Abstract

Silicon photonics packaging without optical isolator is of significant importance to realize low fabrication cost and small device size. In this report, impact of external feedback on DFB laser performance is investigated both theoretically and experimentally. Dynamic transfer matrix method and rate equation model are coupled to describe the dynamic interaction between optical field and carriers in a DFB structure under the feedback by external reflection. The calculation model exhibits laser spectrum splits and output intensity fluctuates with increase of the degree of external feedback, in good agreement with experimental results. The theoretical analysis is performed under various feedback parameters, and the optimum packaging condition for DFB laser chip in silicon photonics is guided.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, A. Benner, “Towards exaflop servers and supercomputers: The roadmap for lower power and higher density optical interconnects,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (Torino, 2010).
    [CrossRef]
  2. M. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol. 30(4), 448–457 (2012).
    [CrossRef]
  3. D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express 20(S2), A293–A308 (2012).
    [CrossRef] [PubMed]
  4. M. Tokunari, H-H Hsu, K. Toriyama, H. Noma, and S. Nakagawa, “High-bandwidth density and low-power optical MCM using waveguide-integrated organic substrate,” (to be published in J. Lightwave Technol.)
  5. Y. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50, S67–S72 (2012).
  6. S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, P. Huapu, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, Y. Min, J. Proesel, J. Hofrichter, B. J. Offrein, G. Xiaoxiong, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25Gbps WDM optical communications applications,” IEDM (IEEE International Electron Devices Meeting), postdeadline session 33.8 (2012).
  7. Y. Arakawa, T. Nakamura, Y. Urino, T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
    [CrossRef]
  8. W. M. Green, M. J. Rooks, L. Sekaric, Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
    [CrossRef] [PubMed]
  9. S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012).
    [CrossRef] [PubMed]
  10. C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J.-M. Fedeli, P. Viktorovitch, “CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photonics Technol. Lett. 24(6), 455–457 (2012).
    [CrossRef]
  11. T. Baba, “Nanostructured silicon photonics devices fabricated by CMOS-compatible process,” Proceedings of Photonics Global Conference (Singapore, 2012).
    [CrossRef]
  12. S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21(3), 3784–3792 (2013).
    [CrossRef] [PubMed]
  13. H. Park, A. Fang, S. Kodama, J. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells,” Opt. Express 13(23), 9460–9464 (2005).
    [CrossRef] [PubMed]
  14. N. Fujioka, T. Chu, M. Ishizaka, “Compact and low power consumption hybrid integrated wavelength tunable laser,” J. Lightwave Technol. 28(21), 3115–3120 (2010).
  15. T. Shimizu, N. Hatori, M. Okano, M. Ishizaka, Y. Urino, T. Yamamoto, M. Mori, T. Nakamura, Y. Arakawa, “High density hybrid integrated light source with a laser diode array on a silicon optical waveguide platform for inter-chip optical interconnection,” in Proceedings of IEEE International Conference on Group IV Photonics (London, 2011), pp.181–183.
    [CrossRef]
  16. L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).
  17. M. Gotoda, T. Nishimura, K. Matsumoto, T. Aoyagi, K. Yoshiara, “Highly external optical feedback-tolerant 1.49-μm single-mode lasers with partially corrugated gratings,” IEEE J. Sel. Top. Quantum Electron. 15(3), 612–617 (2009).
    [CrossRef]
  18. H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, L. F. Lester, “High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers,” IEEE Photonics Technol. Lett. 15(11), 1504–1506 (2003).
    [CrossRef]
  19. M. G. Davis, R. F. O’Dowd, “A transfer matrix method based large-signal dynamic model for multielectrode DFB lasers,” IEEE J. Quantum Electron. 30(11), 2458–2466 (1994).
    [CrossRef]
  20. O. Lavrova, D. Blumenthal, “Detailed transfer matrix method-based dynamic model for multisection widely tunable GCSR lasers,” J. Lightwave Technol. 18(9), 1274–1283 (2000).
  21. N. Schunk, K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24(7), 1242–1247 (1988).
    [CrossRef]
  22. J. Helms, C. Kurtzke, K. Petermann, “External feedback requirements for coherent optical communication systems,” J. Lightwave Technol. 10(8), 1137–1141 (1992).
    [CrossRef]
  23. K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
    [CrossRef]

2013

2012

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012).
[CrossRef] [PubMed]

C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J.-M. Fedeli, P. Viktorovitch, “CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photonics Technol. Lett. 24(6), 455–457 (2012).
[CrossRef]

M. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol. 30(4), 448–457 (2012).
[CrossRef]

D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express 20(S2), A293–A308 (2012).
[CrossRef] [PubMed]

Y. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50, S67–S72 (2012).

