Abstract

We present a novel design of leakage channel fiber (LCF) that incorporates an air-hole lattice to define the modal filtering characteristics. The approach has the potential to offer single-mode, large mode area (LMA) fibers in a single-material platform with bend loss characteristics comparable to all-solid (LCFs) whilst at the same time providing significant fabrication benefits. We compare the performance of the proposed fiber with that of rod-type photonic crystal fibers (PCFs) and all-solid LCFs offering a similar effective mode area of ~1600μm2 at 1.05μm. Our calculations show that the proposed fiber concept succeeds in combining the advantages of the use of small air holes and the larger design space of rod-type PCFs with the improved bend tolerance and greater higher order mode discrimination of all-solid LCFs, while alleviating their respective issues of rigidity and restricted material design space. We report the fabrication and experimental characterization of a first exemplar fiber, which we demonstrate offers a single-mode output with a fundamental mode area ~1440µm2 at 1.06µm, and that can be bent down to a radius of 20cm with a bend loss of <3dB/turn. Finally we show that the proposed design concept can be adopted to achieve larger mode areas (> 3000µm2), albeit at the expense of reduced bend tolerance.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Jeong, A. J. Boyland, J. K. Sahu, S. Chung, J. Nilsson, D. N. Payne, “Multi-kilowatt single-mode ytterbium-doped large-core fiber laser,” J. Opt. Soc. Korea 13(4), 416–422 (2009).
    [CrossRef]
  2. A. Malinowski, A. Piper, J. H. V. Price, K. Furusawa, Y. Jeong, J. Nilsson, D. J. Richardson, “Ultrashort-pulse Yb3+-fiber-based laser and amplifier system producing >25-W average power,” Opt. Lett. 29(17), 2073–2075 (2004).
    [CrossRef] [PubMed]
  3. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32(24), 3495–3497 (2007).
    [CrossRef] [PubMed]
  4. http://phys.org/news/2013-06-incoherent-combining-fiber-lasers-energy.html
  5. P. F. Moulton, “High power Tm:silica fiber lasers: Current status, prospects and challenges,” in CLEO/Europe and EQEC 2011 Conference Digest (Optical Society of America, 2011), paper TF2_3.
  6. M. Petrovich, N. Baddela, N. Wheeler, E. Numkam, R. Slavik, D. Gray, J. Hayes, J. Wooler, F. Poletti, and D. Richardson, “Development of Low Loss, Wide Bandwidth Hollow Core Photonic Bandgap Fibers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2013), paper OTh1J.3.
    [CrossRef]
  7. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [CrossRef]
  8. D. J. Richardson, J. Nilsson, W. A. Clarkson, “High power fiber lasers: Current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63 (2010).
    [CrossRef]
  9. T. Hoult, J. Gabzdyl, and K. Dzurko, “Fiber Lasers in Solar Applications,” in Solar Energy: New Materials and Nanostructured Devices for High Efficiency (Optical Society of America, 2008), paper STuC3.
  10. P. Kah, J. Lu, J. Martikainen, R. Suoranta, “Remote laser welding with high power fiber lasers,” Engineering 05(09), 700–706 (2013).
    [CrossRef]
  11. H. Meng, J. Liao, Y. Zhou, Q. Zhang, “Laser micro-processing of cardiovascular stent with fiber laser cutting system,” Opt. Laser Technol. 41(3), 300–302 (2009).
    [CrossRef]
  12. W. W. Ke, X. J. Wang, X. F. Bao, X. J. Shu, “Thermally induced mode distortion and its limit to power scaling of fiber lasers,” Opt. Express 21(12), 14272–14281 (2013).
    [CrossRef] [PubMed]
  13. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express 13(4), 1055–1058 (2005).
    [CrossRef] [PubMed]
  14. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006).
    [CrossRef] [PubMed]
  15. F. Jansen, F. Stutzki, T. Eidam, J. Rothhardt, S. Hädrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Yb-doped Large Pitch Fiber with 105µm Mode Field Diameter,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (Optical Society of America, 2011), paper OTuC.
  16. T. A. Birks, J. C. Knight, P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
    [CrossRef] [PubMed]
  17. L. Dong, X. Peng, J. Li, “Leakage channel optical fibers with large effective area,” J. Opt. Soc. Am. B 24(8), 1689 (2007).
    [CrossRef]
  18. L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
    [CrossRef]
  19. E. M. Dianov, K. M. Golant, V. I. Karpov, R. R. Khrapko, A. S. Kurkov, V. M. Mashinsky, V. N. Protopopov, “Fluorine-doped silica optical fibres fabricated using plasma chemical technologies,” Proc. SPIE 2425, 53–57 (1994).
    [CrossRef]
  20. S. Dasgupta, J. R. Hayes, C. Baskiotis, and D. J. Richardson, “Novel all-silica large mode area fiber with microstructured cladding element,” in SPIE Photonics West, LASE (San Francisco, 2013).
  21. T. W. Wu, L. Dong, H. Winful, “Bend performance of leakage channel fibers,” Opt. Express 16(6), 4278–4285 (2008).
    [CrossRef] [PubMed]
  22. D. Marcuse, “Influence of curvature on the losses of doubly clad fibers,” Appl. Opt. 21(23), 4208–4213 (1982).
    [CrossRef] [PubMed]

