Abstract

Mid-infrared (3–5 μm) pulses with high energy are produced using nonlinear conversion in a ZnGeP2-based master oscillator-power amplifier, pumped by a Q-switched cryogenic Ho:YLF oscillator. The master oscillator is based on an optical parametric oscillator with a V-shaped 3-mirror ring resonator, and the power amplifier is based on optical parametric amplification in large-aperture ZnGeP2 crystals. Pulses with up to 212 mJ energy at 1 Hz repetition rate are obtained, with FWHM duration 15 ns and beam quality M2 = 3.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. T. Sorokina, K. L. Vodopyanov, eds., Solid-State Mid-Infrared Laser Sources, Topics in Applied Physics (Springer, 2003), Vol. 89.
    [CrossRef]
  2. V. Petrov, “Parametric down-conversion devices: the coverage of the mid-infrared spectral range by solid-state laser sources,” Opt. Mater. 34, 536–554 (2012).
    [CrossRef]
  3. K. T. Zawilski, P. G. Schunemann, S. D. Setzler, T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310, 1891–1896 (2008).
    [CrossRef]
  4. F. Ganikhanov, T. Caughey, K. L. Vodopyanov, “Narrow-linewidth middle-infrared ZnGeP2 optical parametric oscillator,” J. Opt. Soc. Am. B 18, 818–822 (2001).
    [CrossRef]
  5. M. W. Haakestad, G. Arisholm, E. Lippert, S. Nicolas, G. Rustad, K. Stenersen, “High-pulse-energy mid-infrared laser source based on optical parametric amplification in ZnGeP2,” Opt. Express 16, 14263–14273 (2008).
    [CrossRef] [PubMed]
  6. G. Stoeppler, N. Thilmann, V. Pasiskevicius, A. Zukauskas, C. Canalias, M. Eichhorn, “Tunable mid-infrared ZnGeP2 ristra opo pumped by periodically-poled Rb:KTP optical parametric master-oscillator power amplifier,” Opt. Express 20, 4509–4517 (2012).
    [CrossRef] [PubMed]
  7. P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeranz, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, E. P. Chicklis, “20 mJ, 3–5 micron ZnGeP2 optical parametric oscillator pumped by a 2.09 micron Ho:YAG laser,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2003). Paper PD12.
  8. A. Dergachev, D. Armstrong, A. Smith, T. Drake, M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system,” Proc. SPIE 6875, 687507 (2008).
    [CrossRef]
  9. G. Stoeppler, M. Schellhorn, M. Eichhorn, “Ho3+:LLF MOPA pumped RISTRA ZGP OPO at 3–5 μm,” Proc. SPIE 8604, 86040I (2013).
    [CrossRef]
  10. G. A. Rines, D. M. Rines, P. F. Moulton, “Efficient, high-energy, KTP optical parametric oscillators pumped with 1 micron Nd-lasers,” in “Advanced Solid State Lasers,” (Optical Society of America, 1994), p. PO9.
  11. H. Ishizuki, T. Taira, “Half-joule output optical parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3,” Opt. Express 20, 20002–20010 (2012).
    [CrossRef] [PubMed]
  12. B. C. Johnson, V. J. Newell, J. B. Clark, E. S. McPhee, “Narrow-bandwidth low-divergence optical parametric oscillator for nonlinear frequency-conversion applications,” J. Opt. Soc. Am. B 12, 2122–2127 (1995).
