Abstract

Heterogenous nanostructures shaped with CdS covered ZnO (ZnO/CdS) core/shell nanorods (NRs) are fabricated on indium-tin-oxide by pulsed laser deposition of CdS on hydrothermally grown ZnO NRs and characterized through morphology examination, structure characterization, photoluminescence and optical absorption measurements. Both the ZnO cores and the CdS shells are hexagonal wurtzite in structure. Compared with bare ZnO NRs, the fabricated ZnO/CdS core/shell NRs present an extended photo-response and have optical properties corresponding to the two excitonic band-gaps of ZnO and CdS as well as the effective band-gap formed between the conduction band minimum of ZnO and the valence band maximum of CdS.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. van Embden, J. Jasieniak, D. E. Gómez, P. Mulvaney, M. Giersig, “Review of the synthetic chemistry involved in the production of core/shell semiconductor nanocrystals,” Aust. J. Chem. 60(7), 457–471 (2007).
    [CrossRef]
  2. K. Wang, J. J. Chen, W. L. Zhou, Y. Zhang, Y. F. Yan, J. Pern, A. Mascarenhas, “Direct growth of highly mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications,” Adv. Mater. 20(17), 3248–3253 (2008).
    [CrossRef]
  3. Q. Yang, Y. Liu, C. F. Pan, J. Chen, X. N. Wen, Z. L. Wang, “Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect,” Nano Lett. 13(2), 607–613 (2013).
    [CrossRef] [PubMed]
  4. S. Mokkapati, D. Saxena, N. Jiang, P. Parkinson, J. Wong-Leung, Q. Gao, H. H. Tan, C. Jagadish, “Polarization tunable, multicolor emission from core-shell photonic III-V semiconductor nanowires,” Nano Lett. 12(12), 6428–6431 (2012).
    [CrossRef] [PubMed]
  5. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, “Recent progress in processing and properties of ZnO,” Superlattices Microstruct. 34(1–2), 3–32 (2003).
    [CrossRef]
  6. M. C. Baykul, N. Orhan, “Band alignment of Cd(1 −x)ZnxS produced by spray pyrolysis method,” Thin Solid Films 518(8), 1925–1928 (2010).
    [CrossRef]
  7. A. A. Ziabari, F. E. Ghodsi, “Growth, characterization and studying of sol–gel derived CdS nanoscrystalline thin films incorporated in polyethyleneglycol: Effects of post-heat treatment,” Sol. Energy Mater. Sol. Cells 105, 249–262 (2012).
    [CrossRef]
  8. C. M. Li, T. Ahmed, M. G. Ma, T. Edvinsson, J. F. Zhu, “A facile approach to ZnO/CdS nanoarrays and their photocatalytic and photoelectrochemical properties,” Appl. Catal. B 138, 175−183 (2013).
  9. S. Khanchandani, S. Kundu, A. Patra, A. K. Ganguli, “Shell thickness dependent photocatalytic properties of ZnO/CdS core−shell nanorods,” J. Phys. Chem. C 116(44), 23653–23662 (2012).
    [CrossRef]
  10. Z. M. Wu, Y. Zhang, J. J. Zheng, X. G. Lin, X. H. Chen, B. W. Huang, H. Q. Wang, K. Huang, S. P. Li, J. Y. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020–6026 (2011).
    [CrossRef]
  11. Y. Zhang, M. D. Sturge, K. Kash, A. S. Gozdz, L. T. Florez, J. P. Harbison, “Temperature dependence of luminescence efficiency, exciton transfer, and exciton localization in GaAs/AlxGa1-xAs quantum wires and quantum dots,” Phys. Rev. B Condens. Matter 51(19), 13303–13314 (1995).
    [CrossRef] [PubMed]
  12. N. Xu, Y. Cui, Z. G. Hu, W. L. Yu, J. Sun, N. Xu, J. D. Wu, “Photoluminescence and low-threshold lasing of ZnO nanorod arrays,” Opt. Express 20(14), 14857–14863 (2012).
    [CrossRef] [PubMed]
  13. T. C. Damen, S. P. S. Porto, B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142(2), 570–574 (1966).
    [CrossRef]
  14. V. Pachauri, C. Subramaniam, T. Pradeep, “Novel ZnO nanostructures over gold and silver nanoparticle assemblies,” Chem. Phys. Lett. 423(1–3), 240–246 (2006).
    [CrossRef]
  15. R. C. C. Leite, J. F. Scott, T. C. Damen, “Multiple-phonon resonant raman scattering in CdS,” Phys. Rev. Lett. 22(15), 780–782 (1969).
    [CrossRef]
  16. W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, J. J. Song, “Nature of room-temperature photoluminescence in ZnO,” Appl. Phys. Lett. 86(19), 191911 (2005).
    [CrossRef]
  17. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
    [CrossRef]

