Abstract

We successfully fabricate polymer optical waveguides with graded-index (GI) circular cores whose diameter and interchannel pitch are accurately controlled using the Mosquito method: GI-core waveguides with 250-, 125- and 62.5-μm pitches are successfully obtained. The Mosquito method utilizing a microdispenser is a very simple technique for fabricating GI-circular-core polymer optical waveguides. The accurately controlled pitch is confirmed by a high connectivity with a commercially available multimode fiber (MMF) ribbon with a 125-μm pitch. Furthermore, by inserting the waveguide between two 12-channel MMF ribbons, we experimentally demonstrate 11.3 Gbps × 12 Ch. parallel signal transmission through a GI-core waveguide with a 125-μm pitch for the first time to the best of our knowledge.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Taubenblatt, “Optical interconnects for high performance computing,” in Technical Digest of Opt. Fiber Commun. Conf.,OThH3, Los Angeles, California, USA., 6–11 Mar., 2011.
    [CrossRef]
  2. R. C. A. Pitwon, K. Wang, J. Graham-Jones, I. Papakonstantinou, H. Baghsiahi, B. J. Offrein, R. Dangel, D. Milward, D. R. Selviah, “FirstLight: Pluggable optical interconnect technologies for polymeric electro-optical printed circuit boards in data centers,” J. Lightwave Technol. 30(21), 3316–3329 (2012).
    [CrossRef]
  3. F. E. Doany, C. L. Schow, B. G. Lee, R. A. Budd, C. W. Baks, C. K. Tsang, J. U. Knickerbocker, R. Dangel, B. Chan, H. Lin, C. Carver, J. Haung, J. Berry, D. Bajkowski, F. Libsch, J. A. Kash, “Terabit/s-class optical PCB links incorporating 360-Gb/s bidirectional 850 nm parallel optical transceivers,” J. Lightwave Technol. 30, 560–571 (2012).
    [CrossRef]
  4. Y. Matsuoka, D. Kawamura, K. Adachi, Y. Lee, S. Hamamura, T. Takai, T. Shibata, H. Masuda, N. Chujo, T. Sugawara, “20-Gb/s/ch High-speed low-power 1-Tb/s multilayer optical printed circuit board with lens-integrated optical devices and CMOS IC,” IEEE Photonics Technol. Lett. 23(18), 1352–1354 (2011).
    [CrossRef]
  5. Y. Takeyoshi, T. Ishigure, “High-density 2×4 channel polymer optical waveguide with graded-index circular cores,” J. Lightwave Technol. 27(14), 2852–2861 (2009).
    [CrossRef]
  6. T. Ishigure, Y. Takeyoshi, “Polymer waveguide with 4-channel graded-index circular cores for parallel optical interconnects,” Opt. Express 15(9), 5843–5850 (2007).
    [CrossRef] [PubMed]
  7. K. Soma, T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
    [CrossRef]
  8. T. Kosugi, T. Ishigure, “Polymer parallel optical waveguide with graded-index rectangular cores and its dispersion analysis,” Opt. Express 17(18), 15959–15968 (2009).
    [CrossRef] [PubMed]
  9. http://www.musashi-engineering.co.jp.e.cn.hp.transer.com/products/115_3-4-1-12.html
  10. T. I. R. Ishiguro, H. Uno, and H.-H. Hsu, “Maximum channel density in multimode optical waveguides for parallel interconnections,” in Proceeding of 61st Electron. Compon. Technol. Conf. (Institute of Electrical and Electronics Engineers, New York, 2011), pp. 1847–1851.
    [CrossRef]
  11. R. Kinoshita, K. Moriya, K. Choki, T. Ishigure, “Polymer optical waveguides with GI and W-shaped cores for high-bandwidth-density on-board interconnects,” J. Lightwave Technol. 31(24), 4004–4015 (2013).
    [CrossRef]
  12. H. Uno, T. Ishigure, “GI-core polymer parallel optical waveguide with high-loss, carbon-black-doped cladding for extra low inter-channel crosstalk,” Opt. Express 19(11), 10931–10939 (2011).
    [CrossRef] [PubMed]
  13. H. Nasu, “Short-reach optical interconnects employing high density parallel-optical modules,” J. Sel. Top. Quantum Electron. 16(5), 1337–1346 (2010).
    [CrossRef]
  14. S. Yakabe, T. Ishigure, and S. Nakagawa, “Link power budget advantage of GI-core polymer optical waveguide for waveguide-based optical link,” in Technical Digest of Opt. Fiber Commun. Conf., OM2J.3, Los Angeles, California, USA., 4–9, Mar., 2012.
    [CrossRef]

2013 (2)

K. Soma, T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[CrossRef]

R. Kinoshita, K. Moriya, K. Choki, T. Ishigure, “Polymer optical waveguides with GI and W-shaped cores for high-bandwidth-density on-board interconnects,” J. Lightwave Technol. 31(24), 4004–4015 (2013).
[CrossRef]

2012 (2)

2011 (2)

Y. Matsuoka, D. Kawamura, K. Adachi, Y. Lee, S. Hamamura, T. Takai, T. Shibata, H. Masuda, N. Chujo, T. Sugawara, “20-Gb/s/ch High-speed low-power 1-Tb/s multilayer optical printed circuit board with lens-integrated optical devices and CMOS IC,” IEEE Photonics Technol. Lett. 23(18), 1352–1354 (2011).
[CrossRef]

H. Uno, T. Ishigure, “GI-core polymer parallel optical waveguide with high-loss, carbon-black-doped cladding for extra low inter-channel crosstalk,” Opt. Express 19(11), 10931–10939 (2011).
[CrossRef] [PubMed]

2010 (1)

H. Nasu, “Short-reach optical interconnects employing high density parallel-optical modules,” J. Sel. Top. Quantum Electron. 16(5), 1337–1346 (2010).
[CrossRef]

2009 (2)

2007 (1)

Adachi, K.