    [CrossRef]
  13. Y. Ehrlich, S. Pearl, S. Fastig, “High brightness tunable tandem optical parametric oscillator at 8–12 μm,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2004), p. TuB15.
  14. D. J. Armstrong, A. V. Smith, “Demonstration of improved beam quality in an image-rotating optical parametric oscillator,” Opt. Lett. 27, 40–42 (2002).
    [CrossRef]
  15. A. Dergachev, D. Armstrong, A. Smith, T. Drake, M. Dubois, “3.4-μm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-μm Ho:YLF MOPA system,” Opt. Express 15, 14404–14413 (2007).
    [CrossRef] [PubMed]
  16. A. V. Smith, M. S. Bowers, “Image-rotating cavity designs for improved beam quality in nanosecond optical parametric oscillators,” J. Opt. Soc. Am. B 18, 706–713 (2001).
    [CrossRef]
  17. G. Rustad, “Investigation on how non-collinear phase matching can improve beam quality from optical parametric oscillators,” in 50 years of nonlinear optics - NLO 50 international symposium,” (Barcelona, Spain, 2012), Paper no. TP.GR.
  18. W. R. Bosenberg, D. R. Guyer, “Broadly tunable, single-frequency optical parametric frequency-conversion system,” J. Opt. Soc. Am. B 10, 1716–1722 (1993).
    [CrossRef]
  19. G. Arisholm, Ø. Nordseth, G. Rustad, “Optical parametric master oscillator and power amplifier for efficient conversion of high-energy pulses with high beam quality,” Opt. Express 12, 4189–4197 (2004).
    [CrossRef] [PubMed]
  20. P. Ruan, J. Xie, L. Zhang, J. Guo, J. Xie, G. Yang, D. Li, Q. Pan, G. Tan, F. Meng, S. Li, “Computer modeling and experimental study of non-chain pulsed electric-discharge DF laser,” Opt. Express 20, 28912–28922 (2012).
    [CrossRef] [PubMed]
  21. A. Zajac, M. Skorczakowski, J. Swiderski, P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12, 5125–5130 (2004).
    [CrossRef] [PubMed]
  22. V. V. Badikov, P. F. Gonzalez-Diaz, M. Santos, C. Siguenza, G. S. Shevyrdyaeva, A. S. Solodukhin, S. A. Trushin, “Wide-aperture AgGaSe2 crystals for high-energy second-harmonic and sum-frequency generation of CO2 laser radiation and their application,” Proc. SPIE 2800, 153–156 (1996).
    [CrossRef]
  23. Q. Liu, Z. Zhang, J. Liu, M. Gong, “100 Hz high energy KTiOAsO4 optical parametric oscillator,” Infrared Phys. Techn. 61, 287–289 (2013).
    [CrossRef]
  24. E. Lippert, H. Fonnum, G. Arisholm, K. Stenersen, “A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator,” Opt. Express. 18, 26475–26483 (2010).
    [CrossRef] [PubMed]
  25. G. Arisholm, “Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators,” J. Opt. Soc. Am. B 16, 117–127 (1999).
    [CrossRef]
  26. H. Fonnum, E. Lippert, M. W. Haakestad, “550 mJ Q-switched cryogenic Ho:YLF oscillator pumped with a 100 W Tm:fiber laser,” Opt. Lett. 38, 1884–1886 (2013).
    [CrossRef] [PubMed]
  27. G. Rustad, G. Arisholm, Ø. Farsund, “Effect of idler absorption in pulsed optical parametric oscillators,” Opt. Express 19, 2815–2830 (2011).
    [CrossRef] [PubMed]