2013 (2)

Q. Yang, Y. Liu, C. F. Pan, J. Chen, X. N. Wen, Z. L. Wang, “Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect,” Nano Lett. 13(2), 607–613 (2013).
[CrossRef] [PubMed]

C. M. Li, T. Ahmed, M. G. Ma, T. Edvinsson, J. F. Zhu, “A facile approach to ZnO/CdS nanoarrays and their photocatalytic and photoelectrochemical properties,” Appl. Catal. B 138, 175−183 (2013).

2012 (4)

S. Khanchandani, S. Kundu, A. Patra, A. K. Ganguli, “Shell thickness dependent photocatalytic properties of ZnO/CdS core−shell nanorods,” J. Phys. Chem. C 116(44), 23653–23662 (2012).
[CrossRef]

S. Mokkapati, D. Saxena, N. Jiang, P. Parkinson, J. Wong-Leung, Q. Gao, H. H. Tan, C. Jagadish, “Polarization tunable, multicolor emission from core-shell photonic III-V semiconductor nanowires,” Nano Lett. 12(12), 6428–6431 (2012).
[CrossRef] [PubMed]

A. A. Ziabari, F. E. Ghodsi, “Growth, characterization and studying of sol–gel derived CdS nanoscrystalline thin films incorporated in polyethyleneglycol: Effects of post-heat treatment,” Sol. Energy Mater. Sol. Cells 105, 249–262 (2012).
[CrossRef]

N. Xu, Y. Cui, Z. G. Hu, W. L. Yu, J. Sun, N. Xu, J. D. Wu, “Photoluminescence and low-threshold lasing of ZnO nanorod arrays,” Opt. Express 20(14), 14857–14863 (2012).
[CrossRef] [PubMed]

2011 (1)

Z. M. Wu, Y. Zhang, J. J. Zheng, X. G. Lin, X. H. Chen, B. W. Huang, H. Q. Wang, K. Huang, S. P. Li, J. Y. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020–6026 (2011).
[CrossRef]

2010 (1)

M. C. Baykul, N. Orhan, “Band alignment of Cd(1 −x)ZnxS produced by spray pyrolysis method,” Thin Solid Films 518(8), 1925–1928 (2010).
[CrossRef]

2008 (1)

K. Wang, J. J. Chen, W. L. Zhou, Y. Zhang, Y. F. Yan, J. Pern, A. Mascarenhas, “Direct growth of highly mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications,” Adv. Mater. 20(17), 3248–3253 (2008).
[CrossRef]

2007 (1)

J. van Embden, J. Jasieniak, D. E. Gómez, P. Mulvaney, M. Giersig, “Review of the synthetic chemistry involved in the production of core/shell semiconductor nanocrystals,” Aust. J. Chem. 60(7), 457–471 (2007).
[CrossRef]

2006 (1)

V. Pachauri, C. Subramaniam, T. Pradeep, “Novel ZnO nanostructures over gold and silver nanoparticle assemblies,” Chem. Phys. Lett. 423(1–3), 240–246 (2006).
[CrossRef]

2005 (1)

W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, J. J. Song, “Nature of room-temperature photoluminescence in ZnO,” Appl. Phys. Lett. 86(19), 191911 (2005).
[CrossRef]

2003 (1)

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, “Recent progress in processing and properties of ZnO,” Superlattices Microstruct. 34(1–2), 3–32 (2003).
[CrossRef]

1996 (1)

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[CrossRef]

1995 (1)

Y. Zhang, M. D. Sturge, K. Kash, A. S. Gozdz, L. T. Florez, J. P. Harbison, “Temperature dependence of luminescence efficiency, exciton transfer, and exciton localization in GaAs/AlxGa1-xAs quantum wires and quantum dots,” Phys. Rev. B Condens. Matter 51(19), 13303–13314 (1995).
[CrossRef] [PubMed]

1969 (1)

R. C. C. Leite, J. F. Scott, T. C. Damen, “Multiple-phonon resonant raman scattering in CdS,” Phys. Rev. Lett. 22(15), 780–782 (1969).
[CrossRef]

1966 (1)

T. C. Damen, S. P. S. Porto, B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142(2), 570–574 (1966).
[CrossRef]

Ager, J. W.

