Abstract

We evidence by numerical calculations that optically pumped graphene is suitable for compensating inherent loss in terahertz (THz) metamaterials. We calculate the complex conductivity of graphene under optical pumping and determine the proper conditions for terahertz amplification in single layer graphene. It is shown that amplification in graphene occurs up to room temperature for moderate pump intensities at telecommunication wavelength λ = 1.5 μm. Furthermore, we investigate the coupling between a plasmonic split ring resonator (SRR) metamaterial and optically pumped graphene at a temperature T = 77 K and a pump intensity I = 300 mW/mm2. We find that the loss of a SRR metamaterial can be compensated by optically stimulated amplification in graphene. Moreover, we show that a hybrid material consisting of asymmetric split-ring resonators and optically pumped graphene can emit coherent THz radiation at minimum output power levels of 60 nW/mm2.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
    [CrossRef]
  2. O. Paul, C. Imhof, B. Laegel, S. Wolff, J. Heinrich, S. Hoefling, A. Forchel, R. Zengerle, R. Beigang, M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 10, 819–827 (2009).
    [CrossRef]
  3. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
    [CrossRef]
  4. P. Weis, J. L. Garcia-Pomar, R. Beigang, M. Rahm, “Hybridization induced transparency in composites of metamaterials and atomic media,” Opt. Express 19, 23573 (2011).
    [CrossRef] [PubMed]
  5. B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100, 221101 (2012).
    [CrossRef]
  6. D. Dietze, K. Unterrainer, J. Darmo, “Role of geometry for strong coupling in active terahertz metamaterials,” Phys. Rev. B 87, 075324 (2013).
    [CrossRef]
  7. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
    [CrossRef]
  8. C. Walther, G. Scalari, M. I. Amanti, M. Beck, J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
    [CrossRef] [PubMed]
  9. M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt. 12, 024004 (2010).
    [CrossRef]
  10. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–740 (2010).
    [CrossRef] [PubMed]
  11. A. Fang, Z. Huang, T. Koschny, C. M. Soukoulis, “Overcoming the losses of a split ring resonator array with gain,” Opt. Express 19, 12688–12699 (2011).
    [CrossRef] [PubMed]
  12. O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
    [CrossRef] [PubMed]
  13. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
    [CrossRef] [PubMed]
  14. A. Fang, T. Koschny, C. M. Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt. 12, 024013 (2010).
    [CrossRef]
  15. C. Fietz, C. M. Soukoulis, “Finite element simulation of microphotonic lasing system,” Opt. Express 20, 11548–11560 (2012).
    [CrossRef] [PubMed]
  16. K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105, 227403 (2010).
    [CrossRef]
  17. D. R. Chamberlin, E. Bründermann, E. E. Haller, “Narrow linewidth intervalence-band emission from germanium terahertz lasers,” Appl. Phys. Lett. 83, 3–5 (2003).
    [CrossRef]
  18. M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
    [CrossRef]
  19. R. W. Adams, K. Vijayraghavan, Q. J. Wang, J. Fan, F. Capasso, S. P. Khanna, A. G. Davies, E. H. Linfield, M. A. Belkin, “GaAs/Al0.15Ga0.85 as terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 k,” Appl. Phys. Lett. 97, 131111 (2010).
    [CrossRef]
  20. B. Hinkov, M. Beck, E. Gini, J. Faist, “Quantum cascade laser in a master oscillator power amplifier configuration with watt-level optical output power,” Opt. Express 21, 19180–19386 (2013).
    [CrossRef] [PubMed]
  21. Z. Diao, C. Bonzon, G. Scalari, M. Beck, J. Faist, R. Houdré, “Continuous-wave vertically emitting photonic crystal terahertz laser,” Laser Photonics Rev. 7, 45–50 (2013).
    [CrossRef]
  22. B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, H. G. Xing, “Unique prospects for graphene-based terahertz modulators,” Appl. Phys. Lett. 99, 113104 (2011).
    [CrossRef]
  23. P. Tassin, T. Koschny, M. Kafesaki, C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
    [CrossRef]
  24. S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, B. Min, “Switching teraherz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
    [CrossRef] [PubMed]
  25. B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun.3(2012).
    [CrossRef] [PubMed]
  26. P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6, 9118–9124 (2012).
    [CrossRef] [PubMed]
  27. S. H. Lee, J. Choi, H.-D. Kim, H. Choi, B. Min, “Ultrafast refractive index control of a terahertz graphene metamaterial,” Sci. Rep. 3, 2135 (2013).
    [CrossRef] [PubMed]
  28. C.-C. Chen, M. Aykol, C.-C. Chang, A. F. J. Levi, S. B. Cronin, “Graphene-silicon schottky diodes,” Nano Lett. 11, 1863–1867 (2011).
    [CrossRef] [PubMed]
  29. A. Vakil, N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
    [CrossRef] [PubMed]
  30. Y. Sun, B. Edwards, A. Alù, N. Engheta, “Experimental realization of optical lumped nanocircuits at infrared wavelengths,” Nat. Mater. 11, 1–5 (2012).
    [CrossRef]
  31. V. Ryzhii, M. Ryzhii, T. Otsuji, “Negative dynamic conductivity of graphene with optical pumping,” J. Appl. Phys. 101, 083114 (2007).
    [CrossRef]
  32. F. Rana, “Graphene terahertz plasmon oscillators,” IEEE Trans. Nanotechnol. 7, 91–99 (2008).
    [CrossRef]
  33. A. A. Dubinov, V. Y. Aleshkin, M. Ryzhii, T. Otsuji, V. Ryzhii, “Terahertz laser with optically pumped graphene layers and fabri-perot resonator,” Appl. Phys. Express 2, 092301 (2009).
    [CrossRef]
  34. V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106, 084507 (2009).
    [CrossRef]
  35. V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107, 054505 (2010).
    [CrossRef]
  36. A. A. Dubinov, V. Y. Aleshkin, V. Mitin, T. Otsuji, V. Ryzhii, “Terahertz surface plasmons in optically pumped graphene structures,” J. Phys. Condens. Matter 23, 145302 (2011).
    [CrossRef] [PubMed]
  37. Y. Takatsuka, K. Takahagi, E. Sano, V. Ryzhii, T. Otsuji, “Gain enhancement in graphene terahertz amplifiers with resonant structures,” J. Appl. Phys. 112, 033103 (2012).
    [CrossRef]
  38. V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86, 195437 (2012).
    [CrossRef]
  39. V. Ryzhii, M. Ryzhii, V. Mitin, T. Otsuji, “Toward the creation of terahertz graphene injection laser,” J. Appl. Phys. 110, 094503 (2011).
    [CrossRef]
  40. H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, T. Otsuji, “Observation of amplified terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials,” J. Infrared Millim. Terahertz Waves 32, 655–665 (2011).
    [CrossRef]
  41. I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, E. Turcu, E. Springate, A. Sthr, A. Khler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
    [CrossRef] [PubMed]
  42. L. Falkovsky, A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56, 281–284 (2007).
    [CrossRef]
  43. T. Stauber, N. M. R. Peres, A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
    [CrossRef]
  44. I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, A. Mitchel, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012).
    [CrossRef]