2010

2009

M. Gotoda, T. Nishimura, K. Matsumoto, T. Aoyagi, K. Yoshiara, “Highly external optical feedback-tolerant 1.49-μm single-mode lasers with partially corrugated gratings,” IEEE J. Sel. Top. Quantum Electron. 15(3), 612–617 (2009).
[CrossRef]

2007

2005

2003

H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, L. F. Lester, “High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers,” IEEE Photonics Technol. Lett. 15(11), 1504–1506 (2003).
[CrossRef]

2000

1995

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
[CrossRef]

1994

M. G. Davis, R. F. O’Dowd, “A transfer matrix method based large-signal dynamic model for multielectrode DFB lasers,” IEEE J. Quantum Electron. 30(11), 2458–2466 (1994).
[CrossRef]

1992

J. Helms, C. Kurtzke, K. Petermann, “External feedback requirements for coherent optical communication systems,” J. Lightwave Technol. 10(8), 1137–1141 (1992).
[CrossRef]

1988

N. Schunk, K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24(7), 1242–1247 (1988).
[CrossRef]

Aoyagi, T.

M. Gotoda, T. Nishimura, K. Matsumoto, T. Aoyagi, K. Yoshiara, “Highly external optical feedback-tolerant 1.49-μm single-mode lasers with partially corrugated gratings,” IEEE J. Sel. Top. Quantum Electron. 15(3), 612–617 (2009).
[CrossRef]

Arakawa, Y.

Y. Arakawa, T. Nakamura, Y. Urino, T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[CrossRef]

T. Shimizu, N. Hatori, M. Okano, M. Ishizaka, Y. Urino, T. Yamamoto, M. Mori, T. Nakamura, Y. Arakawa, “High density hybrid integrated light source with a laser diode array on a silicon optical waveguide platform for inter-chip optical interconnection,” in Proceedings of IEEE International Conference on Group IV Photonics (London, 2011), pp.181–183.
[CrossRef]

Baba, T.

T. Baba, “Nanostructured silicon photonics devices fabricated by CMOS-compatible process,” Proceedings of Photonics Global Conference (Singapore, 2012).
[CrossRef]

Bakir, B. B.

C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J.-M. Fedeli, P. Viktorovitch, “CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photonics Technol. Lett. 24(6), 455–457 (2012).
[CrossRef]

Benner, A.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, A. Benner, “Towards exaflop servers and supercomputers: The roadmap for lower power and higher density optical interconnects,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (Torino, 2010).
[CrossRef]

Blumenthal, D.

Bordel, D.

Bowers, J.

Chu, T.

Davis, M. G.

M. G. Davis, R. F. O’Dowd, “A transfer matrix method based large-signal dynamic model for multielectrode DFB lasers,” IEEE J. Quantum Electron. 30(11), 2458–2466 (1994).
[CrossRef]

Doany, F.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, A. Benner, “Towards exaflop servers and supercomputers: The roadmap for lower power and higher density optical interconnects,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (Torino, 2010).
[CrossRef]

Duan, G.-H.

Fang, A.

Fedeli, J.-M.

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21(3), 3784–3792 (2013).
[CrossRef] [PubMed]

C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J.-M. Fedeli, P. Viktorovitch, “CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photonics Technol. Lett. 24(6), 455–457 (2012).
[CrossRef]

Fujioka, N.

Fujita, T.

Y. Arakawa, T. Nakamura, Y. Urino, T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[CrossRef]

Gotoda, M.

M. Gotoda, T. Nishimura, K. Matsumoto, T. Aoyagi, K. Yoshiara, “Highly external optical feedback-tolerant 1.49-μm single-mode lasers with partially corrugated gratings,” IEEE J. Sel. Top. Quantum Electron. 15(3), 612–617 (2009).
[CrossRef]

Gray, A. L.

H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, L. F. Lester, “High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers,” IEEE Photonics Technol. Lett. 15(11), 1504–1506 (2003).
[CrossRef]

Green, W. M.

Harduin, J.

C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J.-M. Fedeli, P. Viktorovitch, “CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photonics Technol. Lett. 24(6), 455–457 (2012).
[CrossRef]

Hasebe, K.

Hatori, N.

T. Shimizu, N. Hatori, M. Okano, M. Ishizaka, Y. Urino, T. Yamamoto, M. Mori, T. Nakamura, Y. Arakawa, “High density hybrid integrated light source with a laser diode array on a silicon optical waveguide platform for inter-chip optical interconnection,” in Proceedings of IEEE International Conference on Group IV Photonics (London, 2011), pp.181–183.
[CrossRef]

Helms, J.