W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, J. J. Song, “Nature of room-temperature photoluminescence in ZnO,” Appl. Phys. Lett. 86(19), 191911 (2005).
[CrossRef]

Ahmed, T.

C. M. Li, T. Ahmed, M. G. Ma, T. Edvinsson, J. F. Zhu, “A facile approach to ZnO/CdS nanoarrays and their photocatalytic and photoelectrochemical properties,” Appl. Catal. B 138, 175−183 (2013).

Baykul, M. C.

M. C. Baykul, N. Orhan, “Band alignment of Cd(1 −x)ZnxS produced by spray pyrolysis method,” Thin Solid Films 518(8), 1925–1928 (2010).
[CrossRef]

Cantwell, G.

W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, J. J. Song, “Nature of room-temperature photoluminescence in ZnO,” Appl. Phys. Lett. 86(19), 191911 (2005).
[CrossRef]

Chen, J.

Q. Yang, Y. Liu, C. F. Pan, J. Chen, X. N. Wen, Z. L. Wang, “Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect,” Nano Lett. 13(2), 607–613 (2013).
[CrossRef] [PubMed]

Chen, J. J.

K. Wang, J. J. Chen, W. L. Zhou, Y. Zhang, Y. F. Yan, J. Pern, A. Mascarenhas, “Direct growth of highly mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications,” Adv. Mater. 20(17), 3248–3253 (2008).
[CrossRef]

Chen, X. H.

Z. M. Wu, Y. Zhang, J. J. Zheng, X. G. Lin, X. H. Chen, B. W. Huang, H. Q. Wang, K. Huang, S. P. Li, J. Y. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020–6026 (2011).
[CrossRef]

Cui, Y.

Damen, T. C.

R. C. C. Leite, J. F. Scott, T. C. Damen, “Multiple-phonon resonant raman scattering in CdS,” Phys. Rev. Lett. 22(15), 780–782 (1969).
[CrossRef]

T. C. Damen, S. P. S. Porto, B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142(2), 570–574 (1966).
[CrossRef]

Edvinsson, T.

C. M. Li, T. Ahmed, M. G. Ma, T. Edvinsson, J. F. Zhu, “A facile approach to ZnO/CdS nanoarrays and their photocatalytic and photoelectrochemical properties,” Appl. Catal. B 138, 175−183 (2013).

Florez, L. T.

Y. Zhang, M. D. Sturge, K. Kash, A. S. Gozdz, L. T. Florez, J. P. Harbison, “Temperature dependence of luminescence efficiency, exciton transfer, and exciton localization in GaAs/AlxGa1-xAs quantum wires and quantum dots,” Phys. Rev. B Condens. Matter 51(19), 13303–13314 (1995).
[CrossRef] [PubMed]

Ganguli, A. K.

S. Khanchandani, S. Kundu, A. Patra, A. K. Ganguli, “Shell thickness dependent photocatalytic properties of ZnO/CdS core−shell nanorods,” J. Phys. Chem. C 116(44), 23653–23662 (2012).
[CrossRef]

Gao, Q.

S. Mokkapati, D. Saxena, N. Jiang, P. Parkinson, J. Wong-Leung, Q. Gao, H. H. Tan, C. Jagadish, “Polarization tunable, multicolor emission from core-shell photonic III-V semiconductor nanowires,” Nano Lett. 12(12), 6428–6431 (2012).
[CrossRef] [PubMed]

Ghodsi, F. E.

A. A. Ziabari, F. E. Ghodsi, “Growth, characterization and studying of sol–gel derived CdS nanoscrystalline thin films incorporated in polyethyleneglycol: Effects of post-heat treatment,” Sol. Energy Mater. Sol. Cells 105, 249–262 (2012).
[CrossRef]

Giersig, M.

J. van Embden, J. Jasieniak, D. E. Gómez, P. Mulvaney, M. Giersig, “Review of the synthetic chemistry involved in the production of core/shell semiconductor nanocrystals,” Aust. J. Chem. 60(7), 457–471 (2007).
[CrossRef]

Gómez, D. E.

J. van Embden, J. Jasieniak, D. E. Gómez, P. Mulvaney, M. Giersig, “Review of the synthetic chemistry involved in the production of core/shell semiconductor nanocrystals,” Aust. J. Chem. 60(7), 457–471 (2007).
[CrossRef]

Gozdz, A. S.