2013

D. Dietze, K. Unterrainer, J. Darmo, “Role of geometry for strong coupling in active terahertz metamaterials,” Phys. Rev. B 87, 075324 (2013).
[CrossRef]

B. Hinkov, M. Beck, E. Gini, J. Faist, “Quantum cascade laser in a master oscillator power amplifier configuration with watt-level optical output power,” Opt. Express 21, 19180–19386 (2013).
[CrossRef] [PubMed]

Z. Diao, C. Bonzon, G. Scalari, M. Beck, J. Faist, R. Houdré, “Continuous-wave vertically emitting photonic crystal terahertz laser,” Laser Photonics Rev. 7, 45–50 (2013).
[CrossRef]

S. H. Lee, J. Choi, H.-D. Kim, H. Choi, B. Min, “Ultrafast refractive index control of a terahertz graphene metamaterial,” Sci. Rep. 3, 2135 (2013).
[CrossRef] [PubMed]

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, E. Turcu, E. Springate, A. Sthr, A. Khler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[CrossRef] [PubMed]

2012

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, A. Mitchel, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012).
[CrossRef]

Y. Sun, B. Edwards, A. Alù, N. Engheta, “Experimental realization of optical lumped nanocircuits at infrared wavelengths,” Nat. Mater. 11, 1–5 (2012).
[CrossRef]

P. Tassin, T. Koschny, M. Kafesaki, C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[CrossRef]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, B. Min, “Switching teraherz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[CrossRef] [PubMed]

P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6, 9118–9124 (2012).
[CrossRef] [PubMed]

Y. Takatsuka, K. Takahagi, E. Sano, V. Ryzhii, T. Otsuji, “Gain enhancement in graphene terahertz amplifiers with resonant structures,” J. Appl. Phys. 112, 033103 (2012).
[CrossRef]

V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86, 195437 (2012).
[CrossRef]

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100, 221101 (2012).
[CrossRef]

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
[CrossRef] [PubMed]

C. Fietz, C. M. Soukoulis, “Finite element simulation of microphotonic lasing system,” Opt. Express 20, 11548–11560 (2012).
[CrossRef] [PubMed]

2011

A. Fang, Z. Huang, T. Koschny, C. M. Soukoulis, “Overcoming the losses of a split ring resonator array with gain,” Opt. Express 19, 12688–12699 (2011).
[CrossRef] [PubMed]

P. Weis, J. L. Garcia-Pomar, R. Beigang, M. Rahm, “Hybridization induced transparency in composites of metamaterials and atomic media,” Opt. Express 19, 23573 (2011).
[CrossRef] [PubMed]

V. Ryzhii, M. Ryzhii, V. Mitin, T. Otsuji, “Toward the creation of terahertz graphene injection laser,” J. Appl. Phys. 110, 094503 (2011).
[CrossRef]

H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, T. Otsuji, “Observation of amplified terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials,” J. Infrared Millim. Terahertz Waves 32, 655–665 (2011).
[CrossRef]

B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, H. G. Xing, “Unique prospects for graphene-based terahertz modulators,” Appl. Phys. Lett. 99, 113104 (2011).
[CrossRef]

C.-C. Chen, M. Aykol, C.-C. Chang, A. F. J. Levi, S. B. Cronin, “Graphene-silicon schottky diodes,” Nano Lett. 11, 1863–1867 (2011).
[CrossRef] [PubMed]

A. Vakil, N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[CrossRef] [PubMed]

A. A. Dubinov, V. Y. Aleshkin, V. Mitin, T. Otsuji, V. Ryzhii, “Terahertz surface plasmons in optically pumped graphene structures,” J. Phys. Condens. Matter 23, 145302 (2011).
[CrossRef] [PubMed]

2010

V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107, 054505 (2010).
[CrossRef]

R. W. Adams, K. Vijayraghavan, Q. J. Wang, J. Fan, F. Capasso, S. P. Khanna, A. G. Davies, E. H. Linfield, M. A. Belkin, “GaAs/Al0.15Ga0.85 as terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 k,” Appl. Phys. Lett. 97, 131111 (2010).
[CrossRef]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[CrossRef]

C. Walther, G. Scalari, M. I. Amanti, M. Beck, J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[CrossRef] [PubMed]

M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt. 12, 024004 (2010).
[CrossRef]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–740 (2010).
[CrossRef] [PubMed]

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105, 227403 (2010).
[CrossRef]

A. Fang, T. Koschny, C. M. Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt. 12, 024013 (2010).
[CrossRef]

2009

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef] [PubMed]

O. Paul, C. Imhof, B. Laegel, S. Wolff, J. Heinrich, S. Hoefling, A. Forchel, R. Zengerle, R. Beigang, M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 10, 819–827 (2009).
[CrossRef]

A. A. Dubinov, V. Y. Aleshkin, M. Ryzhii, T. Otsuji, V. Ryzhii, “Terahertz laser with optically pumped graphene layers and fabri-perot resonator,” Appl. Phys. Express 2, 092301 (2009).
[CrossRef]

V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106, 084507 (2009).
[CrossRef]

2008

F. Rana, “Graphene terahertz plasmon oscillators,” IEEE Trans. Nanotechnol. 7, 91–99 (2008).
[CrossRef]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[CrossRef]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[CrossRef]

T. Stauber, N. M. R. Peres, A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
[CrossRef]

2007

L. Falkovsky, A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56, 281–284 (2007).
[CrossRef]

V. Ryzhii, M. Ryzhii, T. Otsuji, “Negative dynamic conductivity of graphene with optical pumping,” J. Appl. Phys. 101, 083114 (2007).
[CrossRef]

2003

D. R. Chamberlin, E. Bründermann, E. E. Haller, “Narrow linewidth intervalence-band emission from germanium terahertz lasers,” Appl. Phys. Lett. 83, 3–5 (2003).
[CrossRef]

Abbott, D.

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, A. Mitchel, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012).
[CrossRef]

Adams, R. W.

R. W. Adams, K. Vijayraghavan, Q. J. Wang, J. Fan, F. Capasso, S. P. Khanna, A. G. Davies, E. H. Linfield, M. A. Belkin, “GaAs/Al0.15Ga0.85 as terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 k,” Appl. Phys. Lett. 97, 131111 (2010).
[CrossRef]

Aleshkin, V. Y.