2013 (3)

G. Stoeppler, M. Schellhorn, M. Eichhorn, “Ho3+:LLF MOPA pumped RISTRA ZGP OPO at 3–5 μm,” Proc. SPIE 8604, 86040I (2013).
[CrossRef]

Q. Liu, Z. Zhang, J. Liu, M. Gong, “100 Hz high energy KTiOAsO4 optical parametric oscillator,” Infrared Phys. Techn. 61, 287–289 (2013).
[CrossRef]

H. Fonnum, E. Lippert, M. W. Haakestad, “550 mJ Q-switched cryogenic Ho:YLF oscillator pumped with a 100 W Tm:fiber laser,” Opt. Lett. 38, 1884–1886 (2013).
[CrossRef] [PubMed]

2012 (4)

2011 (1)

2010 (1)

E. Lippert, H. Fonnum, G. Arisholm, K. Stenersen, “A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator,” Opt. Express. 18, 26475–26483 (2010).
[CrossRef] [PubMed]

2008 (3)

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310, 1891–1896 (2008).
[CrossRef]

A. Dergachev, D. Armstrong, A. Smith, T. Drake, M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system,” Proc. SPIE 6875, 687507 (2008).
[CrossRef]

M. W. Haakestad, G. Arisholm, E. Lippert, S. Nicolas, G. Rustad, K. Stenersen, “High-pulse-energy mid-infrared laser source based on optical parametric amplification in ZnGeP2,” Opt. Express 16, 14263–14273 (2008).
[CrossRef] [PubMed]

2007 (1)

2004 (2)

2002 (1)

2001 (2)

1999 (1)

1996 (1)

V. V. Badikov, P. F. Gonzalez-Diaz, M. Santos, C. Siguenza, G. S. Shevyrdyaeva, A. S. Solodukhin, S. A. Trushin, “Wide-aperture AgGaSe2 crystals for high-energy second-harmonic and sum-frequency generation of CO2 laser radiation and their application,” Proc. SPIE 2800, 153–156 (1996).
[CrossRef]

1995 (1)

1993 (1)

Arisholm, G.

Armstrong, D.

A. Dergachev, D. Armstrong, A. Smith, T. Drake, M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system,” Proc. SPIE 6875, 687507 (2008).
[CrossRef]

A. Dergachev, D. Armstrong, A. Smith, T. Drake, M. Dubois, “3.4-μm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-μm Ho:YLF MOPA system,” Opt. Express 15, 14404–14413 (2007).
[CrossRef] [PubMed]

Armstrong, D. J.

Badikov, V. V.

V. V. Badikov, P. F. Gonzalez-Diaz, M. Santos, C. Siguenza, G. S. Shevyrdyaeva, A. S. Solodukhin, S. A. Trushin, “Wide-aperture AgGaSe2 crystals for high-energy second-harmonic and sum-frequency generation of CO2 laser radiation and their application,” Proc. SPIE 2800, 153–156 (1996).
[CrossRef]

Bosenberg, W. R.

Bowers, M. S.

Budni, P. A.

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeranz, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, E. P. Chicklis, “20 mJ, 3–5 micron ZnGeP2 optical parametric oscillator pumped by a 2.09 micron Ho:YAG laser,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2003). Paper PD12.

Canalias, C.

Castro, R. T.

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeranz, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, E. P. Chicklis, “20 mJ, 3–5 micron ZnGeP2 optical parametric oscillator pumped by a 2.09 micron Ho:YAG laser,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2003). Paper PD12.

Caughey, T.

Chicklis, E. P.

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeranz, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, E. P. Chicklis, “20 mJ, 3–5 micron ZnGeP2 optical parametric oscillator pumped by a 2.09 micron Ho:YAG laser,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2003). Paper PD12.

Clark, J. B.

Dergachev, A.

A. Dergachev, D. Armstrong, A. Smith, T. Drake, M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system,” Proc. SPIE 6875, 687507 (2008).
[CrossRef]

A. Dergachev, D. Armstrong, A. Smith, T. Drake, M. Dubois, “3.4-μm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-μm Ho:YLF MOPA system,” Opt. Express 15, 14404–14413 (2007).
[CrossRef] [PubMed]

Drake, T.

A. Dergachev, D. Armstrong, A. Smith, T. Drake, M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system,” Proc. SPIE 6875, 687507 (2008).
[CrossRef]

A. Dergachev, D. Armstrong, A. Smith, T. Drake, M. Dubois, “3.4-μm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-μm Ho:YLF MOPA system,” Opt. Express 15, 14404–14413 (2007).
[CrossRef] [PubMed]

Dubois, M.

A. Dergachev, D. Armstrong, A. Smith, T. Drake, M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system,” Proc. SPIE 6875, 687507 (2008).
[CrossRef]

A. Dergachev, D. Armstrong, A. Smith, T. Drake, M. Dubois, “3.4-μm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-μm Ho:YLF MOPA system,” Opt. Express 15, 14404–14413 (2007).
[CrossRef] [PubMed]

Ehrlich, Y.