Y. Zhang, M. D. Sturge, K. Kash, A. S. Gozdz, L. T. Florez, J. P. Harbison, “Temperature dependence of luminescence efficiency, exciton transfer, and exciton localization in GaAs/AlxGa1-xAs quantum wires and quantum dots,” Phys. Rev. B Condens. Matter 51(19), 13303–13314 (1995).
[CrossRef] [PubMed]

Harbison, J. P.

Y. Zhang, M. D. Sturge, K. Kash, A. S. Gozdz, L. T. Florez, J. P. Harbison, “Temperature dependence of luminescence efficiency, exciton transfer, and exciton localization in GaAs/AlxGa1-xAs quantum wires and quantum dots,” Phys. Rev. B Condens. Matter 51(19), 13303–13314 (1995).
[CrossRef] [PubMed]

Heo, Y. W.

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, “Recent progress in processing and properties of ZnO,” Superlattices Microstruct. 34(1–2), 3–32 (2003).
[CrossRef]

Hu, Z. G.

Huang, B. W.

Z. M. Wu, Y. Zhang, J. J. Zheng, X. G. Lin, X. H. Chen, B. W. Huang, H. Q. Wang, K. Huang, S. P. Li, J. Y. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020–6026 (2011).
[CrossRef]

Huang, K.

Z. M. Wu, Y. Zhang, J. J. Zheng, X. G. Lin, X. H. Chen, B. W. Huang, H. Q. Wang, K. Huang, S. P. Li, J. Y. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020–6026 (2011).
[CrossRef]

Ip, K.

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, “Recent progress in processing and properties of ZnO,” Superlattices Microstruct. 34(1–2), 3–32 (2003).
[CrossRef]

Jagadish, C.

S. Mokkapati, D. Saxena, N. Jiang, P. Parkinson, J. Wong-Leung, Q. Gao, H. H. Tan, C. Jagadish, “Polarization tunable, multicolor emission from core-shell photonic III-V semiconductor nanowires,” Nano Lett. 12(12), 6428–6431 (2012).
[CrossRef] [PubMed]

Jasieniak, J.

J. van Embden, J. Jasieniak, D. E. Gómez, P. Mulvaney, M. Giersig, “Review of the synthetic chemistry involved in the production of core/shell semiconductor nanocrystals,” Aust. J. Chem. 60(7), 457–471 (2007).
[CrossRef]

Jiang, N.

S. Mokkapati, D. Saxena, N. Jiang, P. Parkinson, J. Wong-Leung, Q. Gao, H. H. Tan, C. Jagadish, “Polarization tunable, multicolor emission from core-shell photonic III-V semiconductor nanowires,” Nano Lett. 12(12), 6428–6431 (2012).
[CrossRef] [PubMed]

Kang, J. Y.

Z. M. Wu, Y. Zhang, J. J. Zheng, X. G. Lin, X. H. Chen, B. W. Huang, H. Q. Wang, K. Huang, S. P. Li, J. Y. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020–6026 (2011).
[CrossRef]

Kash, K.

Y. Zhang, M. D. Sturge, K. Kash, A. S. Gozdz, L. T. Florez, J. P. Harbison, “Temperature dependence of luminescence efficiency, exciton transfer, and exciton localization in GaAs/AlxGa1-xAs quantum wires and quantum dots,” Phys. Rev. B Condens. Matter 51(19), 13303–13314 (1995).
[CrossRef] [PubMed]

Khanchandani, S.

S. Khanchandani, S. Kundu, A. Patra, A. K. Ganguli, “Shell thickness dependent photocatalytic properties of ZnO/CdS core−shell nanorods,” J. Phys. Chem. C 116(44), 23653–23662 (2012).
[CrossRef]

Kundu, S.

S. Khanchandani, S. Kundu, A. Patra, A. K. Ganguli, “Shell thickness dependent photocatalytic properties of ZnO/CdS core−shell nanorods,” J. Phys. Chem. C 116(44), 23653–23662 (2012).
[CrossRef]

Leite, R. C. C.

R. C. C. Leite, J. F. Scott, T. C. Damen, “Multiple-phonon resonant raman scattering in CdS,” Phys. Rev. Lett. 22(15), 780–782 (1969).
[CrossRef]

Li, C. M.

C. M. Li, T. Ahmed, M. G. Ma, T. Edvinsson, J. F. Zhu, “A facile approach to ZnO/CdS nanoarrays and their photocatalytic and photoelectrochemical properties,” Appl. Catal. B 138, 175−183 (2013).