A. A. Dubinov, V. Y. Aleshkin, V. Mitin, T. Otsuji, V. Ryzhii, “Terahertz surface plasmons in optically pumped graphene structures,” J. Phys. Condens. Matter 23, 145302 (2011).
[CrossRef] [PubMed]

V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106, 084507 (2009).
[CrossRef]

A. A. Dubinov, V. Y. Aleshkin, M. Ryzhii, T. Otsuji, V. Ryzhii, “Terahertz laser with optically pumped graphene layers and fabri-perot resonator,” Appl. Phys. Express 2, 092301 (2009).
[CrossRef]

Alù, A.

Y. Sun, B. Edwards, A. Alù, N. Engheta, “Experimental realization of optical lumped nanocircuits at infrared wavelengths,” Nat. Mater. 11, 1–5 (2012).
[CrossRef]

Amanti, M. I.

C. Walther, G. Scalari, M. I. Amanti, M. Beck, J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[CrossRef] [PubMed]

Averitt, R. D.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[CrossRef]

Aykol, M.

C.-C. Chen, M. Aykol, C.-C. Chang, A. F. J. Levi, S. B. Cronin, “Graphene-silicon schottky diodes,” Nano Lett. 11, 1863–1867 (2011).
[CrossRef] [PubMed]

Azad, A. K.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[CrossRef]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef] [PubMed]

Beck, M.

B. Hinkov, M. Beck, E. Gini, J. Faist, “Quantum cascade laser in a master oscillator power amplifier configuration with watt-level optical output power,” Opt. Express 21, 19180–19386 (2013).
[CrossRef] [PubMed]

Z. Diao, C. Bonzon, G. Scalari, M. Beck, J. Faist, R. Houdré, “Continuous-wave vertically emitting photonic crystal terahertz laser,” Laser Photonics Rev. 7, 45–50 (2013).
[CrossRef]

C. Walther, G. Scalari, M. I. Amanti, M. Beck, J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[CrossRef] [PubMed]

Beigang, R.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100, 221101 (2012).
[CrossRef]

P. Weis, J. L. Garcia-Pomar, R. Beigang, M. Rahm, “Hybridization induced transparency in composites of metamaterials and atomic media,” Opt. Express 19, 23573 (2011).
[CrossRef] [PubMed]

O. Paul, C. Imhof, B. Laegel, S. Wolff, J. Heinrich, S. Hoefling, A. Forchel, R. Zengerle, R. Beigang, M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 10, 819–827 (2009).
[CrossRef]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef] [PubMed]

Belkin, M. A.

R. W. Adams, K. Vijayraghavan, Q. J. Wang, J. Fan, F. Capasso, S. P. Khanna, A. G. Davies, E. H. Linfield, M. A. Belkin, “GaAs/Al0.15Ga0.85 as terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 k,” Appl. Phys. Lett. 97, 131111 (2010).
[CrossRef]

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

Belyanin, A.

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

Bhaskaran, M.

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, A. Mitchel, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012).
[CrossRef]

Bonzon, C.

Z. Diao, C. Bonzon, G. Scalari, M. Beck, J. Faist, R. Houdré, “Continuous-wave vertically emitting photonic crystal terahertz laser,” Laser Photonics Rev. 7, 45–50 (2013).
[CrossRef]

Brodyanski, A.

P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6, 9118–9124 (2012).
[CrossRef] [PubMed]

Bründermann, E.

D. R. Chamberlin, E. Bründermann, E. E. Haller, “Narrow linewidth intervalence-band emission from germanium terahertz lasers,” Appl. Phys. Lett. 83, 3–5 (2003).
[CrossRef]

Cacho, C.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, E. Turcu, E. Springate, A. Sthr, A. Khler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[CrossRef] [PubMed]

Capasso, F.

R. W. Adams, K. Vijayraghavan, Q. J. Wang, J. Fan, F. Capasso, S. P. Khanna, A. G. Davies, E. H. Linfield, M. A. Belkin, “GaAs/Al0.15Ga0.85 as terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 k,” Appl. Phys. Lett. 97, 131111 (2010).
[CrossRef]

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

Cavalleri, A.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, E. Turcu, E. Springate, A. Sthr, A. Khler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[CrossRef] [PubMed]

Chamberlin, D. R.

D. R. Chamberlin, E. Bründermann, E. E. Haller, “Narrow linewidth intervalence-band emission from germanium terahertz lasers,” Appl. Phys. Lett. 83, 3–5 (2003).
[CrossRef]

Chang, C.-C.

C.-C. Chen, M. Aykol, C.-C. Chang, A. F. J. Levi, S. B. Cronin, “Graphene-silicon schottky diodes,” Nano Lett. 11, 1863–1867 (2011).
[CrossRef] [PubMed]

Chen, C.-C.

C.-C. Chen, M. Aykol, C.-C. Chang, A. F. J. Levi, S. B. Cronin, “Graphene-silicon schottky diodes,” Nano Lett. 11, 1863–1867 (2011).
[CrossRef] [PubMed]

Chen, H.-T.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[CrossRef]

Chettiar, U. K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–740 (2010).
[CrossRef] [PubMed]

Choi, C.-G.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, B. Min, “Switching teraherz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[CrossRef] [PubMed]

Choi, H.

S. H. Lee, J. Choi, H.-D. Kim, H. Choi, B. Min, “Ultrafast refractive index control of a terahertz graphene metamaterial,” Sci. Rep. 3, 2135 (2013).
[CrossRef] [PubMed]

Choi, H. K.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, B. Min, “Switching teraherz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[CrossRef] [PubMed]

Choi, J.

S. H. Lee, J. Choi, H.-D. Kim, H. Choi, B. Min, “Ultrafast refractive index control of a terahertz graphene metamaterial,” Sci. Rep. 3, 2135 (2013).
[CrossRef] [PubMed]

Choi, M.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, B. Min, “Switching teraherz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[CrossRef] [PubMed]

Choi, S.-Y.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, B. Min, “Switching teraherz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[CrossRef] [PubMed]

Cronin, S. B.

C.-C. Chen, M. Aykol, C.-C. Chang, A. F. J. Levi, S. B. Cronin, “Graphene-silicon schottky diodes,” Nano Lett. 11, 1863–1867 (2011).
[CrossRef] [PubMed]

Darmo, J.

D. Dietze, K. Unterrainer, J. Darmo, “Role of geometry for strong coupling in active terahertz metamaterials,” Phys. Rev. B 87, 075324 (2013).
[CrossRef]

Davies, A. G.

R. W. Adams, K. Vijayraghavan, Q. J. Wang, J. Fan, F. Capasso, S. P. Khanna, A. G. Davies, E. H. Linfield, M. A. Belkin, “GaAs/Al0.15Ga0.85 as terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 k,” Appl. Phys. Lett. 97, 131111 (2010).
[CrossRef]

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

Davoyan, A. R.

V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86, 195437 (2012).
[CrossRef]

Diao, Z.

