Abstract

We experimentally demonstrated a 256-ary quadrature amplitude modulation (256QAM) direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) transmission system utilizing a cost-effective directly modulated laser (DML). Intra-symbol frequency-domain averaging (ISFA) is applied to suppress in-band noise while the channel response estimation and Discrete Fourier Transform-spread (DFT-spread) is used to reduce the peak-to-average power ratio (PAPR) of the transmitted OFDM signal. The bit-error ratio (BER) of 15-Gbit/s 256QAM-OFDM signal has been measured after 20-km SSMF transmission that is less than 7% forward-error-correction (FEC) threshold of 3.8 × 10−3 as the launch power into fiber is set at 6dBm. For 11.85-Gbit/s 256QAM-OFDM signal, with the aid of ISFA-based channel estimation and PAPR reduction enabled by DFT-spread, the BER after 20-km SSMF transmission can be improved from 6.4 × 10−3 to 6.8 × 10−4 when the received optical power is −6dBm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Qian, J. Yu, J. Hu, P. N. Ji, and T. Wang, “11.5Gb/s OFDM transmission over 640km SSMF using directly modulated laser,” in Proc. ECOC 2008, paper Mo3E4 (2008).
  2. R. P. Giddings, X. Q. Jin, J. M. Tang, “First experimental demonstration of 6Gb/s real-time optical OFDM transceivers incorporating channel estimation and variable power loading,” Opt. Express 17(22), 19727–19738 (2009).
    [CrossRef] [PubMed]
  3. X. Q. Jin, R. P. Giddings, E. Hugues-Salas, J. M. Tang, “Real-time demonstration of 128-QAM-encoded optical OFDM transmission with a 5.25bit/s/Hz spectral efficiency in simple IMDD systems utilizing directly modulated DFB lasers,” Opt. Express 17(22), 20484–20493 (2009).
    [CrossRef] [PubMed]
  4. H. Yang, S. C. J. Lee, E. Tangdiongga, C. Okonkwo, H. P. A. van den Boom, F. Breyer, S. Randel, A. M. J. Koonen, “47.4 Gb/s transmission over 100 m graded-index plastic optical fiber based on rate-adaptive discrete multi-tone modulation,” J. Lightwave Technol. 28(4), 352–359 (2010).
    [CrossRef]
  5. M. F. Huang, J. Yu, D. Qian, N. Cvijetic, and G. K. Chang, “Lightwave centralized WDM-OFDM-PON network employing cost-effective directly modulated laser,” in Proc. OFC 2009, paper OMV5 (2009).
  6. R. P. Giddings, E. Hugues-Salas, J. M. Tang, “Experimental demonstration of record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express 20(18), 20666–20679 (2012).
    [CrossRef] [PubMed]
  7. M. Beltrán, Y. Shi, C. Okonkwo, R. Llorente, E. Tangdiongga, T. Koonen, “In-home networks integrating high-capacity DMT data and DVB-T over large-core GI-POF,” Opt. Express 20(28), 29769–29775 (2012).
    [CrossRef] [PubMed]
  8. J. Yu, M. Huang, D. Qian, L. Chen, G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
    [CrossRef]
  9. J. Silva, A. Cartaxo, M. Segatto, “A PAPR reduction technique based on a constant envelope OFDM approach for fiber nonlinearity mitigation in optical direct-detection systems,” IEEE/OSA J. Opt. Commun. Netw. 4(4), 296–303 (2012).
    [CrossRef]
  10. W.-R. Peng, “Analysis of laser phase noise effect in direct-detection optical OFDM transmission,” J. Lightwave Technol. 28(17), 2526–2536 (2010).
    [CrossRef]
  11. Z. Cao, J. Yu, W. Wang, L. Chen, Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett. 22(11), 736–738 (2010).
    [CrossRef]
  12. Q. Yang, N. Kaneda, X. Liu, W. Shieh, “Demonstration of frequency-domain averaging based channel estimation for 40 Gb/s CO-OFDM with high PMD,” IEEE Photon. Technol. Lett. 21(20), 1544–1546 (2009).
    [CrossRef]
  13. X. Liu, F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express 16(26), 21944–21957 (2008).
    [CrossRef] [PubMed]
  14. Y. Tang, W. Shieh, B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett. 22(16), 1250–1252 (2010).
    [CrossRef]
  15. F. J. Effenberger, “The XG-PON System: Cost Effective 10 Gb/s Access,” J. Lightwave Technol. 29(4), 403–409 (2011).
    [CrossRef]
  16. S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission,” J. Lightwave Technol. 8(11), 1716–1722 (1990).
    [CrossRef]
  17. D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” OFC 2012, OW1H.4 (2012).