J. Helms, C. Kurtzke, K. Petermann, “External feedback requirements for coherent optical communication systems,” J. Lightwave Technol. 10(8), 1137–1141 (1992).
[CrossRef]

Ishizaka, M.

N. Fujioka, T. Chu, M. Ishizaka, “Compact and low power consumption hybrid integrated wavelength tunable laser,” J. Lightwave Technol. 28(21), 3115–3120 (2010).

T. Shimizu, N. Hatori, M. Okano, M. Ishizaka, Y. Urino, T. Yamamoto, M. Mori, T. Nakamura, Y. Arakawa, “High density hybrid integrated light source with a laser diode array on a silicon optical waveguide platform for inter-chip optical interconnection,” in Proceedings of IEEE International Conference on Group IV Photonics (London, 2011), pp.181–183.
[CrossRef]

Jany, C.

Kakitsuka, T.

Kash, J.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, A. Benner, “Towards exaflop servers and supercomputers: The roadmap for lower power and higher density optical interconnects,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (Torino, 2010).
[CrossRef]

Keyvaninia, S.

Kodama, S.

Kuchta, D.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, A. Benner, “Towards exaflop servers and supercomputers: The roadmap for lower power and higher density optical interconnects,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (Torino, 2010).
[CrossRef]

Kurtzke, C.

J. Helms, C. Kurtzke, K. Petermann, “External feedback requirements for coherent optical communication systems,” J. Lightwave Technol. 10(8), 1137–1141 (1992).
[CrossRef]

Lamponi, M.

Lavrova, O.

Le Liepvre, A.

Lelarge, F.

Lester, L. F.

H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, L. F. Lester, “High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers,” IEEE Photonics Technol. Lett. 15(11), 1504–1506 (2003).
[CrossRef]

Letartre, X.

C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J.-M. Fedeli, P. Viktorovitch, “CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photonics Technol. Lett. 24(6), 455–457 (2012).
[CrossRef]

Make, D.

Malloy, K. J.

H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, L. F. Lester, “High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers,” IEEE Photonics Technol. Lett. 15(11), 1504–1506 (2003).
[CrossRef]

Matsumoto, K.

M. Gotoda, T. Nishimura, K. Matsumoto, T. Aoyagi, K. Yoshiara, “Highly external optical feedback-tolerant 1.49-μm single-mode lasers with partially corrugated gratings,” IEEE J. Sel. Top. Quantum Electron. 15(3), 612–617 (2009).
[CrossRef]

Matsuo, S.

Miller, D. A. B.

Mori, M.

T. Shimizu, N. Hatori, M. Okano, M. Ishizaka, Y. Urino, T. Yamamoto, M. Mori, T. Nakamura, Y. Arakawa, “High density hybrid integrated light source with a laser diode array on a silicon optical waveguide platform for inter-chip optical interconnection,” in Proceedings of IEEE International Conference on Group IV Photonics (London, 2011), pp.181–183.
[CrossRef]

Nakamura, T.

Y. Arakawa, T. Nakamura, Y. Urino, T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[CrossRef]

T. Shimizu, N. Hatori, M. Okano, M. Ishizaka, Y. Urino, T. Yamamoto, M. Mori, T. Nakamura, Y. Arakawa, “High density hybrid integrated light source with a laser diode array on a silicon optical waveguide platform for inter-chip optical interconnection,” in Proceedings of IEEE International Conference on Group IV Photonics (London, 2011), pp.181–183.
[CrossRef]

Newell, T. C.

H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, L. F. Lester, “High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers,” IEEE Photonics Technol. Lett. 15(11), 1504–1506 (2003).
[CrossRef]

Nishimura, T.

M. Gotoda, T. Nishimura, K. Matsumoto, T. Aoyagi, K. Yoshiara, “Highly external optical feedback-tolerant 1.49-μm single-mode lasers with partially corrugated gratings,” IEEE J. Sel. Top. Quantum Electron. 15(3), 612–617 (2009).
[CrossRef]

Notomi, M.

Nozaki, K.

O’Dowd, R. F.

M. G. Davis, R. F. O’Dowd, “A transfer matrix method based large-signal dynamic model for multielectrode DFB lasers,” IEEE J. Quantum Electron. 30(11), 2458–2466 (1994).
[CrossRef]

Offrein, B. J.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, A. Benner, “Towards exaflop servers and supercomputers: The roadmap for lower power and higher density optical interconnects,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (Torino, 2010).
[CrossRef]

Okano, M.