Z. Diao, C. Bonzon, G. Scalari, M. Beck, J. Faist, R. Houdré, “Continuous-wave vertically emitting photonic crystal terahertz laser,” Laser Photonics Rev. 7, 45–50 (2013).
[CrossRef]

Dietze, D.

D. Dietze, K. Unterrainer, J. Darmo, “Role of geometry for strong coupling in active terahertz metamaterials,” Phys. Rev. B 87, 075324 (2013).
[CrossRef]

Drachev, V. P.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–740 (2010).
[CrossRef] [PubMed]

Dubinov, A. A.

A. A. Dubinov, V. Y. Aleshkin, V. Mitin, T. Otsuji, V. Ryzhii, “Terahertz surface plasmons in optically pumped graphene structures,” J. Phys. Condens. Matter 23, 145302 (2011).
[CrossRef] [PubMed]

V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107, 054505 (2010).
[CrossRef]

A. A. Dubinov, V. Y. Aleshkin, M. Ryzhii, T. Otsuji, V. Ryzhii, “Terahertz laser with optically pumped graphene layers and fabri-perot resonator,” Appl. Phys. Express 2, 092301 (2009).
[CrossRef]

V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106, 084507 (2009).
[CrossRef]

Edwards, B.

Y. Sun, B. Edwards, A. Alù, N. Engheta, “Experimental realization of optical lumped nanocircuits at infrared wavelengths,” Nat. Mater. 11, 1–5 (2012).
[CrossRef]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[CrossRef]

Engheta, N.

Y. Sun, B. Edwards, A. Alù, N. Engheta, “Experimental realization of optical lumped nanocircuits at infrared wavelengths,” Nat. Mater. 11, 1–5 (2012).
[CrossRef]

A. Vakil, N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[CrossRef] [PubMed]

Faist, J.

B. Hinkov, M. Beck, E. Gini, J. Faist, “Quantum cascade laser in a master oscillator power amplifier configuration with watt-level optical output power,” Opt. Express 21, 19180–19386 (2013).
[CrossRef] [PubMed]

Z. Diao, C. Bonzon, G. Scalari, M. Beck, J. Faist, R. Houdré, “Continuous-wave vertically emitting photonic crystal terahertz laser,” Laser Photonics Rev. 7, 45–50 (2013).
[CrossRef]

C. Walther, G. Scalari, M. I. Amanti, M. Beck, J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[CrossRef] [PubMed]

Falkovsky, L.

L. Falkovsky, A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56, 281–284 (2007).
[CrossRef]

Fan, J.

R. W. Adams, K. Vijayraghavan, Q. J. Wang, J. Fan, F. Capasso, S. P. Khanna, A. G. Davies, E. H. Linfield, M. A. Belkin, “GaAs/Al0.15Ga0.85 as terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 k,” Appl. Phys. Lett. 97, 131111 (2010).
[CrossRef]

Fang, A.

Fang, T.

B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, H. G. Xing, “Unique prospects for graphene-based terahertz modulators,” Appl. Phys. Lett. 99, 113104 (2011).
[CrossRef]

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun.3(2012).
[CrossRef] [PubMed]

Fedotov, V. A.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[CrossRef]

Fietz, C.

Forchel, A.

O. Paul, C. Imhof, B. Laegel, S. Wolff, J. Heinrich, S. Hoefling, A. Forchel, R. Zengerle, R. Beigang, M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 10, 819–827 (2009).
[CrossRef]

Fukidome, H.

H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, T. Otsuji, “Observation of amplified terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials,” J. Infrared Millim. Terahertz Waves 32, 655–665 (2011).
[CrossRef]

Garcia-Pomar, J. L.

P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6, 9118–9124 (2012).
[CrossRef] [PubMed]

P. Weis, J. L. Garcia-Pomar, R. Beigang, M. Rahm, “Hybridization induced transparency in composites of metamaterials and atomic media,” Opt. Express 19, 23573 (2011).
[CrossRef] [PubMed]

Geim, A. K.

T. Stauber, N. M. R. Peres, A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
[CrossRef]

Gierz, I.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, E. Turcu, E. Springate, A. Sthr, A. Khler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[CrossRef] [PubMed]

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[CrossRef]

Gini, E.

Haller, E. E.

D. R. Chamberlin, E. Bründermann, E. E. Haller, “Narrow linewidth intervalence-band emission from germanium terahertz lasers,” Appl. Phys. Lett. 83, 3–5 (2003).
[CrossRef]

Hamm, J. M.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
[CrossRef] [PubMed]

Heinrich, J.

O. Paul, C. Imhof, B. Laegel, S. Wolff, J. Heinrich, S. Hoefling, A. Forchel, R. Zengerle, R. Beigang, M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 10, 819–827 (2009).
[CrossRef]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef] [PubMed]

Hess, O.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
[CrossRef] [PubMed]

Hinkov, B.

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[CrossRef]

Hoefling, S.

O. Paul, C. Imhof, B. Laegel, S. Wolff, J. Heinrich, S. Hoefling, A. Forchel, R. Zengerle, R. Beigang, M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 10, 819–827 (2009).
[CrossRef]

Höh, M.

P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6, 9118–9124 (2012).
[CrossRef] [PubMed]

Houdré, R.

Z. Diao, C. Bonzon, G. Scalari, M. Beck, J. Faist, R. Houdré, “Continuous-wave vertically emitting photonic crystal terahertz laser,” Laser Photonics Rev. 7, 45–50 (2013).
[CrossRef]

Huang, Z.

Hwang, W. S.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun.3(2012).
[CrossRef] [PubMed]

Imhof, C.

O. Paul, C. Imhof, B. Laegel, S. Wolff, J. Heinrich, S. Hoefling, A. Forchel, R. Zengerle, R. Beigang, M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 10, 819–827 (2009).
[CrossRef]

Jena, D.

B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, H. G. Xing, “Unique prospects for graphene-based terahertz modulators,” Appl. Phys. Lett. 99, 113104 (2011).
[CrossRef]

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun.3(2012).
[CrossRef] [PubMed]

Kafesaki, M.

P. Tassin, T. Koschny, M. Kafesaki, C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[CrossRef]

Karasawa, H.

H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, T. Otsuji, “Observation of amplified terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials,” J. Infrared Millim. Terahertz Waves 32, 655–665 (2011).
[CrossRef]

Kelly, M. M.

B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, H. G. Xing, “Unique prospects for graphene-based terahertz modulators,” Appl. Phys. Lett. 99, 113104 (2011).
[CrossRef]

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun.3(2012).
[CrossRef] [PubMed]

Khanna, S. P.

