Abstract

A novel wavelength combiner using non-uniform refractive index distribution within a multimode interference device is proposed and simulated. The refractive index step creates separate localized modes with different effective refractive indices and two modes are strongly excited which form the basis of an interferometer. We applied the concept to 1.30/1.31 μm and 1.31/1.55 μm wavelength combiners on an InP substrate. The lengths of the devices are 1272 μm and 484 μm with simulated insertion losses of 0.6 dB and 0.67 dB respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a douoble-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
    [CrossRef]
  2. N. Goto, G. L. Yip, “Y-branch wavelength multi-demultplexer for λ=1.30 μm and 1.55 μm,” Electron. Lett. 26, 102–103 (2007).
    [CrossRef]
  3. A. Tervonen, P. Poyhonen, S. Honkanen, M. Tahkokorpi, “A guided-wave Mach–Zehnder interferometer structure for wavelength multiplexing,” IEEE Photon. Technol. Lett. 3, 516–518 (1991).
    [CrossRef]
  4. C. van Dam, M. R. Amersfoort, G. M. ten Kate, F. P. G. M. van Ham, M. K. Smit, “Novel InP-based phased-array wavelength demultiplexer using a generalized MMI-MZI configuration,” in Proceedings of the 7th Eur. Conf on Int. Opt. (ECIO ’95), 275–278 (1995).
  5. L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [CrossRef]
  6. C. Yao, H. G. Bach, R. Zhang, G. Zhou, J. H. Choi, C. Jiang, R. Kunkel, “An ultracompact multimode interference wavelength splitter employing asymmetrical multi-section structures,” Opt. Express 20, 18248–18253 (2012).
    [CrossRef] [PubMed]
  7. Y. Shi, S. Anand, S. He, “A polarization-insensitive 1310/1550-nm demultiplexer based on sandwiched multimode interference waveguides,” IEEE Photon. Technol. Lett. 19, 1789–1791 (2007).
    [CrossRef]
  8. M.-C. Wu, S.-Y. Tseng, “Design and simulation of multimode interference based demultiplexers aided by computer-generated planar holograms,” Opt. Express 18, 11270–11275 (2010).
    [CrossRef] [PubMed]
  9. S. Özbayat, K. Kojima, T. Koike-Akino, B. Wang, K. Parsons, S. Singh, S. Nishikawa, E. Yagyu, “Application of numerical optimization to the design of InP-based wavelength combiners,” Opt. Commun. 322, 131–136 (2014).
    [CrossRef]
  10. M. D. Gregory, Z. Bayraktar, D. H. Werner, “Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy,” IEEE Trans. Antennas Propagat. 59(4), 1275–1285 (2011).
    [CrossRef]
  11. D. F. G. Gallagher, T. P. Fellici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE 4987, 69–82 (2003).
    [CrossRef]
  12. Y. P. Li, C. H. Henry, E. J. Laskowski, H. H. Yaffe, R. L. Sweatt, “Monolithic optical waveguide 1.31/1.55 μm WDM with −50dB crosstalk over 100 nm bandwidth,” Electron. Lett. 312100–2101 (1995).
    [CrossRef]

2014 (1)

S. Özbayat, K. Kojima, T. Koike-Akino, B. Wang, K. Parsons, S. Singh, S. Nishikawa, E. Yagyu, “Application of numerical optimization to the design of InP-based wavelength combiners,” Opt. Commun. 322, 131–136 (2014).
[CrossRef]

2012 (1)

2011 (1)

M. D. Gregory, Z. Bayraktar, D. H. Werner, “Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy,” IEEE Trans. Antennas Propagat. 59(4), 1275–1285 (2011).
[CrossRef]

2010 (1)

2007 (2)

Y. Shi, S. Anand, S. He, “A polarization-insensitive 1310/1550-nm demultiplexer based on sandwiched multimode interference waveguides,” IEEE Photon. Technol. Lett. 19, 1789–1791 (2007).
[CrossRef]

N. Goto, G. L. Yip, “Y-branch wavelength multi-demultplexer for λ=1.30 μm and 1.55 μm,” Electron. Lett. 26, 102–103 (2007).
[CrossRef]

2004 (1)

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a douoble-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
[CrossRef]

2003 (1)

D. F. G. Gallagher, T. P. Fellici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE 4987, 69–82 (2003).
[CrossRef]

1995 (2)

Y. P. Li, C. H. Henry, E. J. Laskowski, H. H. Yaffe, R. L. Sweatt, “Monolithic optical waveguide 1.31/1.55 μm WDM with −50dB crosstalk over 100 nm bandwidth,” Electron. Lett. 312100–2101 (1995).
[CrossRef]

L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

1991 (1)

A. Tervonen, P. Poyhonen, S. Honkanen, M. Tahkokorpi, “A guided-wave Mach–Zehnder interferometer structure for wavelength multiplexing,” IEEE Photon. Technol. Lett. 3, 516–518 (1991).
[CrossRef]

Amersfoort, M. R.