2013 (2)

P. Kah, J. Lu, J. Martikainen, R. Suoranta, “Remote laser welding with high power fiber lasers,” Engineering 05(09), 700–706 (2013).
[CrossRef]

W. W. Ke, X. J. Wang, X. F. Bao, X. J. Shu, “Thermally induced mode distortion and its limit to power scaling of fiber lasers,” Opt. Express 21(12), 14272–14281 (2013).
[CrossRef] [PubMed]

2012 (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[CrossRef]

2010 (1)

2009 (3)

Y. Jeong, A. J. Boyland, J. K. Sahu, S. Chung, J. Nilsson, D. N. Payne, “Multi-kilowatt single-mode ytterbium-doped large-core fiber laser,” J. Opt. Soc. Korea 13(4), 416–422 (2009).
[CrossRef]

H. Meng, J. Liao, Y. Zhou, Q. Zhang, “Laser micro-processing of cardiovascular stent with fiber laser cutting system,” Opt. Laser Technol. 41(3), 300–302 (2009).
[CrossRef]

L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

2008 (1)

2007 (2)

2006 (1)

2005 (1)

2004 (1)

1997 (1)

1994 (1)

E. M. Dianov, K. M. Golant, V. I. Karpov, R. R. Khrapko, A. S. Kurkov, V. M. Mashinsky, V. N. Protopopov, “Fluorine-doped silica optical fibres fabricated using plasma chemical technologies,” Proc. SPIE 2425, 53–57 (1994).
[CrossRef]

1982 (1)

Bao, X. F.

Birks, T. A.

Boyland, A. J.

Broeng, J.

Chung, S.

Clarkson, W. A.

Deguil-Robin, N.

Dianov, E. M.

E. M. Dianov, K. M. Golant, V. I. Karpov, R. R. Khrapko, A. S. Kurkov, V. M. Mashinsky, V. N. Protopopov, “Fluorine-doped silica optical fibres fabricated using plasma chemical technologies,” Proc. SPIE 2425, 53–57 (1994).
[CrossRef]

Dong, L.

Eidam, T.

Ermeneux, S.

Fu, L.

L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

Furusawa, K.

Golant, K. M.

E. M. Dianov, K. M. Golant, V. I. Karpov, R. R. Khrapko, A. S. Kurkov, V. M. Mashinsky, V. N. Protopopov, “Fluorine-doped silica optical fibres fabricated using plasma chemical technologies,” Proc. SPIE 2425, 53–57 (1994).
[CrossRef]

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[CrossRef]

Jakobsen, C.

Jeong, Y.

Kah, P.

P. Kah, J. Lu, J. Martikainen, R. Suoranta, “Remote laser welding with high power fiber lasers,” Engineering 05(09), 700–706 (2013).
[CrossRef]

Karpov, V. I.

E. M. Dianov, K. M. Golant, V. I. Karpov, R. R. Khrapko, A. S. Kurkov, V. M. Mashinsky, V. N. Protopopov, “Fluorine-doped silica optical fibres fabricated using plasma chemical technologies,” Proc. SPIE 2425, 53–57 (1994).
[CrossRef]

Ke, W. W.