Y. Ehrlich, S. Pearl, S. Fastig, “High brightness tunable tandem optical parametric oscillator at 8–12 μm,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2004), p. TuB15.

Eichhorn, M.

Farsund, Ø.

Fastig, S.

Y. Ehrlich, S. Pearl, S. Fastig, “High brightness tunable tandem optical parametric oscillator at 8–12 μm,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2004), p. TuB15.

Fonnum, H.

H. Fonnum, E. Lippert, M. W. Haakestad, “550 mJ Q-switched cryogenic Ho:YLF oscillator pumped with a 100 W Tm:fiber laser,” Opt. Lett. 38, 1884–1886 (2013).
[CrossRef] [PubMed]

E. Lippert, H. Fonnum, G. Arisholm, K. Stenersen, “A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator,” Opt. Express. 18, 26475–26483 (2010).
[CrossRef] [PubMed]

Ganikhanov, F.

Gong, M.

Q. Liu, Z. Zhang, J. Liu, M. Gong, “100 Hz high energy KTiOAsO4 optical parametric oscillator,” Infrared Phys. Techn. 61, 287–289 (2013).
[CrossRef]

Gonzalez-Diaz, P. F.

V. V. Badikov, P. F. Gonzalez-Diaz, M. Santos, C. Siguenza, G. S. Shevyrdyaeva, A. S. Solodukhin, S. A. Trushin, “Wide-aperture AgGaSe2 crystals for high-energy second-harmonic and sum-frequency generation of CO2 laser radiation and their application,” Proc. SPIE 2800, 153–156 (1996).
[CrossRef]

Guo, J.

Gustafson, E. J.

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeranz, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, E. P. Chicklis, “20 mJ, 3–5 micron ZnGeP2 optical parametric oscillator pumped by a 2.09 micron Ho:YAG laser,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2003). Paper PD12.

Guyer, D. R.

Haakestad, M. W.

Ibach, C. R.

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeranz, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, E. P. Chicklis, “20 mJ, 3–5 micron ZnGeP2 optical parametric oscillator pumped by a 2.09 micron Ho:YAG laser,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2003). Paper PD12.

Ishizuki, H.

Johnson, B. C.

Ketteridge, P. A.

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeranz, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, E. P. Chicklis, “20 mJ, 3–5 micron ZnGeP2 optical parametric oscillator pumped by a 2.09 micron Ho:YAG laser,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2003). Paper PD12.

Lemons, M. L.

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeranz, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, E. P. Chicklis, “20 mJ, 3–5 micron ZnGeP2 optical parametric oscillator pumped by a 2.09 micron Ho:YAG laser,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2003). Paper PD12.

Li, D.

Li, S.

Lippert, E.

Liu, J.

Q. Liu, Z. Zhang, J. Liu, M. Gong, “100 Hz high energy KTiOAsO4 optical parametric oscillator,” Infrared Phys. Techn. 61, 287–289 (2013).
[CrossRef]

Liu, Q.

Q. Liu, Z. Zhang, J. Liu, M. Gong, “100 Hz high energy KTiOAsO4 optical parametric oscillator,” Infrared Phys. Techn. 61, 287–289 (2013).
[CrossRef]

McPhee, E. S.

Meng, F.

Moulton, P. F.

G. A. Rines, D. M. Rines, P. F. Moulton, “Efficient, high-energy, KTP optical parametric oscillators pumped with 1 micron Nd-lasers,” in “Advanced Solid State Lasers,” (Optical Society of America, 1994), p. PO9.

Newell, V. J.

Nicolas, S.

Nordseth, Ø.

Nyga, P.

Pan, Q.

Pasiskevicius, V.

Pearl, S.

Y. Ehrlich, S. Pearl, S. Fastig, “High brightness tunable tandem optical parametric oscillator at 8–12 μm,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2004), p. TuB15.

Petrov, V.

V. Petrov, “Parametric down-conversion devices: the coverage of the mid-infrared spectral range by solid-state laser sources,” Opt. Mater. 34, 536–554 (2012).
[CrossRef]

Pollak, T. M.