Li, S. P.

Z. M. Wu, Y. Zhang, J. J. Zheng, X. G. Lin, X. H. Chen, B. W. Huang, H. Q. Wang, K. Huang, S. P. Li, J. Y. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020–6026 (2011).
[CrossRef]

Lin, X. G.

Z. M. Wu, Y. Zhang, J. J. Zheng, X. G. Lin, X. H. Chen, B. W. Huang, H. Q. Wang, K. Huang, S. P. Li, J. Y. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020–6026 (2011).
[CrossRef]

Liu, Y.

Q. Yang, Y. Liu, C. F. Pan, J. Chen, X. N. Wen, Z. L. Wang, “Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect,” Nano Lett. 13(2), 607–613 (2013).
[CrossRef] [PubMed]

Ma, M. G.

C. M. Li, T. Ahmed, M. G. Ma, T. Edvinsson, J. F. Zhu, “A facile approach to ZnO/CdS nanoarrays and their photocatalytic and photoelectrochemical properties,” Appl. Catal. B 138, 175−183 (2013).

Mascarenhas, A.

K. Wang, J. J. Chen, W. L. Zhou, Y. Zhang, Y. F. Yan, J. Pern, A. Mascarenhas, “Direct growth of highly mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications,” Adv. Mater. 20(17), 3248–3253 (2008).
[CrossRef]

Mokkapati, S.

S. Mokkapati, D. Saxena, N. Jiang, P. Parkinson, J. Wong-Leung, Q. Gao, H. H. Tan, C. Jagadish, “Polarization tunable, multicolor emission from core-shell photonic III-V semiconductor nanowires,” Nano Lett. 12(12), 6428–6431 (2012).
[CrossRef] [PubMed]

Mulvaney, P.

J. van Embden, J. Jasieniak, D. E. Gómez, P. Mulvaney, M. Giersig, “Review of the synthetic chemistry involved in the production of core/shell semiconductor nanocrystals,” Aust. J. Chem. 60(7), 457–471 (2007).
[CrossRef]

Norton, D. P.

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, “Recent progress in processing and properties of ZnO,” Superlattices Microstruct. 34(1–2), 3–32 (2003).
[CrossRef]

Orhan, N.

M. C. Baykul, N. Orhan, “Band alignment of Cd(1 −x)ZnxS produced by spray pyrolysis method,” Thin Solid Films 518(8), 1925–1928 (2010).
[CrossRef]

Pachauri, V.

V. Pachauri, C. Subramaniam, T. Pradeep, “Novel ZnO nanostructures over gold and silver nanoparticle assemblies,” Chem. Phys. Lett. 423(1–3), 240–246 (2006).
[CrossRef]

Pan, C. F.

Q. Yang, Y. Liu, C. F. Pan, J. Chen, X. N. Wen, Z. L. Wang, “Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect,” Nano Lett. 13(2), 607–613 (2013).
[CrossRef] [PubMed]

Parkinson, P.

S. Mokkapati, D. Saxena, N. Jiang, P. Parkinson, J. Wong-Leung, Q. Gao, H. H. Tan, C. Jagadish, “Polarization tunable, multicolor emission from core-shell photonic III-V semiconductor nanowires,” Nano Lett. 12(12), 6428–6431 (2012).
[CrossRef] [PubMed]

Patra, A.

S. Khanchandani, S. Kundu, A. Patra, A. K. Ganguli, “Shell thickness dependent photocatalytic properties of ZnO/CdS core−shell nanorods,” J. Phys. Chem. C 116(44), 23653–23662 (2012).
[CrossRef]

Pearton, S. J.

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, “Recent progress in processing and properties of ZnO,” Superlattices Microstruct. 34(1–2), 3–32 (2003).
[CrossRef]

Pern, J.

K. Wang, J. J. Chen, W. L. Zhou, Y. Zhang, Y. F. Yan, J. Pern, A. Mascarenhas, “Direct growth of highly mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications,” Adv. Mater. 20(17), 3248–3253 (2008).
[CrossRef]

Porto, S. P. S.

T. C. Damen, S. P. S. Porto, B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142(2), 570–574 (1966).
[CrossRef]

Pradeep, T.

V. Pachauri, C. Subramaniam, T. Pradeep, “Novel ZnO nanostructures over gold and silver nanoparticle assemblies,” Chem. Phys. Lett. 423(1–3), 240–246 (2006).
[CrossRef]

Saxena, D.