C. van Dam, M. R. Amersfoort, G. M. ten Kate, F. P. G. M. van Ham, M. K. Smit, “Novel InP-based phased-array wavelength demultiplexer using a generalized MMI-MZI configuration,” in Proceedings of the 7th Eur. Conf on Int. Opt. (ECIO ’95), 275–278 (1995).

Anand, S.

Y. Shi, S. Anand, S. He, “A polarization-insensitive 1310/1550-nm demultiplexer based on sandwiched multimode interference waveguides,” IEEE Photon. Technol. Lett. 19, 1789–1791 (2007).
[CrossRef]

Bach, H. G.

Barbarin, Y.

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a douoble-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
[CrossRef]

Bayraktar, Z.

M. D. Gregory, Z. Bayraktar, D. H. Werner, “Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy,” IEEE Trans. Antennas Propagat. 59(4), 1275–1285 (2011).
[CrossRef]

Bente, E. A. J. M.

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a douoble-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
[CrossRef]

Choi, J. H.

Fellici, T. P.

D. F. G. Gallagher, T. P. Fellici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE 4987, 69–82 (2003).
[CrossRef]

Gallagher, D. F. G.

D. F. G. Gallagher, T. P. Fellici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE 4987, 69–82 (2003).
[CrossRef]

Goto, N.

N. Goto, G. L. Yip, “Y-branch wavelength multi-demultplexer for λ=1.30 μm and 1.55 μm,” Electron. Lett. 26, 102–103 (2007).
[CrossRef]

Gregory, M. D.

M. D. Gregory, Z. Bayraktar, D. H. Werner, “Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy,” IEEE Trans. Antennas Propagat. 59(4), 1275–1285 (2011).
[CrossRef]

He, S.

Y. Shi, S. Anand, S. He, “A polarization-insensitive 1310/1550-nm demultiplexer based on sandwiched multimode interference waveguides,” IEEE Photon. Technol. Lett. 19, 1789–1791 (2007).
[CrossRef]

Henry, C. H.

Y. P. Li, C. H. Henry, E. J. Laskowski, H. H. Yaffe, R. L. Sweatt, “Monolithic optical waveguide 1.31/1.55 μm WDM with −50dB crosstalk over 100 nm bandwidth,” Electron. Lett. 312100–2101 (1995).
[CrossRef]

Honkanen, S.

A. Tervonen, P. Poyhonen, S. Honkanen, M. Tahkokorpi, “A guided-wave Mach–Zehnder interferometer structure for wavelength multiplexing,” IEEE Photon. Technol. Lett. 3, 516–518 (1991).
[CrossRef]

Jiang, C.

Koike-Akino, T.

S. Özbayat, K. Kojima, T. Koike-Akino, B. Wang, K. Parsons, S. Singh, S. Nishikawa, E. Yagyu, “Application of numerical optimization to the design of InP-based wavelength combiners,” Opt. Commun. 322, 131–136 (2014).
[CrossRef]

Kojima, K.

S. Özbayat, K. Kojima, T. Koike-Akino, B. Wang, K. Parsons, S. Singh, S. Nishikawa, E. Yagyu, “Application of numerical optimization to the design of InP-based wavelength combiners,” Opt. Commun. 322, 131–136 (2014).
[CrossRef]

Kooiman, J. R.

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a douoble-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
[CrossRef]

Kunkel, R.

Laskowski, E. J.

Y. P. Li, C. H. Henry, E. J. Laskowski, H. H. Yaffe, R. L. Sweatt, “Monolithic optical waveguide 1.31/1.55 μm WDM with −50dB crosstalk over 100 nm bandwidth,” Electron. Lett. 312100–2101 (1995).
[CrossRef]

Leijtens, X. J. M.

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a douoble-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
[CrossRef]

Li, Y. P.

Y. P. Li, C. H. Henry, E. J. Laskowski, H. H. Yaffe, R. L. Sweatt, “Monolithic optical waveguide 1.31/1.55 μm WDM with −50dB crosstalk over 100 nm bandwidth,” Electron. Lett. 312100–2101 (1995).
[CrossRef]

Louzao, C. M.