Khrapko, R. R.

E. M. Dianov, K. M. Golant, V. I. Karpov, R. R. Khrapko, A. S. Kurkov, V. M. Mashinsky, V. N. Protopopov, “Fluorine-doped silica optical fibres fabricated using plasma chemical technologies,” Proc. SPIE 2425, 53–57 (1994).
[CrossRef]

Knight, J. C.

Kurkov, A. S.

E. M. Dianov, K. M. Golant, V. I. Karpov, R. R. Khrapko, A. S. Kurkov, V. M. Mashinsky, V. N. Protopopov, “Fluorine-doped silica optical fibres fabricated using plasma chemical technologies,” Proc. SPIE 2425, 53–57 (1994).
[CrossRef]

Li, J.

L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

L. Dong, X. Peng, J. Li, “Leakage channel optical fibers with large effective area,” J. Opt. Soc. Am. B 24(8), 1689 (2007).
[CrossRef]

Liao, J.

H. Meng, J. Liao, Y. Zhou, Q. Zhang, “Laser micro-processing of cardiovascular stent with fiber laser cutting system,” Opt. Laser Technol. 41(3), 300–302 (2009).
[CrossRef]

Liem, A.

Limpert, J.

Lu, J.

P. Kah, J. Lu, J. Martikainen, R. Suoranta, “Remote laser welding with high power fiber lasers,” Engineering 05(09), 700–706 (2013).
[CrossRef]

Malinowski, A.

Manek-Hönninger, I.

Marcuse, D.

Martikainen, J.

P. Kah, J. Lu, J. Martikainen, R. Suoranta, “Remote laser welding with high power fiber lasers,” Engineering 05(09), 700–706 (2013).
[CrossRef]

Mashinsky, V. M.

E. M. Dianov, K. M. Golant, V. I. Karpov, R. R. Khrapko, A. S. Kurkov, V. M. Mashinsky, V. N. Protopopov, “Fluorine-doped silica optical fibres fabricated using plasma chemical technologies,” Proc. SPIE 2425, 53–57 (1994).
[CrossRef]

McKay, H. A.

L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

Meng, H.

H. Meng, J. Liao, Y. Zhou, Q. Zhang, “Laser micro-processing of cardiovascular stent with fiber laser cutting system,” Opt. Laser Technol. 41(3), 300–302 (2009).
[CrossRef]

Nilsson, J.

Nolte, S.

Payne, D. N.

Peng, X.

Petersson, A.

Piper, A.

Price, J. H. V.

Protopopov, V. N.

E. M. Dianov, K. M. Golant, V. I. Karpov, R. R. Khrapko, A. S. Kurkov, V. M. Mashinsky, V. N. Protopopov, “Fluorine-doped silica optical fibres fabricated using plasma chemical technologies,” Proc. SPIE 2425, 53–57 (1994).
[CrossRef]

Richardson, D. J.

Röser, F.

Rothhardt, J.

Russell, P. S.

Sahu, J. K.

Salin, F.

Schimpf, D. N.

Schmidt, O.

Schreiber, T.

Shu, X. J.

Suoranta, R.

P. Kah, J. Lu, J. Martikainen, R. Suoranta, “Remote laser welding with high power fiber lasers,” Engineering 05(09), 700–706 (2013).
[CrossRef]

Tünnermann, A.

Wang, X. J.

Winful, H.

Winful, H. G.

L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

Wu, T.

L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

Wu, T. W.

Yvernault, P.

Zellmer, H.

Zhang, Q.

H. Meng, J. Liao, Y. Zhou, Q. Zhang, “Laser micro-processing of cardiovascular stent with fiber laser cutting system,” Opt. Laser Technol. 41(3), 300–302 (2009).
[CrossRef]

Zhou, Y.