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310, 1891–1896 (2008).
[CrossRef]

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeranz, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, E. P. Chicklis, “20 mJ, 3–5 micron ZnGeP2 optical parametric oscillator pumped by a 2.09 micron Ho:YAG laser,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2003). Paper PD12.

Pomeranz, L. A.

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeranz, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, E. P. Chicklis, “20 mJ, 3–5 micron ZnGeP2 optical parametric oscillator pumped by a 2.09 micron Ho:YAG laser,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2003). Paper PD12.

Rines, D. M.

G. A. Rines, D. M. Rines, P. F. Moulton, “Efficient, high-energy, KTP optical parametric oscillators pumped with 1 micron Nd-lasers,” in “Advanced Solid State Lasers,” (Optical Society of America, 1994), p. PO9.

Rines, G. A.

G. A. Rines, D. M. Rines, P. F. Moulton, “Efficient, high-energy, KTP optical parametric oscillators pumped with 1 micron Nd-lasers,” in “Advanced Solid State Lasers,” (Optical Society of America, 1994), p. PO9.

Ruan, P.

Rustad, G.

Santos, M.

V. V. Badikov, P. F. Gonzalez-Diaz, M. Santos, C. Siguenza, G. S. Shevyrdyaeva, A. S. Solodukhin, S. A. Trushin, “Wide-aperture AgGaSe2 crystals for high-energy second-harmonic and sum-frequency generation of CO2 laser radiation and their application,” Proc. SPIE 2800, 153–156 (1996).
[CrossRef]

Schellhorn, M.

G. Stoeppler, M. Schellhorn, M. Eichhorn, “Ho3+:LLF MOPA pumped RISTRA ZGP OPO at 3–5 μm,” Proc. SPIE 8604, 86040I (2013).
[CrossRef]

Schunemann, P. G.

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310, 1891–1896 (2008).
[CrossRef]

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeranz, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, E. P. Chicklis, “20 mJ, 3–5 micron ZnGeP2 optical parametric oscillator pumped by a 2.09 micron Ho:YAG laser,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2003). Paper PD12.

Setzler, S. D.

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310, 1891–1896 (2008).
[CrossRef]

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeranz, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, E. P. Chicklis, “20 mJ, 3–5 micron ZnGeP2 optical parametric oscillator pumped by a 2.09 micron Ho:YAG laser,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2003). Paper PD12.

Shevyrdyaeva, G. S.

V. V. Badikov, P. F. Gonzalez-Diaz, M. Santos, C. Siguenza, G. S. Shevyrdyaeva, A. S. Solodukhin, S. A. Trushin, “Wide-aperture AgGaSe2 crystals for high-energy second-harmonic and sum-frequency generation of CO2 laser radiation and their application,” Proc. SPIE 2800, 153–156 (1996).
[CrossRef]

Siguenza, C.

V. V. Badikov, P. F. Gonzalez-Diaz, M. Santos, C. Siguenza, G. S. Shevyrdyaeva, A. S. Solodukhin, S. A. Trushin, “Wide-aperture AgGaSe2 crystals for high-energy second-harmonic and sum-frequency generation of CO2 laser radiation and their application,” Proc. SPIE 2800, 153–156 (1996).
[CrossRef]

Skorczakowski, M.

Smith, A.

A. Dergachev, D. Armstrong, A. Smith, T. Drake, M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system,” Proc. SPIE 6875, 687507 (2008).
[CrossRef]

A. Dergachev, D. Armstrong, A. Smith, T. Drake, M. Dubois, “3.4-μm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-μm Ho:YLF MOPA system,” Opt. Express 15, 14404–14413 (2007).
[CrossRef] [PubMed]

Smith, A. V.

Solodukhin, A. S.

V. V. Badikov, P. F. Gonzalez-Diaz, M. Santos, C. Siguenza, G. S. Shevyrdyaeva, A. S. Solodukhin, S. A. Trushin, “Wide-aperture AgGaSe2 crystals for high-energy second-harmonic and sum-frequency generation of CO2 laser radiation and their application,” Proc. SPIE 2800, 153–156 (1996).
[CrossRef]

Stenersen, K.