R. W. Adams, K. Vijayraghavan, Q. J. Wang, J. Fan, F. Capasso, S. P. Khanna, A. G. Davies, E. H. Linfield, M. A. Belkin, “GaAs/Al0.15Ga0.85 as terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 k,” Appl. Phys. Lett. 97, 131111 (2010).
[CrossRef]

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

Khler, A.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, E. Turcu, E. Springate, A. Sthr, A. Khler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[CrossRef] [PubMed]

Khodasevych, I. E.

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, A. Mitchel, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012).
[CrossRef]

Kildishev, A. V.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–740 (2010).
[CrossRef] [PubMed]

Kim, H.-D.

S. H. Lee, J. Choi, H.-D. Kim, H. Choi, B. Min, “Ultrafast refractive index control of a terahertz graphene metamaterial,” Sci. Rep. 3, 2135 (2013).
[CrossRef] [PubMed]

Kim, T.-T.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, B. Min, “Switching teraherz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[CrossRef] [PubMed]

Komori, T.

H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, T. Otsuji, “Observation of amplified terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials,” J. Infrared Millim. Terahertz Waves 32, 655–665 (2011).
[CrossRef]

Koschny, T.

P. Tassin, T. Koschny, M. Kafesaki, C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[CrossRef]

A. Fang, Z. Huang, T. Koschny, C. M. Soukoulis, “Overcoming the losses of a split ring resonator array with gain,” Opt. Express 19, 12688–12699 (2011).
[CrossRef] [PubMed]

A. Fang, T. Koschny, C. M. Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt. 12, 024013 (2010).
[CrossRef]

Laegel, B.

O. Paul, C. Imhof, B. Laegel, S. Wolff, J. Heinrich, S. Hoefling, A. Forchel, R. Zengerle, R. Beigang, M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 10, 819–827 (2009).
[CrossRef]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[CrossRef]

Lee, S.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, B. Min, “Switching teraherz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[CrossRef] [PubMed]

Lee, S. H.

S. H. Lee, J. Choi, H.-D. Kim, H. Choi, B. Min, “Ultrafast refractive index control of a terahertz graphene metamaterial,” Sci. Rep. 3, 2135 (2013).
[CrossRef] [PubMed]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, B. Min, “Switching teraherz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[CrossRef] [PubMed]

Lee, S. S.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, B. Min, “Switching teraherz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[CrossRef] [PubMed]

Levi, A. F. J.

C.-C. Chen, M. Aykol, C.-C. Chang, A. F. J. Levi, S. B. Cronin, “Graphene-silicon schottky diodes,” Nano Lett. 11, 1863–1867 (2011).
[CrossRef] [PubMed]

Lin, H.

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, A. Mitchel, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012).
[CrossRef]

Linfield, E. H.

R. W. Adams, K. Vijayraghavan, Q. J. Wang, J. Fan, F. Capasso, S. P. Khanna, A. G. Davies, E. H. Linfield, M. A. Belkin, “GaAs/Al0.15Ga0.85 as terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 k,” Appl. Phys. Lett. 97, 131111 (2010).
[CrossRef]

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

Liu, L.

B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, H. G. Xing, “Unique prospects for graphene-based terahertz modulators,” Appl. Phys. Lett. 99, 113104 (2011).
[CrossRef]

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun.3(2012).
[CrossRef] [PubMed]

Liu, M.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, B. Min, “Switching teraherz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[CrossRef] [PubMed]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[CrossRef]

Maier, S. A.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
[CrossRef] [PubMed]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[CrossRef]

Min, B.

S. H. Lee, J. Choi, H.-D. Kim, H. Choi, B. Min, “Ultrafast refractive index control of a terahertz graphene metamaterial,” Sci. Rep. 3, 2135 (2013).
[CrossRef] [PubMed]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, B. Min, “Switching teraherz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[CrossRef] [PubMed]

Mitchel, A.

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, A. Mitchel, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012).
[CrossRef]

Mitin, V.

V. Ryzhii, M. Ryzhii, V. Mitin, T. Otsuji, “Toward the creation of terahertz graphene injection laser,” J. Appl. Phys. 110, 094503 (2011).
[CrossRef]

A. A. Dubinov, V. Y. Aleshkin, V. Mitin, T. Otsuji, V. Ryzhii, “Terahertz surface plasmons in optically pumped graphene structures,” J. Phys. Condens. Matter 23, 145302 (2011).
[CrossRef] [PubMed]

V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107, 054505 (2010).
[CrossRef]

Mitrano, M.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, E. Turcu, E. Springate, A. Sthr, A. Khler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[CrossRef] [PubMed]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef] [PubMed]

Neu, J.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100, 221101 (2012).
[CrossRef]

Ni, X.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–740 (2010).
[CrossRef] [PubMed]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef] [PubMed]

O’Hara, J. F.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[CrossRef]

Otsuji, T.

V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86, 195437 (2012).
[CrossRef]

Y. Takatsuka, K. Takahagi, E. Sano, V. Ryzhii, T. Otsuji, “Gain enhancement in graphene terahertz amplifiers with resonant structures,” J. Appl. Phys. 112, 033103 (2012).
[CrossRef]

V. Ryzhii, M. Ryzhii, V. Mitin, T. Otsuji, “Toward the creation of terahertz graphene injection laser,” J. Appl. Phys. 110, 094503 (2011).
[CrossRef]

A. A. Dubinov, V. Y. Aleshkin, V. Mitin, T. Otsuji, V. Ryzhii, “Terahertz surface plasmons in optically pumped graphene structures,” J. Phys. Condens. Matter 23, 145302 (2011).
[CrossRef] [PubMed]

H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, T. Otsuji, “Observation of amplified terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials,” J. Infrared Millim. Terahertz Waves 32, 655–665 (2011).
[CrossRef]

V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107, 054505 (2010).
[CrossRef]

V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106, 084507 (2009).
[CrossRef]

A. A. Dubinov, V. Y. Aleshkin, M. Ryzhii, T. Otsuji, V. Ryzhii, “Terahertz laser with optically pumped graphene layers and fabri-perot resonator,” Appl. Phys. Express 2, 092301 (2009).
[CrossRef]

V. Ryzhii, M. Ryzhii, T. Otsuji, “Negative dynamic conductivity of graphene with optical pumping,” J. Appl. Phys. 101, 083114 (2007).
[CrossRef]

Ou, J. Y.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105, 227403 (2010).
[CrossRef]

Oulton, R. F.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
[CrossRef] [PubMed]

Padilla, W. J.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[CrossRef]

Papasimakis, N.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[CrossRef]

Paul, O.

O. Paul, C. Imhof, B. Laegel, S. Wolff, J. Heinrich, S. Hoefling, A. Forchel, R. Zengerle, R. Beigang, M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 10, 819–827 (2009).
[CrossRef]

Pendry, J. B.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
[CrossRef] [PubMed]

Peres, N. M. R.

T. Stauber, N. M. R. Peres, A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
[CrossRef]

Petersen, J. C.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, E. Turcu, E. Springate, A. Sthr, A. Khler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[CrossRef] [PubMed]

Pflügl, C.