S. Mokkapati, D. Saxena, N. Jiang, P. Parkinson, J. Wong-Leung, Q. Gao, H. H. Tan, C. Jagadish, “Polarization tunable, multicolor emission from core-shell photonic III-V semiconductor nanowires,” Nano Lett. 12(12), 6428–6431 (2012).
[CrossRef] [PubMed]

Scott, J. F.

R. C. C. Leite, J. F. Scott, T. C. Damen, “Multiple-phonon resonant raman scattering in CdS,” Phys. Rev. Lett. 22(15), 780–782 (1969).
[CrossRef]

Seager, C. H.

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[CrossRef]

Shan, W.

W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, J. J. Song, “Nature of room-temperature photoluminescence in ZnO,” Appl. Phys. Lett. 86(19), 191911 (2005).
[CrossRef]

Song, J. J.

W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, J. J. Song, “Nature of room-temperature photoluminescence in ZnO,” Appl. Phys. Lett. 86(19), 191911 (2005).
[CrossRef]

Steiner, T.

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, “Recent progress in processing and properties of ZnO,” Superlattices Microstruct. 34(1–2), 3–32 (2003).
[CrossRef]

Sturge, M. D.

Y. Zhang, M. D. Sturge, K. Kash, A. S. Gozdz, L. T. Florez, J. P. Harbison, “Temperature dependence of luminescence efficiency, exciton transfer, and exciton localization in GaAs/AlxGa1-xAs quantum wires and quantum dots,” Phys. Rev. B Condens. Matter 51(19), 13303–13314 (1995).
[CrossRef] [PubMed]

Subramaniam, C.

V. Pachauri, C. Subramaniam, T. Pradeep, “Novel ZnO nanostructures over gold and silver nanoparticle assemblies,” Chem. Phys. Lett. 423(1–3), 240–246 (2006).
[CrossRef]

Sun, J.

Tallant, D. R.

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[CrossRef]

Tan, H. H.

S. Mokkapati, D. Saxena, N. Jiang, P. Parkinson, J. Wong-Leung, Q. Gao, H. H. Tan, C. Jagadish, “Polarization tunable, multicolor emission from core-shell photonic III-V semiconductor nanowires,” Nano Lett. 12(12), 6428–6431 (2012).
[CrossRef] [PubMed]

Tell, B.

T. C. Damen, S. P. S. Porto, B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142(2), 570–574 (1966).
[CrossRef]

van Embden, J.

J. van Embden, J. Jasieniak, D. E. Gómez, P. Mulvaney, M. Giersig, “Review of the synthetic chemistry involved in the production of core/shell semiconductor nanocrystals,” Aust. J. Chem. 60(7), 457–471 (2007).
[CrossRef]

Vanheusden, K.

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[CrossRef]

Voigt, J. A.

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[CrossRef]

Walukiewicz, W.

W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, J. J. Song, “Nature of room-temperature photoluminescence in ZnO,” Appl. Phys. Lett. 86(19), 191911 (2005).
[CrossRef]

Wang, H. Q.

Z. M. Wu, Y. Zhang, J. J. Zheng, X. G. Lin, X. H. Chen, B. W. Huang, H. Q. Wang, K. Huang, S. P. Li, J. Y. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020–6026 (2011).
[CrossRef]

Wang, K.

K. Wang, J. J. Chen, W. L. Zhou, Y. Zhang, Y. F. Yan, J. Pern, A. Mascarenhas, “Direct growth of highly mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications,” Adv. Mater. 20(17), 3248–3253 (2008).
[CrossRef]

Wang, Z. L.

Q. Yang, Y. Liu, C. F. Pan, J. Chen, X. N. Wen, Z. L. Wang, “Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect,” Nano Lett. 13(2), 607–613 (2013).
[CrossRef] [PubMed]

Warren, W. L.

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[CrossRef]

Wen, X. N.

Q. Yang, Y. Liu, C. F. Pan, J. Chen, X. N. Wen, Z. L. Wang, “Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect,” Nano Lett. 13(2), 607–613 (2013).
[CrossRef] [PubMed]

Wong-Leung, J.

S. Mokkapati, D. Saxena, N. Jiang, P. Parkinson, J. Wong-Leung, Q. Gao, H. H. Tan, C. Jagadish, “Polarization tunable, multicolor emission from core-shell photonic III-V semiconductor nanowires,” Nano Lett. 12(12), 6428–6431 (2012).
[CrossRef] [PubMed]

Wu, J. D.