2012

2011

2010

H. Yang, S. C. J. Lee, E. Tangdiongga, C. Okonkwo, H. P. A. van den Boom, F. Breyer, S. Randel, A. M. J. Koonen, “47.4 Gb/s transmission over 100 m graded-index plastic optical fiber based on rate-adaptive discrete multi-tone modulation,” J. Lightwave Technol. 28(4), 352–359 (2010).
[CrossRef]

Y. Tang, W. Shieh, B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett. 22(16), 1250–1252 (2010).
[CrossRef]

W.-R. Peng, “Analysis of laser phase noise effect in direct-detection optical OFDM transmission,” J. Lightwave Technol. 28(17), 2526–2536 (2010).
[CrossRef]

Z. Cao, J. Yu, W. Wang, L. Chen, Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett. 22(11), 736–738 (2010).
[CrossRef]

2009

2008

J. Yu, M. Huang, D. Qian, L. Chen, G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

X. Liu, F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express 16(26), 21944–21957 (2008).
[CrossRef] [PubMed]

1990

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission,” J. Lightwave Technol. 8(11), 1716–1722 (1990).
[CrossRef]

Beltrán, M.

Breyer, F.

Buchali, F.

Cao, Z.

Z. Cao, J. Yu, W. Wang, L. Chen, Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett. 22(11), 736–738 (2010).
[CrossRef]

Cartaxo, A.

J. Silva, A. Cartaxo, M. Segatto, “A PAPR reduction technique based on a constant envelope OFDM approach for fiber nonlinearity mitigation in optical direct-detection systems,” IEEE/OSA J. Opt. Commun. Netw. 4(4), 296–303 (2012).
[CrossRef]

Chang, G. K.

J. Yu, M. Huang, D. Qian, L. Chen, G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

Chen, L.

Z. Cao, J. Yu, W. Wang, L. Chen, Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett. 22(11), 736–738 (2010).
[CrossRef]

J. Yu, M. Huang, D. Qian, L. Chen, G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

Dong, Z.

Z. Cao, J. Yu, W. Wang, L. Chen, Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett. 22(11), 736–738 (2010).
[CrossRef]

Edagawa, N.

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission,” J. Lightwave Technol. 8(11), 1716–1722 (1990).
[CrossRef]

Effenberger, F. J.

Giddings, R. P.

Huang, M.

J. Yu, M. Huang, D. Qian, L. Chen, G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

Hugues-Salas, E.

Jin, X. Q.

Kaneda, N.

Q. Yang, N. Kaneda, X. Liu, W. Shieh, “Demonstration of frequency-domain averaging based channel estimation for 40 Gb/s CO-OFDM with high PMD,” IEEE Photon. Technol. Lett. 21(20), 1544–1546 (2009).
[CrossRef]

Koonen, A. M. J.

Koonen, T.

Krongold, B. S.

Y. Tang, W. Shieh, B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett. 22(16), 1250–1252 (2010).
[CrossRef]

Lee, S. C. J.

Liu, X.

Q. Yang, N. Kaneda, X. Liu, W. Shieh, “Demonstration of frequency-domain averaging based channel estimation for 40 Gb/s CO-OFDM with high PMD,” IEEE Photon. Technol. Lett. 21(20), 1544–1546 (2009).
[CrossRef]

X. Liu, F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express 16(26), 21944–21957 (2008).
[CrossRef] [PubMed]

Llorente, R.

Okonkwo, C.

Peng, W.-R.

Qian, D.

J. Yu, M. Huang, D. Qian, L. Chen, G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

Randel, S.

Segatto, M.

J. Silva, A. Cartaxo, M. Segatto, “A PAPR reduction technique based on a constant envelope OFDM approach for fiber nonlinearity mitigation in optical direct-detection systems,” IEEE/OSA J. Opt. Commun. Netw. 4(4), 296–303 (2012).
[CrossRef]

Shi, Y.

Shieh, W.

