79–94 (2013).
[CrossRef]

Radio Sci. (2)

P. Yla-Oijala, M. Taskinen, S. Jarvenpaa, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci. 40, RS6002 (2005).
[CrossRef]

X. M. Pan, J. G. Wei, Z. Peng, X. Q. Sheng, “A fast algorithm for multiscale electromagnetic problems using interpolative decomposition and multilevel fast multipole algorithm,” Radio Sci. 47, RS1011 (2012).
[CrossRef]

Rev. Sci. Instrum. (1)

K. C. Neuman, S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

SIAM J. Sci. Comput. (1)

K. L. Ho, L. Greengard, “A fast direct solver for structured linear systems by recursive skeletonization,” SIAM J. Sci. Comput. 34, A2507–A2532 (2012).
[CrossRef]

SIAM Rev. (1)

N. Halko, P. G. Martinsson, J. A. Tropp, “Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions,” SIAM Rev. 53, 72 (2011).
[CrossRef]

Other (1)

X. M. Pan, X. Q. Sheng, “Fast computation of two-dimensional spatial electromagnetic scattering from large-scale targets,” Computational Electromagnetics Workshop (CEM), 2013 pp. 1–3 (2013).
[CrossRef]

Supplementary Material (2)

» Media 1: JPG (216 KB)     
» Media 2: JPG (155 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1:
Fig. 1:

The red blood cell (RBC) model.

Fig. 2:
Fig. 2:

Comparison of z components of RPF by Gaussian beams (Nb = 401, λ = 514.5nm and wo = 2λ) on a prolate slightly volatile silicone oil particle (ε = 2.25) computed with and without the skeletonization. The transversal radius of the particle is b = 1μm while the radius a along z axis varies. The step of ζo is 0.5μm. ”BF” denotes brute-force.

Fig. 3:
Fig. 3:

The relative error of z components of RPF by Gaussian beams (Nb = 401, λ = 514.5nm and wo = 2λ) on a prolate slightly volatile silicone oil particle (ε = 2.25) computed with and without the skeletonization. The transversal radius of the particle is b = 1μm while the radius a along z axis varies. The step of ζo is 0.5μm.

Fig. 4:
Fig. 4:

The relative error of z components of RPF when different number of intervals are employed to figure out the skeleton beams (b = 1.00μm and a = 1.10μm; the other parameters are the same as those for the computations in Fig. 2).

Fig. 5:
Fig. 5:

z components of RPF (Nb = 801, the parameters are the same as those for Fig. 2).

Fig. 6:
Fig. 6:

x and y components of RPF (denoted by Fx and Fy) exerted on the RBC model when θ, φ and ζo of the beam vary within [45°, 55°], [85°, 95°] and [−2λ, 2λ]. The step of angle and distance is, respectively, 0.2° and 0.1λ. The unit of force is 10−9N/W.

Fig. 7:
Fig. 7:

z components of RPF (Fz) exerted on the RBC model (The other parameters are the same as those in 6).

Tables (3)

Tables Icon

Algorithm 1: the two-level multi-interval strategy–skeletonization stage

Tables Icon

Algorithm 2: The two-level multi-interval strategy–recovering stage

Tables Icon

Table 1: Statistics of computations on the spheroid oil particle with a/b = 1.10 when different number of intervals are employed in the two-level scheme.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

E e sca ( r , J e , M e ) + E inc = { 0 if r Ω i E e tot , if r Ω e
H e sca ( r , J e , M e ) + H inc = { 0 if r Ω i H e tot , if r Ω e
E i sca ( r , J i , M i ) = { E i tot , if r Ω i 0 , if r Ω e
H i sca ( r , J i , M i ) = { H i tot , if r Ω i 0 if r Ω e
E q sca ( r , J q , M q ) = η q q ( J q ) 𝒦 q ( M q ) ,
H q sca ( r , J q , M q ) = η q 1 q ( M q ) + 𝒦 q ( J q ) ,
q { X } ( r ) = j k q S d S [ I + 1 k q 2 ] X ( r ) g q ( r , r ) ,
𝒦 q { X } ( r ) = Ω ( r ) 4 π X ( r ) + × S d S g q ( r , r ) X ( r ) ,
η e 1 ( T-EFIE ) e + η i 1 ( T-EFIE ) i ,
η e ( T-MFIE ) e + η i ( T-MFIE ) i .
Z x = b , or ( Z J , J Z J , M Z M , J Z M , M ) { x J x M } = { b J b M } ,
Z X ( κ ) = B ( κ ) ,
C m × n S m × r R r × n ,
B ( κ ) = B S ( κ ) R ( κ ) ,
Z X ( κ ) = B S ( κ ) R ( κ ) .
X S ( κ ) = Z 1 B S ( κ ) ,
X ( κ ) = X S ( κ ) R ( κ ) .
C ID = l C H + O ( r m + r l n )
M ID = 16 ( m n + 2 n m 2 + 17 m ) 16 ( 2 m n + 17 m ) ,
r ( Θ , Φ ) = a sin s Θ + b

Metrics