Abstract

We propose and demonstrate a 10-Gb/s dense wavelength-division-multiplexing (DWDM) optical system based on a pulsed-seed-light source employing a fiber-based Mach-Zehnder interferometer (F-MZI) as an intensity noise suppressor. The transmission results show that the required injection power into a reflective modulator was as low as −18 dBm. The F-MZI can accommodate the polarized seed-light with superior noise characteristics so that the supported DWDM systems double using a single conventional unpolarized seed-light. In addition, an allowable length of the drop fiber is investigated to show the system flexibility.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.-H. Lee, W. V. Sorin, B. Y. Kim, “Fiber to the home using a PON infrastructure,” J. Lightwave Technol. 24(12), 4568–4583 (2006).
    [CrossRef]
  2. K. Y. Cho, U. H. Hong, S. P. Jung, Y. Takushima, A. Agata, T. Sano, Y. Horiuchi, M. Suzuki, Y. C. Chung, “Long-reach 10-Gb/s RSOA-based WDM PON employing QPSK signal and coherent receiver,” Opt. Express 20(14), 15353–15358 (2012).
    [CrossRef] [PubMed]
  3. Z. Xu, Y.-K. Yeo, X. Cheng, and E. Kuruiawan, “20-Gb/s injection locked F-P LD in a wavelength-division multiplexing OFDN-PON,” in Proc. of OFC/NFOEC2012, paper OW4B.3.
  4. J. Zhang, J. Yu, F. Li, N. Chi, Z. Dong, X. Li, “11 × 5 × 9.3Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection,” Opt. Express 21(16), 18842–18848 (2013).
    [CrossRef] [PubMed]
  5. J.-Y. Kim, S.-R. Moon, S.-H. Yoo, C.-H. Lee, “Modeling of seeded reflective modulators for DWDM systems,” IEEE J. Sel. Top. Quantum Electron. 19(5), 3300207 (2013).
    [CrossRef]
  6. J.-Y. Kim, S.-R. Moon, S.-H. Yoo, C.-H. Lee, “DWDM-PON at 25 GHz channel spacing based on ASE injection seeding,” Opt. Express 20(26), B45–B51 (2012).
    [CrossRef] [PubMed]
  7. H.-K. Lee, H.-S. Cho, J.-Y. Kim, C.-H. Lee, “A WDM-PON with an 80 Gb/s capacity based on wavelength-locked Fabry-Perot laser diode,” Opt. Express 18(17), 18077–18085 (2010).
    [CrossRef] [PubMed]
  8. Z. Al-Qazwini, H. Kim, “5-Gb/s optical transmitter based on incoherent-light-injected RSOAs with graceful upgrade capability for WDM PONs,” Opt. Express 21(7), 8135–8141 (2013).
    [CrossRef] [PubMed]
  9. H. Kim, “Pulsed-incoherent-light-injected Fabry-Perot laser diode for WDM passive optical networks,” Opt. Express 18(2), 1714–1721 (2010).
    [CrossRef] [PubMed]
  10. C.-H. Lee, J.-Y. Kim, S.-R. Moon, S.-H. Yoo, H.-Y. Rhy, and S. A. Abbas, “A standard for seeded DWDM passive networks,” in Proc. of2012FTTH conference and expo, paper PC-102.
  11. ITU-T Recommendation G.698.3, Multichannel seeded DWDM applications with single-channel optical interfaces.
  12. D. C. Kim, H.-S. Kim, K. S. Kim, B.-S. Choi, J.-S. Jeong, and O.-K. Kwon, “10 Gbps SOA-REAM using monolithic integration of planar buried-heterostructure SOA with deep-ridge waveguide EA modulator for colourless optical source in WDM-PON,” in Proc. of ECOC2011, paper Tu.5.LeSaleve.5.
    [CrossRef]
  13. J.-Y. Kim, S.-H. Yoo, S.-R. Moon, D. C. Kim, and C.-H. Lee, “400 Gb/s (40 × 10 Gb/s) ASE injection seeded WDM-PON based on SOA-REAM,” in Proc. of OFC/NFOEC2013, paper OW4D.
    [CrossRef]
  14. S.-H. Yoo, J.-Y. Kim, B.-I. Seo, C.-H. Lee, “Noise-suppressed mutually injected Fabry-Perot laser diodes for 10-Gb/s broadcast signal transmission in WDM passive optical networks,” Opt. Express 21(5), 6538–6546 (2013).
    [CrossRef] [PubMed]
  15. X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Noise suppression for fiber radio transmission on spectrum-sliced WDM-PONs employing interferometric structures,” in Proc. of OFC/NFOEC2011, Paper OWK6.
    [CrossRef]

2013 (4)

2012 (2)

2010 (2)

2006 (1)

Agata, A.

Al-Qazwini, Z.

Chi, N.

Cho, H.-S.

Cho, K. Y.

Chung, Y. C.

Dong, Z.

Hong, U. H.

Horiuchi, Y.

Jung, S. P.

Kim, B. Y.

Kim, H.

Kim, J.-Y.

Lee, C.-H.

Lee, H.-K.

Li, F.

Li, X.

Moon, S.-R.