H. Meng, J. Liao, Y. Zhou, Q. Zhang, “Laser micro-processing of cardiovascular stent with fiber laser cutting system,” Opt. Laser Technol. 41(3), 300–302 (2009).
[CrossRef]

Appl. Opt. (1)

Engineering (1)

P. Kah, J. Lu, J. Martikainen, R. Suoranta, “Remote laser welding with high power fiber lasers,” Engineering 05(09), 700–706 (2013).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Opt. Soc. Korea (1)

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[CrossRef]

Opt. Express (4)

Opt. Laser Technol. (1)

H. Meng, J. Liao, Y. Zhou, Q. Zhang, “Laser micro-processing of cardiovascular stent with fiber laser cutting system,” Opt. Laser Technol. 41(3), 300–302 (2009).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (1)

E. M. Dianov, K. M. Golant, V. I. Karpov, R. R. Khrapko, A. S. Kurkov, V. M. Mashinsky, V. N. Protopopov, “Fluorine-doped silica optical fibres fabricated using plasma chemical technologies,” Proc. SPIE 2425, 53–57 (1994).
[CrossRef]

Other (6)

S. Dasgupta, J. R. Hayes, C. Baskiotis, and D. J. Richardson, “Novel all-silica large mode area fiber with microstructured cladding element,” in SPIE Photonics West, LASE (San Francisco, 2013).

F. Jansen, F. Stutzki, T. Eidam, J. Rothhardt, S. Hädrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Yb-doped Large Pitch Fiber with 105µm Mode Field Diameter,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (Optical Society of America, 2011), paper OTuC.

T. Hoult, J. Gabzdyl, and K. Dzurko, “Fiber Lasers in Solar Applications,” in Solar Energy: New Materials and Nanostructured Devices for High Efficiency (Optical Society of America, 2008), paper STuC3.

http://phys.org/news/2013-06-incoherent-combining-fiber-lasers-energy.html

P. F. Moulton, “High power Tm:silica fiber lasers: Current status, prospects and challenges,” in CLEO/Europe and EQEC 2011 Conference Digest (Optical Society of America, 2011), paper TF2_3.

M. Petrovich, N. Baddela, N. Wheeler, E. Numkam, R. Slavik, D. Gray, J. Hayes, J. Wooler, F. Poletti, and D. Richardson, “Development of Low Loss, Wide Bandwidth Hollow Core Photonic Bandgap Fibers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2013), paper OTh1J.3.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the cross-sectional view of (a) Rod-type PCF (b) All-solid LCF (c) proposed micro-clad LCF.

Fig. 2
Fig. 2

Effect of cladding element separation,σ on (a) FM effective area (b) FM loss (c) Ratio of HOM loss to FM loss.

Fig. 3
Fig. 3

Optical mode profile of the (a) LP01 and (b) LP11 modes of the designed fiber at 1.05µm. We simulate only one half of the fiber to optimize computational time.

Fig. 4
Fig. 4

Change in FM effective area, FM loss and LP11 mode loss with varying bend radii. Fiber core radius = 25µm. Λ2 = 0.18; air hole diameter = 1µm.

Fig. 5
Fig. 5

Bar graph showing the effect of index difference between core and cladding (in an active micro-clad LCF) on the effective area and the FM loss. ncore and ncladding are the refractive index of core and cladding, respectively. The inset shows the simulated FM loss values for the various values of index difference between core and cladding.

Fig. 6
Fig. 6

(a) Schematic of the second stage preform for fabricating the micro-clad LCFs with 6 microstructured cladding elements. Boundaries between elements are shown to illustrate construction of both the first and second stage preforms but these will not be visible in the fiber (b) Electron micrograph of the fabricated micro-clad LCF.

Fig. 7
Fig. 7

Fundamental mode image of the fabricated micro-clad LCF at a wavelength of 1.06µm.

Fig. 8
Fig. 8

Experimentally measured bend loss spectrum of the fabricated micro-clad LCF. The red dotted curve is the numerically simulated bend loss of the fiber at a bend radius of 20cm.

Fig. 9
Fig. 9

Optical mode characteristics of the proposed fiber with a core diameter of 80µm: (a) FM; (b) LP11 mode (c) LP21 mode; (d) Confinement loss of various modal solutions of the structure. FM effective area ~4766 µm2; FM loss ~0.11dB/m; LP11 mode loss = 2.7dB/m, fractional power within core: 77% (FM); 53% (LP11); 32% (EH21).

Tables (1)

Tables Icon

Table 1 Comparison of various equivalent LMA designs at wavelength of 1.06µm

Metrics