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

Plum, E.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105, 227403 (2010).
[CrossRef]

Polischuk, O. V.

V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86, 195437 (2012).
[CrossRef]

Popov, V. V.

V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86, 195437 (2012).
[CrossRef]

Prosvirnin, S. L.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[CrossRef]

Rahm, M.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100, 221101 (2012).
[CrossRef]

P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6, 9118–9124 (2012).
[CrossRef] [PubMed]

P. Weis, J. L. Garcia-Pomar, R. Beigang, M. Rahm, “Hybridization induced transparency in composites of metamaterials and atomic media,” Opt. Express 19, 23573 (2011).
[CrossRef] [PubMed]

O. Paul, C. Imhof, B. Laegel, S. Wolff, J. Heinrich, S. Hoefling, A. Forchel, R. Zengerle, R. Beigang, M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 10, 819–827 (2009).
[CrossRef]

Rana, F.

F. Rana, “Graphene terahertz plasmon oscillators,” IEEE Trans. Nanotechnol. 7, 91–99 (2008).
[CrossRef]

Reinhard, B.

P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6, 9118–9124 (2012).
[CrossRef] [PubMed]

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100, 221101 (2012).
[CrossRef]

Rowe, W. S. T.

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, A. Mitchel, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012).
[CrossRef]

Ryzhii, M.

V. Ryzhii, M. Ryzhii, V. Mitin, T. Otsuji, “Toward the creation of terahertz graphene injection laser,” J. Appl. Phys. 110, 094503 (2011).
[CrossRef]

A. A. Dubinov, V. Y. Aleshkin, M. Ryzhii, T. Otsuji, V. Ryzhii, “Terahertz laser with optically pumped graphene layers and fabri-perot resonator,” Appl. Phys. Express 2, 092301 (2009).
[CrossRef]

V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106, 084507 (2009).
[CrossRef]

V. Ryzhii, M. Ryzhii, T. Otsuji, “Negative dynamic conductivity of graphene with optical pumping,” J. Appl. Phys. 101, 083114 (2007).
[CrossRef]

Ryzhii, V.

Y. Takatsuka, K. Takahagi, E. Sano, V. Ryzhii, T. Otsuji, “Gain enhancement in graphene terahertz amplifiers with resonant structures,” J. Appl. Phys. 112, 033103 (2012).
[CrossRef]

V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86, 195437 (2012).
[CrossRef]

V. Ryzhii, M. Ryzhii, V. Mitin, T. Otsuji, “Toward the creation of terahertz graphene injection laser,” J. Appl. Phys. 110, 094503 (2011).
[CrossRef]

A. A. Dubinov, V. Y. Aleshkin, V. Mitin, T. Otsuji, V. Ryzhii, “Terahertz surface plasmons in optically pumped graphene structures,” J. Phys. Condens. Matter 23, 145302 (2011).
[CrossRef] [PubMed]

H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, T. Otsuji, “Observation of amplified terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials,” J. Infrared Millim. Terahertz Waves 32, 655–665 (2011).
[CrossRef]

V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107, 054505 (2010).
[CrossRef]

A. A. Dubinov, V. Y. Aleshkin, M. Ryzhii, T. Otsuji, V. Ryzhii, “Terahertz laser with optically pumped graphene layers and fabri-perot resonator,” Appl. Phys. Express 2, 092301 (2009).
[CrossRef]

V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106, 084507 (2009).
[CrossRef]

V. Ryzhii, M. Ryzhii, T. Otsuji, “Negative dynamic conductivity of graphene with optical pumping,” J. Appl. Phys. 101, 083114 (2007).
[CrossRef]

Sano, E.

Y. Takatsuka, K. Takahagi, E. Sano, V. Ryzhii, T. Otsuji, “Gain enhancement in graphene terahertz amplifiers with resonant structures,” J. Appl. Phys. 112, 033103 (2012).
[CrossRef]

Satou, A.

H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, T. Otsuji, “Observation of amplified terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials,” J. Infrared Millim. Terahertz Waves 32, 655–665 (2011).
[CrossRef]

V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106, 084507 (2009).
[CrossRef]

Scalari, G.

Z. Diao, C. Bonzon, G. Scalari, M. Beck, J. Faist, R. Houdré, “Continuous-wave vertically emitting photonic crystal terahertz laser,” Laser Photonics Rev. 7, 45–50 (2013).
[CrossRef]

C. Walther, G. Scalari, M. I. Amanti, M. Beck, J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[CrossRef] [PubMed]

Schmitt, K. M.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100, 221101 (2012).
[CrossRef]

Sensale-Rodriguez, B.

B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, H. G. Xing, “Unique prospects for graphene-based terahertz modulators,” Appl. Phys. Lett. 99, 113104 (2011).
[CrossRef]

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun.3(2012).
[CrossRef] [PubMed]

Shah, C. M.

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, A. Mitchel, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012).
[CrossRef]

Shalaev, V. M.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–740 (2010).
[CrossRef] [PubMed]

Shrekenhamer, D. B.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[CrossRef]

Shur, M. S.

V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86, 195437 (2012).
[CrossRef]

V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107, 054505 (2010).
[CrossRef]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[CrossRef]

Soukoulis, C. M.

P. Tassin, T. Koschny, M. Kafesaki, C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[CrossRef]

C. Fietz, C. M. Soukoulis, “Finite element simulation of microphotonic lasing system,” Opt. Express 20, 11548–11560 (2012).
[CrossRef] [PubMed]

A. Fang, Z. Huang, T. Koschny, C. M. Soukoulis, “Overcoming the losses of a split ring resonator array with gain,” Opt. Express 19, 12688–12699 (2011).
[CrossRef] [PubMed]

A. Fang, T. Koschny, C. M. Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt. 12, 024013 (2010).
[CrossRef]

Springate, E.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, E. Turcu, E. Springate, A. Sthr, A. Khler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[CrossRef] [PubMed]

Sriram, S.

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, A. Mitchel, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012).
[CrossRef]

Starke, U.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, E. Turcu, E. Springate, A. Sthr, A. Khler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[CrossRef] [PubMed]

Stauber, T.

T. Stauber, N. M. R. Peres, A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
[CrossRef]

Sthr, A.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, E. Turcu, E. Springate, A. Sthr, A. Khler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[CrossRef] [PubMed]

Stockman, M. I.

M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt. 12, 024004 (2010).
[CrossRef]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef] [PubMed]

Suemitsu, M.

H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, T. Otsuji, “Observation of amplified terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials,” J. Infrared Millim. Terahertz Waves 32, 655–665 (2011).
[CrossRef]

Sun, Y.