Y. Tang, W. Shieh, B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett. 22(16), 1250–1252 (2010).
[CrossRef]

Q. Yang, N. Kaneda, X. Liu, W. Shieh, “Demonstration of frequency-domain averaging based channel estimation for 40 Gb/s CO-OFDM with high PMD,” IEEE Photon. Technol. Lett. 21(20), 1544–1546 (2009).
[CrossRef]

Silva, J.

J. Silva, A. Cartaxo, M. Segatto, “A PAPR reduction technique based on a constant envelope OFDM approach for fiber nonlinearity mitigation in optical direct-detection systems,” IEEE/OSA J. Opt. Commun. Netw. 4(4), 296–303 (2012).
[CrossRef]

Taga, H.

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission,” J. Lightwave Technol. 8(11), 1716–1722 (1990).
[CrossRef]

Tang, J. M.

Tang, Y.

Y. Tang, W. Shieh, B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett. 22(16), 1250–1252 (2010).
[CrossRef]

Tangdiongga, E.

van den Boom, H. P. A.

Wakabayashi, H.

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission,” J. Lightwave Technol. 8(11), 1716–1722 (1990).
[CrossRef]

Wang, W.

Z. Cao, J. Yu, W. Wang, L. Chen, Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett. 22(11), 736–738 (2010).
[CrossRef]

Yamamoto, S.

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission,” J. Lightwave Technol. 8(11), 1716–1722 (1990).
[CrossRef]

Yang, H.

Yang, Q.

Q. Yang, N. Kaneda, X. Liu, W. Shieh, “Demonstration of frequency-domain averaging based channel estimation for 40 Gb/s CO-OFDM with high PMD,” IEEE Photon. Technol. Lett. 21(20), 1544–1546 (2009).
[CrossRef]

Yoshida, Y.

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission,” J. Lightwave Technol. 8(11), 1716–1722 (1990).
[CrossRef]

Yu, J.

Z. Cao, J. Yu, W. Wang, L. Chen, Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett. 22(11), 736–738 (2010).
[CrossRef]

J. Yu, M. Huang, D. Qian, L. Chen, G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Yu, M. Huang, D. Qian, L. Chen, G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

Y. Tang, W. Shieh, B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett. 22(16), 1250–1252 (2010).
[CrossRef]

Z. Cao, J. Yu, W. Wang, L. Chen, Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett. 22(11), 736–738 (2010).
[CrossRef]

Q. Yang, N. Kaneda, X. Liu, W. Shieh, “Demonstration of frequency-domain averaging based channel estimation for 40 Gb/s CO-OFDM with high PMD,” IEEE Photon. Technol. Lett. 21(20), 1544–1546 (2009).
[CrossRef]

IEEE/OSA J. Opt. Commun. Netw.

J. Silva, A. Cartaxo, M. Segatto, “A PAPR reduction technique based on a constant envelope OFDM approach for fiber nonlinearity mitigation in optical direct-detection systems,” IEEE/OSA J. Opt. Commun. Netw. 4(4), 296–303 (2012).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

M. F. Huang, J. Yu, D. Qian, N. Cvijetic, and G. K. Chang, “Lightwave centralized WDM-OFDM-PON network employing cost-effective directly modulated laser,” in Proc. OFC 2009, paper OMV5 (2009).

D. Qian, J. Yu, J. Hu, P. N. Ji, and T. Wang, “11.5Gb/s OFDM transmission over 640km SSMF using directly modulated laser,” in Proc. ECOC 2008, paper Mo3E4 (2008).

D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” OFC 2012, OW1H.4 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Noise power in frequency domain with different taps. (b) BER versus SNR of the OFDM signals with and without ISFA.

Fig. 2
Fig. 2

(a) Principle of DFT-spread DDO-OFDM generation and recovery. (b) CCDF curves.

Fig. 3
Fig. 3

The experimental setup for the 256QAM-OFDM signal transmission in simple IM-DD system utilizing DML. (a) Output optical spectra of the DML. (b) 256QAM constellation. (c) and (d) Electrical spectra of received OFDM signal before and after pre-equalization.

Fig. 4
Fig. 4

(a) and (b) Amplitude and phase of estimated channel response without and with ISFA (taps = 7). (c) Signal Q-factor versus the number of ISFA taps for different received optical power. (d) Signal Q-factor versus launch power into fiber.

Fig. 5
Fig. 5

(a) Measured BER versus received optical power. (b) Measured BER versus fiber span. (c) Measured BER versus raw bit rate.

Metrics