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a douoble-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
[CrossRef]

Nishikawa, S.

S. Özbayat, K. Kojima, T. Koike-Akino, B. Wang, K. Parsons, S. Singh, S. Nishikawa, E. Yagyu, “Application of numerical optimization to the design of InP-based wavelength combiners,” Opt. Commun. 322, 131–136 (2014).
[CrossRef]

Özbayat, S.

S. Özbayat, K. Kojima, T. Koike-Akino, B. Wang, K. Parsons, S. Singh, S. Nishikawa, E. Yagyu, “Application of numerical optimization to the design of InP-based wavelength combiners,” Opt. Commun. 322, 131–136 (2014).
[CrossRef]

Parsons, K.

S. Özbayat, K. Kojima, T. Koike-Akino, B. Wang, K. Parsons, S. Singh, S. Nishikawa, E. Yagyu, “Application of numerical optimization to the design of InP-based wavelength combiners,” Opt. Commun. 322, 131–136 (2014).
[CrossRef]

Pennings, E. C. M.

L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Poyhonen, P.

A. Tervonen, P. Poyhonen, S. Honkanen, M. Tahkokorpi, “A guided-wave Mach–Zehnder interferometer structure for wavelength multiplexing,” IEEE Photon. Technol. Lett. 3, 516–518 (1991).
[CrossRef]

Shi, Y.

Y. Shi, S. Anand, S. He, “A polarization-insensitive 1310/1550-nm demultiplexer based on sandwiched multimode interference waveguides,” IEEE Photon. Technol. Lett. 19, 1789–1791 (2007).
[CrossRef]

Singh, S.

S. Özbayat, K. Kojima, T. Koike-Akino, B. Wang, K. Parsons, S. Singh, S. Nishikawa, E. Yagyu, “Application of numerical optimization to the design of InP-based wavelength combiners,” Opt. Commun. 322, 131–136 (2014).
[CrossRef]

Smit, M. K.

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a douoble-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
[CrossRef]

C. van Dam, M. R. Amersfoort, G. M. ten Kate, F. P. G. M. van Ham, M. K. Smit, “Novel InP-based phased-array wavelength demultiplexer using a generalized MMI-MZI configuration,” in Proceedings of the 7th Eur. Conf on Int. Opt. (ECIO ’95), 275–278 (1995).

Soldano, L. B.

L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Sweatt, R. L.

Y. P. Li, C. H. Henry, E. J. Laskowski, H. H. Yaffe, R. L. Sweatt, “Monolithic optical waveguide 1.31/1.55 μm WDM with −50dB crosstalk over 100 nm bandwidth,” Electron. Lett. 312100–2101 (1995).
[CrossRef]

Tahkokorpi, M.

A. Tervonen, P. Poyhonen, S. Honkanen, M. Tahkokorpi, “A guided-wave Mach–Zehnder interferometer structure for wavelength multiplexing,” IEEE Photon. Technol. Lett. 3, 516–518 (1991).
[CrossRef]

ten Kate, G. M.

C. van Dam, M. R. Amersfoort, G. M. ten Kate, F. P. G. M. van Ham, M. K. Smit, “Novel InP-based phased-array wavelength demultiplexer using a generalized MMI-MZI configuration,” in Proceedings of the 7th Eur. Conf on Int. Opt. (ECIO ’95), 275–278 (1995).

Tervonen, A.

A. Tervonen, P. Poyhonen, S. Honkanen, M. Tahkokorpi, “A guided-wave Mach–Zehnder interferometer structure for wavelength multiplexing,” IEEE Photon. Technol. Lett. 3, 516–518 (1991).
[CrossRef]

Tseng, S.-Y.

van Dam, C.

C. van Dam, M. R. Amersfoort, G. M. ten Kate, F. P. G. M. van Ham, M. K. Smit, “Novel InP-based phased-array wavelength demultiplexer using a generalized MMI-MZI configuration,” in Proceedings of the 7th Eur. Conf on Int. Opt. (ECIO ’95), 275–278 (1995).

van Ham, F. P. G. M.

C. van Dam, M. R. Amersfoort, G. M. ten Kate, F. P. G. M. van Ham, M. K. Smit, “Novel InP-based phased-array wavelength demultiplexer using a generalized MMI-MZI configuration,” in Proceedings of the 7th Eur. Conf on Int. Opt. (ECIO ’95), 275–278 (1995).

Wang, B.

S. Özbayat, K. Kojima, T. Koike-Akino, B. Wang, K. Parsons, S. Singh, S. Nishikawa, E. Yagyu, “Application of numerical optimization to the design of InP-based wavelength combiners,” Opt. Commun. 322, 131–136 (2014).
[CrossRef]

Werner, D. H.