Wu, Z. M.

Z. M. Wu, Y. Zhang, J. J. Zheng, X. G. Lin, X. H. Chen, B. W. Huang, H. Q. Wang, K. Huang, S. P. Li, J. Y. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020–6026 (2011).
[CrossRef]

Xin, H. P.

W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, J. J. Song, “Nature of room-temperature photoluminescence in ZnO,” Appl. Phys. Lett. 86(19), 191911 (2005).
[CrossRef]

Xu, N.

Yan, Y. F.

K. Wang, J. J. Chen, W. L. Zhou, Y. Zhang, Y. F. Yan, J. Pern, A. Mascarenhas, “Direct growth of highly mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications,” Adv. Mater. 20(17), 3248–3253 (2008).
[CrossRef]

Yang, Q.

Q. Yang, Y. Liu, C. F. Pan, J. Chen, X. N. Wen, Z. L. Wang, “Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect,” Nano Lett. 13(2), 607–613 (2013).
[CrossRef] [PubMed]

Yu, K. M.

W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, J. J. Song, “Nature of room-temperature photoluminescence in ZnO,” Appl. Phys. Lett. 86(19), 191911 (2005).
[CrossRef]

Yu, W. L.

Yuan, H. B.

W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, J. J. Song, “Nature of room-temperature photoluminescence in ZnO,” Appl. Phys. Lett. 86(19), 191911 (2005).
[CrossRef]

Zhang, Y.

Z. M. Wu, Y. Zhang, J. J. Zheng, X. G. Lin, X. H. Chen, B. W. Huang, H. Q. Wang, K. Huang, S. P. Li, J. Y. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020–6026 (2011).
[CrossRef]

K. Wang, J. J. Chen, W. L. Zhou, Y. Zhang, Y. F. Yan, J. Pern, A. Mascarenhas, “Direct growth of highly mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications,” Adv. Mater. 20(17), 3248–3253 (2008).
[CrossRef]

Y. Zhang, M. D. Sturge, K. Kash, A. S. Gozdz, L. T. Florez, J. P. Harbison, “Temperature dependence of luminescence efficiency, exciton transfer, and exciton localization in GaAs/AlxGa1-xAs quantum wires and quantum dots,” Phys. Rev. B Condens. Matter 51(19), 13303–13314 (1995).
[CrossRef] [PubMed]

Zheng, J. J.

Z. M. Wu, Y. Zhang, J. J. Zheng, X. G. Lin, X. H. Chen, B. W. Huang, H. Q. Wang, K. Huang, S. P. Li, J. Y. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020–6026 (2011).
[CrossRef]

Zhou, W. L.

K. Wang, J. J. Chen, W. L. Zhou, Y. Zhang, Y. F. Yan, J. Pern, A. Mascarenhas, “Direct growth of highly mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications,” Adv. Mater. 20(17), 3248–3253 (2008).
[CrossRef]

Zhu, J. F.

C. M. Li, T. Ahmed, M. G. Ma, T. Edvinsson, J. F. Zhu, “A facile approach to ZnO/CdS nanoarrays and their photocatalytic and photoelectrochemical properties,” Appl. Catal. B 138, 175−183 (2013).

Ziabari, A. A.

A. A. Ziabari, F. E. Ghodsi, “Growth, characterization and studying of sol–gel derived CdS nanoscrystalline thin films incorporated in polyethyleneglycol: Effects of post-heat treatment,” Sol. Energy Mater. Sol. Cells 105, 249–262 (2012).
[CrossRef]

Adv. Mater. (1)

K. Wang, J. J. Chen, W. L. Zhou, Y. Zhang, Y. F. Yan, J. Pern, A. Mascarenhas, “Direct growth of highly mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications,” Adv. Mater. 20(17), 3248–3253 (2008).
[CrossRef]

Appl. Catal. B (1)

C. M. Li, T. Ahmed, M. G. Ma, T. Edvinsson, J. F. Zhu, “A facile approach to ZnO/CdS nanoarrays and their photocatalytic and photoelectrochemical properties,” Appl. Catal. B 138, 175−183 (2013).