T. Shimizu, N. Hatori, M. Okano, M. Ishizaka, Y. Urino, T. Yamamoto, M. Mori, T. Nakamura, Y. Arakawa, “High density hybrid integrated light source with a laser diode array on a silicon optical waveguide platform for inter-chip optical interconnection,” in Proceedings of IEEE International Conference on Group IV Photonics (London, 2011), pp.181–183.
[CrossRef]

Olivier, N.

C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J.-M. Fedeli, P. Viktorovitch, “CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photonics Technol. Lett. 24(6), 455–457 (2012).
[CrossRef]

Park, H.

Pepeljugoski, P.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, A. Benner, “Towards exaflop servers and supercomputers: The roadmap for lower power and higher density optical interconnects,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (Torino, 2010).
[CrossRef]

Petermann, K.

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
[CrossRef]

J. Helms, C. Kurtzke, K. Petermann, “External feedback requirements for coherent optical communication systems,” J. Lightwave Technol. 10(8), 1137–1141 (1992).
[CrossRef]

N. Schunk, K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24(7), 1242–1247 (1988).
[CrossRef]

Roelkens, G.

Rooks, M. J.

Sato, T.

Schares, L.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, A. Benner, “Towards exaflop servers and supercomputers: The roadmap for lower power and higher density optical interconnects,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (Torino, 2010).
[CrossRef]

Schow, C.

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, A. Benner, “Towards exaflop servers and supercomputers: The roadmap for lower power and higher density optical interconnects,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (Torino, 2010).
[CrossRef]

Schunk, N.

N. Schunk, K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24(7), 1242–1247 (1988).
[CrossRef]

Sciancalepore, C.

C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J.-M. Fedeli, P. Viktorovitch, “CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photonics Technol. Lett. 24(6), 455–457 (2012).
[CrossRef]

Seassal, C.

C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J.-M. Fedeli, P. Viktorovitch, “CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photonics Technol. Lett. 24(6), 455–457 (2012).
[CrossRef]

Sekaric, L.

Shimizu, T.

T. Shimizu, N. Hatori, M. Okano, M. Ishizaka, Y. Urino, T. Yamamoto, M. Mori, T. Nakamura, Y. Arakawa, “High density hybrid integrated light source with a laser diode array on a silicon optical waveguide platform for inter-chip optical interconnection,” in Proceedings of IEEE International Conference on Group IV Photonics (London, 2011), pp.181–183.
[CrossRef]

Shinya, A.

Su, H.

H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, L. F. Lester, “High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers,” IEEE Photonics Technol. Lett. 15(11), 1504–1506 (2003).
[CrossRef]

Takeda, K.

Taniyama, H.

Taubenblatt, M.

M. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol. 30(4), 448–457 (2012).
[CrossRef]

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, A. Benner, “Towards exaflop servers and supercomputers: The roadmap for lower power and higher density optical interconnects,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (Torino, 2010).
[CrossRef]

Urino, Y.

Y. Arakawa, T. Nakamura, Y. Urino, T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[CrossRef]

T. Shimizu, N. Hatori, M. Okano, M. Ishizaka, Y. Urino, T. Yamamoto, M. Mori, T. Nakamura, Y. Arakawa, “High density hybrid integrated light source with a laser diode array on a silicon optical waveguide platform for inter-chip optical interconnection,” in Proceedings of IEEE International Conference on Group IV Photonics (London, 2011), pp.181–183.
[CrossRef]

Van Thourhout, D.

Viktorovitch, P.

C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J.-M. Fedeli, P. Viktorovitch, “CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photonics Technol. Lett. 24(6), 455–457 (2012).
[CrossRef]

Vlasov, Y.

Y. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50, S67–S72 (2012).

Vlasov, Y. A.

Wang, R.

H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, L. F. Lester, “High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers,” IEEE Photonics Technol. Lett. 15(11), 1504–1506 (2003).
[CrossRef]

Yamamoto, T.

T. Shimizu, N. Hatori, M. Okano, M. Ishizaka, Y. Urino, T. Yamamoto, M. Mori, T. Nakamura, Y. Arakawa, “High density hybrid integrated light source with a laser diode array on a silicon optical waveguide platform for inter-chip optical interconnection,” in Proceedings of IEEE International Conference on Group IV Photonics (London, 2011), pp.181–183.
[CrossRef]

Yoshiara, K.

M. Gotoda, T. Nishimura, K. Matsumoto, T. Aoyagi, K. Yoshiara, “Highly external optical feedback-tolerant 1.49-μm single-mode lasers with partially corrugated gratings,” IEEE J. Sel. Top. Quantum Electron. 15(3), 612–617 (2009).
[CrossRef]

Zhang, L.