Y. Sun, B. Edwards, A. Alù, N. Engheta, “Experimental realization of optical lumped nanocircuits at infrared wavelengths,” Nat. Mater. 11, 1–5 (2012).
[CrossRef]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef] [PubMed]

Tahy, K.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun.3(2012).
[CrossRef] [PubMed]

Takahagi, K.

Y. Takatsuka, K. Takahagi, E. Sano, V. Ryzhii, T. Otsuji, “Gain enhancement in graphene terahertz amplifiers with resonant structures,” J. Appl. Phys. 112, 033103 (2012).
[CrossRef]

Takatsuka, Y.

Y. Takatsuka, K. Takahagi, E. Sano, V. Ryzhii, T. Otsuji, “Gain enhancement in graphene terahertz amplifiers with resonant structures,” J. Appl. Phys. 112, 033103 (2012).
[CrossRef]

Tanaka, K.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105, 227403 (2010).
[CrossRef]

Tassin, P.

P. Tassin, T. Koschny, M. Kafesaki, C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[CrossRef]

Taylor, A. J.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[CrossRef]

Tsakmakidis, K. L.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
[CrossRef] [PubMed]

Turcu, E.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, E. Turcu, E. Springate, A. Sthr, A. Khler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[CrossRef] [PubMed]

Uchino, T.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105, 227403 (2010).
[CrossRef]

Ung, B. S. Y.

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, A. Mitchel, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012).
[CrossRef]

Unterrainer, K.

D. Dietze, K. Unterrainer, J. Darmo, “Role of geometry for strong coupling in active terahertz metamaterials,” Phys. Rev. B 87, 075324 (2013).
[CrossRef]

Vakil, A.

A. Vakil, N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[CrossRef] [PubMed]

Varlamov, A. A.

L. Falkovsky, A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56, 281–284 (2007).
[CrossRef]

Vijayraghavan, K.

R. W. Adams, K. Vijayraghavan, Q. J. Wang, J. Fan, F. Capasso, S. P. Khanna, A. G. Davies, E. H. Linfield, M. A. Belkin, “GaAs/Al0.15Ga0.85 as terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 k,” Appl. Phys. Lett. 97, 131111 (2010).
[CrossRef]

Walther, C.

C. Walther, G. Scalari, M. I. Amanti, M. Beck, J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[CrossRef] [PubMed]

Wang, Q. J.

R. W. Adams, K. Vijayraghavan, Q. J. Wang, J. Fan, F. Capasso, S. P. Khanna, A. G. Davies, E. H. Linfield, M. A. Belkin, “GaAs/Al0.15Ga0.85 as terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 k,” Appl. Phys. Lett. 97, 131111 (2010).
[CrossRef]

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

Watanabe, T.

H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, T. Otsuji, “Observation of amplified terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials,” J. Infrared Millim. Terahertz Waves 32, 655–665 (2011).
[CrossRef]

Weis, P.

P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6, 9118–9124 (2012).
[CrossRef] [PubMed]

P. Weis, J. L. Garcia-Pomar, R. Beigang, M. Rahm, “Hybridization induced transparency in composites of metamaterials and atomic media,” Opt. Express 19, 23573 (2011).
[CrossRef] [PubMed]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[CrossRef]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef] [PubMed]

Withayachumnankul, W.

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, A. Mitchel, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012).
[CrossRef]

Wolff, S.

O. Paul, C. Imhof, B. Laegel, S. Wolff, J. Heinrich, S. Hoefling, A. Forchel, R. Zengerle, R. Beigang, M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 10, 819–827 (2009).
[CrossRef]

Wollrab, V.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100, 221101 (2012).
[CrossRef]

Xiao, S.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–740 (2010).
[CrossRef] [PubMed]

Xing, H. G.

B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, H. G. Xing, “Unique prospects for graphene-based terahertz modulators,” Appl. Phys. Lett. 99, 113104 (2011).
[CrossRef]

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun.3(2012).
[CrossRef] [PubMed]

Yan, R.

B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, H. G. Xing, “Unique prospects for graphene-based terahertz modulators,” Appl. Phys. Lett. 99, 113104 (2011).
[CrossRef]

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun.3(2012).
[CrossRef] [PubMed]

Yin, X.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, B. Min, “Switching teraherz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[CrossRef] [PubMed]

Yuan, H.-K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–740 (2010).
[CrossRef] [PubMed]

Zengerle, R.

O. Paul, C. Imhof, B. Laegel, S. Wolff, J. Heinrich, S. Hoefling, A. Forchel, R. Zengerle, R. Beigang, M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 10, 819–827 (2009).
[CrossRef]

Zhang, X.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, B. Min, “Switching teraherz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[CrossRef] [PubMed]

Zheludev, N. I.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105, 227403 (2010).
[CrossRef]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[CrossRef]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef] [PubMed]

ACS Nano

P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6, 9118–9124 (2012).
[CrossRef] [PubMed]

Appl. Phys. Express

A. A. Dubinov, V. Y. Aleshkin, M. Ryzhii, T. Otsuji, V. Ryzhii, “Terahertz laser with optically pumped graphene layers and fabri-perot resonator,” Appl. Phys. Express 2, 092301 (2009).
[CrossRef]

Appl. Phys. Lett.

R. W. Adams, K. Vijayraghavan, Q. J. Wang, J. Fan, F. Capasso, S. P. Khanna, A. G. Davies, E. H. Linfield, M. A. Belkin, “GaAs/Al0.15Ga0.85 as terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 k,” Appl. Phys. Lett. 97, 131111 (2010).
[CrossRef]

B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, H. G. Xing, “Unique prospects for graphene-based terahertz modulators,” Appl. Phys. Lett. 99, 113104 (2011).
[CrossRef]

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100, 221101 (2012).
[CrossRef]

D. R. Chamberlin, E. Bründermann, E. E. Haller, “Narrow linewidth intervalence-band emission from germanium terahertz lasers,” Appl. Phys. Lett. 83, 3–5 (2003).
[CrossRef]

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, A. Mitchel, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012).
[CrossRef]

Eur. Phys. J. B

L. Falkovsky, A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56, 281–284 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

IEEE Trans. Nanotechnol.