Appl. Phys. Lett. (2)

W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, J. J. Song, “Nature of room-temperature photoluminescence in ZnO,” Appl. Phys. Lett. 86(19), 191911 (2005).
[CrossRef]

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[CrossRef]

Aust. J. Chem. (1)

J. van Embden, J. Jasieniak, D. E. Gómez, P. Mulvaney, M. Giersig, “Review of the synthetic chemistry involved in the production of core/shell semiconductor nanocrystals,” Aust. J. Chem. 60(7), 457–471 (2007).
[CrossRef]

Chem. Phys. Lett. (1)

V. Pachauri, C. Subramaniam, T. Pradeep, “Novel ZnO nanostructures over gold and silver nanoparticle assemblies,” Chem. Phys. Lett. 423(1–3), 240–246 (2006).
[CrossRef]

J. Mater. Chem. (1)

Z. M. Wu, Y. Zhang, J. J. Zheng, X. G. Lin, X. H. Chen, B. W. Huang, H. Q. Wang, K. Huang, S. P. Li, J. Y. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020–6026 (2011).
[CrossRef]

J. Phys. Chem. C (1)

S. Khanchandani, S. Kundu, A. Patra, A. K. Ganguli, “Shell thickness dependent photocatalytic properties of ZnO/CdS core−shell nanorods,” J. Phys. Chem. C 116(44), 23653–23662 (2012).
[CrossRef]

Nano Lett. (2)

Q. Yang, Y. Liu, C. F. Pan, J. Chen, X. N. Wen, Z. L. Wang, “Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect,” Nano Lett. 13(2), 607–613 (2013).
[CrossRef] [PubMed]

S. Mokkapati, D. Saxena, N. Jiang, P. Parkinson, J. Wong-Leung, Q. Gao, H. H. Tan, C. Jagadish, “Polarization tunable, multicolor emission from core-shell photonic III-V semiconductor nanowires,” Nano Lett. 12(12), 6428–6431 (2012).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. (1)

T. C. Damen, S. P. S. Porto, B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142(2), 570–574 (1966).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

Y. Zhang, M. D. Sturge, K. Kash, A. S. Gozdz, L. T. Florez, J. P. Harbison, “Temperature dependence of luminescence efficiency, exciton transfer, and exciton localization in GaAs/AlxGa1-xAs quantum wires and quantum dots,” Phys. Rev. B Condens. Matter 51(19), 13303–13314 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

R. C. C. Leite, J. F. Scott, T. C. Damen, “Multiple-phonon resonant raman scattering in CdS,” Phys. Rev. Lett. 22(15), 780–782 (1969).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

A. A. Ziabari, F. E. Ghodsi, “Growth, characterization and studying of sol–gel derived CdS nanoscrystalline thin films incorporated in polyethyleneglycol: Effects of post-heat treatment,” Sol. Energy Mater. Sol. Cells 105, 249–262 (2012).
[CrossRef]

Superlattices Microstruct. (1)

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, “Recent progress in processing and properties of ZnO,” Superlattices Microstruct. 34(1–2), 3–32 (2003).
[CrossRef]

Thin Solid Films (1)

M. C. Baykul, N. Orhan, “Band alignment of Cd(1 −x)ZnxS produced by spray pyrolysis method,” Thin Solid Films 518(8), 1925–1928 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

FESEM images of bare ZnO NRs (a) and ZnO/CdS core/shell NRs (b).

Fig. 2
Fig. 2

XRD patterns of bare ZnO NRs (1), as-fabricated ZnO/CdS core/shell NRs (2), and annealed ZnO/CdS core/shell NRs at 300 °C (3) and 500 °C (4).

Fig. 3
Fig. 3

(a) Raman spectra of bare ZnO NRs and as-fabricated ZnO/CdS NRs (the inset shows magnified Raman spectrum of bare ZnO NRs); (b) Raman spectra of as-fabricated ZnO/CdS NRs and annealed ZnO/CdS NRs. (1−bare ZnO NRs, 2−as-fabricated ZnO/CdS NRs, 3−ZnO/CdS NRs annealed at 300 °C, 4−ZnO/CdS NRs annealed at 500 °C).

Fig. 4
Fig. 4

(a) Room-temperature PL spectra of ZnO NRs and ZnO/CdS NRs (the inset shows PL spectra of as-fabricated and annealed ZnO/CdS NRs); (b) PL spectra of as-fabricated ZnO/CdS NRs taken at 300 K and reduced temperatures.

Fig. 5
Fig. 5

Absorption spectra of ZnO NRs and ZnO/CdS NRs (1−bare ZnO NRs, 2−as-fabricated ZnO/CdS NRs, 3−ZnO/CdS NRs annealed at 300 °C, 4−ZnO/CdS NRs annealed at 500 °C).

Metrics