H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, L. F. Lester, “High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers,” IEEE Photonics Technol. Lett. 15(11), 1504–1506 (2003).
[CrossRef]

IEEE Commun. Mag.

Y. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50, S67–S72 (2012).

Y. Arakawa, T. Nakamura, Y. Urino, T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[CrossRef]

IEEE J. Quantum Electron.

M. G. Davis, R. F. O’Dowd, “A transfer matrix method based large-signal dynamic model for multielectrode DFB lasers,” IEEE J. Quantum Electron. 30(11), 2458–2466 (1994).
[CrossRef]

N. Schunk, K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24(7), 1242–1247 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Gotoda, T. Nishimura, K. Matsumoto, T. Aoyagi, K. Yoshiara, “Highly external optical feedback-tolerant 1.49-μm single-mode lasers with partially corrugated gratings,” IEEE J. Sel. Top. Quantum Electron. 15(3), 612–617 (2009).
[CrossRef]

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
[CrossRef]

IEEE Photonics Technol. Lett.

H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, L. F. Lester, “High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers,” IEEE Photonics Technol. Lett. 15(11), 1504–1506 (2003).
[CrossRef]

C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J.-M. Fedeli, P. Viktorovitch, “CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photonics Technol. Lett. 24(6), 455–457 (2012).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

T. Baba, “Nanostructured silicon photonics devices fabricated by CMOS-compatible process,” Proceedings of Photonics Global Conference (Singapore, 2012).
[CrossRef]

T. Shimizu, N. Hatori, M. Okano, M. Ishizaka, Y. Urino, T. Yamamoto, M. Mori, T. Nakamura, Y. Arakawa, “High density hybrid integrated light source with a laser diode array on a silicon optical waveguide platform for inter-chip optical interconnection,” in Proceedings of IEEE International Conference on Group IV Photonics (London, 2011), pp.181–183.
[CrossRef]

L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, A. Benner, “Towards exaflop servers and supercomputers: The roadmap for lower power and higher density optical interconnects,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (Torino, 2010).
[CrossRef]

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, P. Huapu, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, Y. Min, J. Proesel, J. Hofrichter, B. J. Offrein, G. Xiaoxiong, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25Gbps WDM optical communications applications,” IEDM (IEEE International Electron Devices Meeting), postdeadline session 33.8 (2012).

M. Tokunari, H-H Hsu, K. Toriyama, H. Noma, and S. Nakagawa, “High-bandwidth density and low-power optical MCM using waveguide-integrated organic substrate,” (to be published in J. Lightwave Technol.)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Conceptual diagram of dynamic transfer matrix method. DFB structure is divided into a cascade of sections, in which all the physical parameters are assumed to be constant.

Fig. 2
Fig. 2

Schematic diagram of the experimental setup for investigation of external feedback impact on DFB laser performance.

Fig. 3
Fig. 3

Experimentally obtained emission spectra of the DFB laser under the feedback level of (a) −34 dB, (b) −27 dB, and (c) −22 dB.

Fig. 4
Fig. 4

RIN of the optical output of DFB laser as a function of feedback level.

Fig. 5
Fig. 5

Calculated emission spectra of DFB laser under the feedback level of (a) −30 dB, (b) −25 dB, and (c) −20 dB.

Fig. 6
Fig. 6

Dynamic transition of emission spectra under feedback levels of −30 dB (a) and −20 dB (b). Time development of each optical modes arrowed as A, B, and C in (a,c) are plotted in (b, d) respectively.

Fig. 7
Fig. 7

Calculated dynamic spectral transition as a function of external cavity length Lext and feedback level R. Lext in air and in a silicon waveguide are shown in black and blue letters respectively.

Tables (1)

Tables Icon

Table 1 Calculation parameters

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

( E f (t+Δt,k+1) E b (t,k+1) )=M( t,k )( E f (t,k) E b (t+Δt,k) ).
E f (t+Δt,k+1)= m 11 (t,k) E f (t,k)+ m 12 (t,k) E b (t+Δt,k)
E b (t,k+1)= m 21 (t,k) E f (t,k)+ m 22 (t,k) E b (t+Δt,k)
M H =( e iβdz 0 0 e iβdz ),
M S =( n 1 + n 2 2 n 1 n 2 n 2 n 1 2 n 1 n 2 n 2 n 1 2 n 1 n 2 n 1 + n 2 2 n 1 n 2 ).
N(t+Δt,k)=N(t,k)+Δt{ J qd B r N k 2 (t,k)Γ v g g(t,k) λ S(t,k,λ) }.
g= dg dN N N tr 1+εS ,

Metrics