J.-Y. Kim, S.-R. Moon, S.-H. Yoo, C.-H. Lee, “Modeling of seeded reflective modulators for DWDM systems,” IEEE J. Sel. Top. Quantum Electron. 19(5), 3300207 (2013).
[CrossRef]

J.-Y. Kim, S.-R. Moon, S.-H. Yoo, C.-H. Lee, “DWDM-PON at 25 GHz channel spacing based on ASE injection seeding,” Opt. Express 20(26), B45–B51 (2012).
[CrossRef] [PubMed]

Sano, T.

Seo, B.-I.

Sorin, W. V.

Suzuki, M.

Takushima, Y.

Yoo, S.-H.

Yu, J.

Zhang, J.

IEEE J. Sel. Top. Quantum Electron. (1)

J.-Y. Kim, S.-R. Moon, S.-H. Yoo, C.-H. Lee, “Modeling of seeded reflective modulators for DWDM systems,” IEEE J. Sel. Top. Quantum Electron. 19(5), 3300207 (2013).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (7)

K. Y. Cho, U. H. Hong, S. P. Jung, Y. Takushima, A. Agata, T. Sano, Y. Horiuchi, M. Suzuki, Y. C. Chung, “Long-reach 10-Gb/s RSOA-based WDM PON employing QPSK signal and coherent receiver,” Opt. Express 20(14), 15353–15358 (2012).
[CrossRef] [PubMed]

S.-H. Yoo, J.-Y. Kim, B.-I. Seo, C.-H. Lee, “Noise-suppressed mutually injected Fabry-Perot laser diodes for 10-Gb/s broadcast signal transmission in WDM passive optical networks,” Opt. Express 21(5), 6538–6546 (2013).
[CrossRef] [PubMed]

J. Zhang, J. Yu, F. Li, N. Chi, Z. Dong, X. Li, “11 × 5 × 9.3Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection,” Opt. Express 21(16), 18842–18848 (2013).
[CrossRef] [PubMed]

J.-Y. Kim, S.-R. Moon, S.-H. Yoo, C.-H. Lee, “DWDM-PON at 25 GHz channel spacing based on ASE injection seeding,” Opt. Express 20(26), B45–B51 (2012).
[CrossRef] [PubMed]

H.-K. Lee, H.-S. Cho, J.-Y. Kim, C.-H. Lee, “A WDM-PON with an 80 Gb/s capacity based on wavelength-locked Fabry-Perot laser diode,” Opt. Express 18(17), 18077–18085 (2010).
[CrossRef] [PubMed]

Z. Al-Qazwini, H. Kim, “5-Gb/s optical transmitter based on incoherent-light-injected RSOAs with graceful upgrade capability for WDM PONs,” Opt. Express 21(7), 8135–8141 (2013).
[CrossRef] [PubMed]

H. Kim, “Pulsed-incoherent-light-injected Fabry-Perot laser diode for WDM passive optical networks,” Opt. Express 18(2), 1714–1721 (2010).
[CrossRef] [PubMed]

Other (6)

C.-H. Lee, J.-Y. Kim, S.-R. Moon, S.-H. Yoo, H.-Y. Rhy, and S. A. Abbas, “A standard for seeded DWDM passive networks,” in Proc. of2012FTTH conference and expo, paper PC-102.

ITU-T Recommendation G.698.3, Multichannel seeded DWDM applications with single-channel optical interfaces.

D. C. Kim, H.-S. Kim, K. S. Kim, B.-S. Choi, J.-S. Jeong, and O.-K. Kwon, “10 Gbps SOA-REAM using monolithic integration of planar buried-heterostructure SOA with deep-ridge waveguide EA modulator for colourless optical source in WDM-PON,” in Proc. of ECOC2011, paper Tu.5.LeSaleve.5.
[CrossRef]

J.-Y. Kim, S.-H. Yoo, S.-R. Moon, D. C. Kim, and C.-H. Lee, “400 Gb/s (40 × 10 Gb/s) ASE injection seeded WDM-PON based on SOA-REAM,” in Proc. of OFC/NFOEC2013, paper OW4D.
[CrossRef]

X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Noise suppression for fiber radio transmission on spectrum-sliced WDM-PONs employing interferometric structures,” in Proc. of OFC/NFOEC2011, Paper OWK6.
[CrossRef]

Z. Xu, Y.-K. Yeo, X. Cheng, and E. Kuruiawan, “20-Gb/s injection locked F-P LD in a wavelength-division multiplexing OFDN-PON,” in Proc. of OFC/NFOEC2012, paper OW4B.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematics of the pulsed-seed-light with (a) the unpolarized and (b) polarized BLS.

Fig. 2
Fig. 2

Experimental setup of the 10-Gb/s DWDM system employing the pulsed-seed-light source based on the F-MZI.

Fig. 3
Fig. 3

(a) Measured average RIN and (b) estimated RIN as a function of the time delay difference of the F-MZI.

Fig. 4
Fig. 4

Measured RIN spectra according to seed-light source.

Fig. 5
Fig. 5

Measured BER as a function of the injection power. (a) Unpolarized CW-seed-light source and (b) proposed pulsed-seed-light source based on the F-MZI (93.5 ps delayed).

Fig. 6
Fig. 6

Measured power penalty by (a) dispersion and (b) time delay mismatches.

Fig. 7
Fig. 7

Measured BER curves as a function of time delay difference.

Metrics