M. D. Gregory, Z. Bayraktar, D. H. Werner, “Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy,” IEEE Trans. Antennas Propagat. 59(4), 1275–1285 (2011).
[CrossRef]

Wu, M.-C.

Yaffe, H. H.

Y. P. Li, C. H. Henry, E. J. Laskowski, H. H. Yaffe, R. L. Sweatt, “Monolithic optical waveguide 1.31/1.55 μm WDM with −50dB crosstalk over 100 nm bandwidth,” Electron. Lett. 312100–2101 (1995).
[CrossRef]

Yagyu, E.

S. Özbayat, K. Kojima, T. Koike-Akino, B. Wang, K. Parsons, S. Singh, S. Nishikawa, E. Yagyu, “Application of numerical optimization to the design of InP-based wavelength combiners,” Opt. Commun. 322, 131–136 (2014).
[CrossRef]

Yao, C.

Yip, G. L.

N. Goto, G. L. Yip, “Y-branch wavelength multi-demultplexer for λ=1.30 μm and 1.55 μm,” Electron. Lett. 26, 102–103 (2007).
[CrossRef]

Zhang, R.

Zhou, G.

Electron. Lett. (2)

N. Goto, G. L. Yip, “Y-branch wavelength multi-demultplexer for λ=1.30 μm and 1.55 μm,” Electron. Lett. 26, 102–103 (2007).
[CrossRef]

Y. P. Li, C. H. Henry, E. J. Laskowski, H. H. Yaffe, R. L. Sweatt, “Monolithic optical waveguide 1.31/1.55 μm WDM with −50dB crosstalk over 100 nm bandwidth,” Electron. Lett. 312100–2101 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Y. Shi, S. Anand, S. He, “A polarization-insensitive 1310/1550-nm demultiplexer based on sandwiched multimode interference waveguides,” IEEE Photon. Technol. Lett. 19, 1789–1791 (2007).
[CrossRef]

A. Tervonen, P. Poyhonen, S. Honkanen, M. Tahkokorpi, “A guided-wave Mach–Zehnder interferometer structure for wavelength multiplexing,” IEEE Photon. Technol. Lett. 3, 516–518 (1991).
[CrossRef]

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a douoble-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004).
[CrossRef]

IEEE Trans. Antennas Propagat. (1)

M. D. Gregory, Z. Bayraktar, D. H. Werner, “Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy,” IEEE Trans. Antennas Propagat. 59(4), 1275–1285 (2011).
[CrossRef]

J. Lightwave Technol. (1)

L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Opt. Commun. (1)

S. Özbayat, K. Kojima, T. Koike-Akino, B. Wang, K. Parsons, S. Singh, S. Nishikawa, E. Yagyu, “Application of numerical optimization to the design of InP-based wavelength combiners,” Opt. Commun. 322, 131–136 (2014).
[CrossRef]

Opt. Express (2)

Proc. SPIE (1)

D. F. G. Gallagher, T. P. Fellici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE 4987, 69–82 (2003).
[CrossRef]

Other (1)

C. van Dam, M. R. Amersfoort, G. M. ten Kate, F. P. G. M. van Ham, M. K. Smit, “Novel InP-based phased-array wavelength demultiplexer using a generalized MMI-MZI configuration,” in Proceedings of the 7th Eur. Conf on Int. Opt. (ECIO ’95), 275–278 (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1:
Fig. 1:

Top view of the proposed device.

Fig. 2:
Fig. 2:

Cross-sectional view of the center section of the proposed device.

Fig. 3:
Fig. 3:

Mode inside the MMI at the cross-section shown in Fig. 2.

Fig. 4:
Fig. 4:

Propagation patterns for a 1.30/1.31 μm wavelength combiner. The total MMI length is 1271.7 μm

Fig. 5:
Fig. 5:

Wavelength-dependent transmittance of a 1.30/1.31 μm wavelength combiner.

Fig. 6:
Fig. 6:

Propagation patterns for a 1.31/1.55 μm wavelength combiner. The total MMI length is 484.3μm.

Fig. 7:
Fig. 7:

Transmittance of a 1.31/1.55 μm combiner as a function of wavelength.

Fig. 8:
Fig. 8:

Sensitivity analysis of a 1.31/1.55 μm wavelength combiner.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L = M × L π ( λ 1 ) = ( M + 1 ) × L π ( λ 2 )
Δ β 1 L 0 Δ β 2 L 0 = π

Metrics