E. Lippert, H. Fonnum, G. Arisholm, K. Stenersen, “A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator,” Opt. Express. 18, 26475–26483 (2010).
[CrossRef] [PubMed]

M. W. Haakestad, G. Arisholm, E. Lippert, S. Nicolas, G. Rustad, K. Stenersen, “High-pulse-energy mid-infrared laser source based on optical parametric amplification in ZnGeP2,” Opt. Express 16, 14263–14273 (2008).
[CrossRef] [PubMed]

Stoeppler, G.

Swiderski, J.

Taira, T.

Tan, G.

Thilmann, N.

Trushin, S. A.

V. V. Badikov, P. F. Gonzalez-Diaz, M. Santos, C. Siguenza, G. S. Shevyrdyaeva, A. S. Solodukhin, S. A. Trushin, “Wide-aperture AgGaSe2 crystals for high-energy second-harmonic and sum-frequency generation of CO2 laser radiation and their application,” Proc. SPIE 2800, 153–156 (1996).
[CrossRef]

Vodopyanov, K. L.

Xie, J.

Yang, G.

Young, Y. E.

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeranz, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, E. P. Chicklis, “20 mJ, 3–5 micron ZnGeP2 optical parametric oscillator pumped by a 2.09 micron Ho:YAG laser,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2003). Paper PD12.

Zajac, A.

Zawilski, K. T.

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310, 1891–1896 (2008).
[CrossRef]

Zhang, L.

Zhang, Z.

Q. Liu, Z. Zhang, J. Liu, M. Gong, “100 Hz high energy KTiOAsO4 optical parametric oscillator,” Infrared Phys. Techn. 61, 287–289 (2013).
[CrossRef]

Zukauskas, A.

Infrared Phys. Techn. (1)

Q. Liu, Z. Zhang, J. Liu, M. Gong, “100 Hz high energy KTiOAsO4 optical parametric oscillator,” Infrared Phys. Techn. 61, 287–289 (2013).
[CrossRef]

J. Cryst. Growth (1)

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310, 1891–1896 (2008).
[CrossRef]

J. Opt. Soc. Am. B (5)

Opt. Express (8)

G. Arisholm, Ø. Nordseth, G. Rustad, “Optical parametric master oscillator and power amplifier for efficient conversion of high-energy pulses with high beam quality,” Opt. Express 12, 4189–4197 (2004).
[CrossRef] [PubMed]

A. Zajac, M. Skorczakowski, J. Swiderski, P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12, 5125–5130 (2004).
[CrossRef] [PubMed]

A. Dergachev, D. Armstrong, A. Smith, T. Drake, M. Dubois, “3.4-μm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-μm Ho:YLF MOPA system,” Opt. Express 15, 14404–14413 (2007).
[CrossRef] [PubMed]

M. W. Haakestad, G. Arisholm, E. Lippert, S. Nicolas, G. Rustad, K. Stenersen, “High-pulse-energy mid-infrared laser source based on optical parametric amplification in ZnGeP2,” Opt. Express 16, 14263–14273 (2008).
[CrossRef] [PubMed]

G. Rustad, G. Arisholm, Ø. Farsund, “Effect of idler absorption in pulsed optical parametric oscillators,” Opt. Express 19, 2815–2830 (2011).
[CrossRef] [PubMed]

G. Stoeppler, N. Thilmann, V. Pasiskevicius, A. Zukauskas, C. Canalias, M. Eichhorn, “Tunable mid-infrared ZnGeP2 ristra opo pumped by periodically-poled Rb:KTP optical parametric master-oscillator power amplifier,” Opt. Express 20, 4509–4517 (2012).
[CrossRef] [PubMed]

H. Ishizuki, T. Taira, “Half-joule output optical parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3,” Opt. Express 20, 20002–20010 (2012).
[CrossRef] [PubMed]