F. Rana, “Graphene terahertz plasmon oscillators,” IEEE Trans. Nanotechnol. 7, 91–99 (2008).
[CrossRef]

J. Appl. Phys.

V. Ryzhii, M. Ryzhii, T. Otsuji, “Negative dynamic conductivity of graphene with optical pumping,” J. Appl. Phys. 101, 083114 (2007).
[CrossRef]

Y. Takatsuka, K. Takahagi, E. Sano, V. Ryzhii, T. Otsuji, “Gain enhancement in graphene terahertz amplifiers with resonant structures,” J. Appl. Phys. 112, 033103 (2012).
[CrossRef]

V. Ryzhii, M. Ryzhii, V. Mitin, T. Otsuji, “Toward the creation of terahertz graphene injection laser,” J. Appl. Phys. 110, 094503 (2011).
[CrossRef]

V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106, 084507 (2009).
[CrossRef]

V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107, 054505 (2010).
[CrossRef]

J. Infrared Millim. Terahertz Waves

H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, T. Otsuji, “Observation of amplified terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials,” J. Infrared Millim. Terahertz Waves 32, 655–665 (2011).
[CrossRef]

J. Opt.

A. Fang, T. Koschny, C. M. Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt. 12, 024013 (2010).
[CrossRef]

M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt. 12, 024004 (2010).
[CrossRef]

J. Phys. Condens. Matter

A. A. Dubinov, V. Y. Aleshkin, V. Mitin, T. Otsuji, V. Ryzhii, “Terahertz surface plasmons in optically pumped graphene structures,” J. Phys. Condens. Matter 23, 145302 (2011).
[CrossRef] [PubMed]

Laser Photonics Rev.

Z. Diao, C. Bonzon, G. Scalari, M. Beck, J. Faist, R. Houdré, “Continuous-wave vertically emitting photonic crystal terahertz laser,” Laser Photonics Rev. 7, 45–50 (2013).
[CrossRef]

Nano Lett.

C.-C. Chen, M. Aykol, C.-C. Chang, A. F. J. Levi, S. B. Cronin, “Graphene-silicon schottky diodes,” Nano Lett. 11, 1863–1867 (2011).
[CrossRef] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[CrossRef]

Nat. Mater.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012).
[CrossRef] [PubMed]

Y. Sun, B. Edwards, A. Alù, N. Engheta, “Experimental realization of optical lumped nanocircuits at infrared wavelengths,” Nat. Mater. 11, 1–5 (2012).
[CrossRef]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, B. Min, “Switching teraherz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[CrossRef] [PubMed]

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, E. Turcu, E. Springate, A. Sthr, A. Khler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[CrossRef] [PubMed]

Nat. Photonics

P. Tassin, T. Koschny, M. Kafesaki, C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[CrossRef]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[CrossRef]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[CrossRef]

Nature

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef] [PubMed]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–740 (2010).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. B

D. Dietze, K. Unterrainer, J. Darmo, “Role of geometry for strong coupling in active terahertz metamaterials,” Phys. Rev. B 87, 075324 (2013).
[CrossRef]

T. Stauber, N. M. R. Peres, A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
[CrossRef]

V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86, 195437 (2012).
[CrossRef]

Phys. Rev. Lett.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105, 227403 (2010).
[CrossRef]

Sci. Rep.

S. H. Lee, J. Choi, H.-D. Kim, H. Choi, B. Min, “Ultrafast refractive index control of a terahertz graphene metamaterial,” Sci. Rep. 3, 2135 (2013).
[CrossRef] [PubMed]

Science

A. Vakil, N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[CrossRef] [PubMed]

C. Walther, G. Scalari, M. I. Amanti, M. Beck, J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[CrossRef] [PubMed]

Other

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun.3(2012).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Illustration of the (a) symmetric splitring resonator (SRR) and (b) the asymmetric splitring resonator (a-SRR) with dimensions indicated in μm.

Fig. 2
Fig. 2

Real part of the conductivity of graphene at a temperature of (a) T=4 K,(b) T=77 K and (c) T=300 K. The conductivity is negative in the colored and positive in the white region.

Fig. 3
Fig. 3

Real and imaginary part of conductivity for single layer graphene at T=77K τinter = 1 ns, τintra = 1 ps and pumping intensity Ipump = 300 mW/mm2.

Fig. 4
Fig. 4

Reflectivity of optically pumped SRR/graphene metamaterial in the case of (a) no loss (b) ohmic and dielectric loss. The pump intensity was Ipump = 300 mW/mm2 at λ = 1.5 μm. (c) Reflictivity of optically pumped SRR/graphene with a silver metamaterial structure on a substrate with a permittivity of ε = 2 and a loss tangent tanδ = 0.01. (d) Maximal reflectivity of an optically pumped SRR/graphene metamaterial in dependence on the thickness of a lossy substrate with a permittivity of ε = 1.

Fig. 5
Fig. 5

(a) Maximum of the amplitude transmission in dependence of the asymmetry factor, (b) Transmission spectrum of the a-SRRs for different cases: 1. lossless (blue solid curve), 2. ohmic loss in silver (blue dashed curve), 3. dielectric loss (red solid curve), 4. ohmic loss in silver and dielectric loss in the substrate (red dashed curve).

Fig. 6
Fig. 6

Transmission spectrum of the a-SRRs for ohmic loss in silver and dielectric loss in the substrate (ε = 2, tanδ = 0.01).

Fig. 7
Fig. 7

(a) Electric field in the graphene plane for the SRR normalized to the incident THz field. (b) Electric field in the graphene plane for the a-SRR normalized to the radiated field. In both cases the metamaterial/graphene composite consists of a silver structure and a lossy dielectric with a permittivity of ε = 2.

Tables (1)

Tables Icon

Table 1 Reflection at resonance frequency in dependence of the SRR’s material.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

f ( ε ) = 1 1 + exp ε μ F k B T
σ intra = e 2 π h ¯ 0 d ε i | ε | h ¯ ( ω + i / τ ) d f ( ε ) d ε
σ inter = e 2 4 h ¯ ( 1 2 f ( h ¯ ω 2 ) 8 h ¯ ω i π 0 d ε f ( ε ) f ( h ¯ ω 2 ) ( h ¯ ω ) 2 4 ε 2 )
σ intra = 2 e 2 k B T τ π h ¯ 2 ( 1 + ω 2 τ 2 ) log ( 1 + exp ( μ F k B T ) ) + i 2 e 2 k B T ω π h ¯ ( ω 2 + 1 / τ 2 ) log ( 1 + exp ( μ F k B T ) )
σ inter = e 2 4 h ¯ tanh ( h ¯ ω 2 μ F 4 k B T ) + i e 2 8 h ¯ π log ( ( h ¯ ω + 2 μ F ) 2 ( h ¯ ω ) 2 + ( 2 k B T ) 2 )
μ F = 6 α ( v F k B T ) 2 h ¯ τ r π ν I
I pump = [ n pump c ] h ν pump
I = ε 0 c | E pump | 2
n ˜ pump = ε 0 c | E pump | 2 / ( h ν ) = I pump / ( h ν pump )
n ˜ pump abs = 0.027 ε 0 c | E pump | 2 / ( h ν ) = 0.027 I pump / ( h ν pump )
n ˜ THz = 0.0074 ε 0 c g 2 | E THz | 2 h ν THz = 0.0074 g 2 I THz h ν THz
| E THz | 0.5 3.65 ν THz ν pump / g | E pump |
I THz 0.5 3.65 / ( g 2 ) ν THz ν pump I pump

Metrics