P. Ruan, J. Xie, L. Zhang, J. Guo, J. Xie, G. Yang, D. Li, Q. Pan, G. Tan, F. Meng, S. Li, “Computer modeling and experimental study of non-chain pulsed electric-discharge DF laser,” Opt. Express 20, 28912–28922 (2012).
[CrossRef] [PubMed]

Opt. Express. (1)

E. Lippert, H. Fonnum, G. Arisholm, K. Stenersen, “A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator,” Opt. Express. 18, 26475–26483 (2010).
[CrossRef] [PubMed]

Opt. Lett. (2)

Opt. Mater. (1)

V. Petrov, “Parametric down-conversion devices: the coverage of the mid-infrared spectral range by solid-state laser sources,” Opt. Mater. 34, 536–554 (2012).
[CrossRef]

Proc. SPIE (3)

A. Dergachev, D. Armstrong, A. Smith, T. Drake, M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA system,” Proc. SPIE 6875, 687507 (2008).
[CrossRef]

G. Stoeppler, M. Schellhorn, M. Eichhorn, “Ho3+:LLF MOPA pumped RISTRA ZGP OPO at 3–5 μm,” Proc. SPIE 8604, 86040I (2013).
[CrossRef]

V. V. Badikov, P. F. Gonzalez-Diaz, M. Santos, C. Siguenza, G. S. Shevyrdyaeva, A. S. Solodukhin, S. A. Trushin, “Wide-aperture AgGaSe2 crystals for high-energy second-harmonic and sum-frequency generation of CO2 laser radiation and their application,” Proc. SPIE 2800, 153–156 (1996).
[CrossRef]

Other (5)

G. A. Rines, D. M. Rines, P. F. Moulton, “Efficient, high-energy, KTP optical parametric oscillators pumped with 1 micron Nd-lasers,” in “Advanced Solid State Lasers,” (Optical Society of America, 1994), p. PO9.

Y. Ehrlich, S. Pearl, S. Fastig, “High brightness tunable tandem optical parametric oscillator at 8–12 μm,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2004), p. TuB15.

G. Rustad, “Investigation on how non-collinear phase matching can improve beam quality from optical parametric oscillators,” in 50 years of nonlinear optics - NLO 50 international symposium,” (Barcelona, Spain, 2012), Paper no. TP.GR.

I. T. Sorokina, K. L. Vodopyanov, eds., Solid-State Mid-Infrared Laser Sources, Topics in Applied Physics (Springer, 2003), Vol. 89.
[CrossRef]

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeranz, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, E. P. Chicklis, “20 mJ, 3–5 micron ZnGeP2 optical parametric oscillator pumped by a 2.09 micron Ho:YAG laser,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2003). Paper PD12.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic overview of the ZGP-based MOPA. PBS: polarizer, λ/2: half-wave plate @ 2.05 μm, CaF2: CaF2 wedge. The number of ZGP crystals in the OPA were 1–3 in the experiments.

Fig. 2
Fig. 2

Simulation results for the master oscillator with a pump pulse energy of 25 mJ. (a) output energy, (b) beam quality, (c) relative delay between OPO output and pump, and (d) internal peak fluence in the OPO cavity as a function of ZGP length. sro: singly resonant OPO, dro: doubly resonant OPO.

Fig. 3
Fig. 3

Simulation results for the power amplifier with a pump pulse energy of 380 mJ. (a) output energy, and (b) beam quality. The OPA was simulated with the signal beam only from the master OPO as seed for the OPA, and with both the signal and idler beams as seed.

Fig. 4
Fig. 4

Measured OPO output energy (signal and idler). The inset shows measured far field fluence from the OPO at 25 mJ pump energy.

Fig. 5
Fig. 5

Measured output spectrum (signal and idler) from the OPO and the OPA.

Fig. 6
Fig. 6

Measured OPA output energy (signal and idler) for different number of ZGP crystals (1–3) in the OPA. The seed energy was 12 mJ.

Fig. 7
Fig. 7

Measured near field (a) and far field (b) fluence profiles from the OPA (signal and idler) at full pump energy, with 3 ZGP crystals in the OPA.

Metrics