Y. Matsuoka, D. Kawamura, K. Adachi, Y. Lee, S. Hamamura, T. Takai, T. Shibata, H. Masuda, N. Chujo, T. Sugawara, “20-Gb/s/ch High-speed low-power 1-Tb/s multilayer optical printed circuit board with lens-integrated optical devices and CMOS IC,” IEEE Photonics Technol. Lett. 23(18), 1352–1354 (2011).
[CrossRef]

Baghsiahi, H.

Bajkowski, D.

Baks, C. W.

Berry, J.

Budd, R. A.

Carver, C.

Chan, B.

Choki, K.

Chujo, N.

Y. Matsuoka, D. Kawamura, K. Adachi, Y. Lee, S. Hamamura, T. Takai, T. Shibata, H. Masuda, N. Chujo, T. Sugawara, “20-Gb/s/ch High-speed low-power 1-Tb/s multilayer optical printed circuit board with lens-integrated optical devices and CMOS IC,” IEEE Photonics Technol. Lett. 23(18), 1352–1354 (2011).
[CrossRef]

Dangel, R.

Doany, F. E.

Graham-Jones, J.

Hamamura, S.

Y. Matsuoka, D. Kawamura, K. Adachi, Y. Lee, S. Hamamura, T. Takai, T. Shibata, H. Masuda, N. Chujo, T. Sugawara, “20-Gb/s/ch High-speed low-power 1-Tb/s multilayer optical printed circuit board with lens-integrated optical devices and CMOS IC,” IEEE Photonics Technol. Lett. 23(18), 1352–1354 (2011).
[CrossRef]

Haung, J.

Ishigure, T.

Kash, J. A.

Kawamura, D.

Y. Matsuoka, D. Kawamura, K. Adachi, Y. Lee, S. Hamamura, T. Takai, T. Shibata, H. Masuda, N. Chujo, T. Sugawara, “20-Gb/s/ch High-speed low-power 1-Tb/s multilayer optical printed circuit board with lens-integrated optical devices and CMOS IC,” IEEE Photonics Technol. Lett. 23(18), 1352–1354 (2011).
[CrossRef]

Kinoshita, R.

Knickerbocker, J. U.

Kosugi, T.

Lee, B. G.

Lee, Y.

Y. Matsuoka, D. Kawamura, K. Adachi, Y. Lee, S. Hamamura, T. Takai, T. Shibata, H. Masuda, N. Chujo, T. Sugawara, “20-Gb/s/ch High-speed low-power 1-Tb/s multilayer optical printed circuit board with lens-integrated optical devices and CMOS IC,” IEEE Photonics Technol. Lett. 23(18), 1352–1354 (2011).
[CrossRef]

Libsch, F.

Lin, H.

Masuda, H.

Y. Matsuoka, D. Kawamura, K. Adachi, Y. Lee, S. Hamamura, T. Takai, T. Shibata, H. Masuda, N. Chujo, T. Sugawara, “20-Gb/s/ch High-speed low-power 1-Tb/s multilayer optical printed circuit board with lens-integrated optical devices and CMOS IC,” IEEE Photonics Technol. Lett. 23(18), 1352–1354 (2011).
[CrossRef]

Matsuoka, Y.

Y. Matsuoka, D. Kawamura, K. Adachi, Y. Lee, S. Hamamura, T. Takai, T. Shibata, H. Masuda, N. Chujo, T. Sugawara, “20-Gb/s/ch High-speed low-power 1-Tb/s multilayer optical printed circuit board with lens-integrated optical devices and CMOS IC,” IEEE Photonics Technol. Lett. 23(18), 1352–1354 (2011).
[CrossRef]

Milward, D.

Moriya, K.

Nasu, H.

H. Nasu, “Short-reach optical interconnects employing high density parallel-optical modules,” J. Sel. Top. Quantum Electron. 16(5), 1337–1346 (2010).
[CrossRef]

Offrein, B. J.

Papakonstantinou, I.

Pitwon, R. C. A.

Schow, C. L.

Selviah, D. R.

Shibata, T.

Y. Matsuoka, D. Kawamura, K. Adachi, Y. Lee, S. Hamamura, T. Takai, T. Shibata, H. Masuda, N. Chujo, T. Sugawara, “20-Gb/s/ch High-speed low-power 1-Tb/s multilayer optical printed circuit board with lens-integrated optical devices and CMOS IC,” IEEE Photonics Technol. Lett. 23(18), 1352–1354 (2011).
[CrossRef]

Soma, K.

K. Soma, T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[CrossRef]

Sugawara, T.

Y. Matsuoka, D. Kawamura, K. Adachi, Y. Lee, S. Hamamura, T. Takai, T. Shibata, H. Masuda, N. Chujo, T. Sugawara, “20-Gb/s/ch High-speed low-power 1-Tb/s multilayer optical printed circuit board with lens-integrated optical devices and CMOS IC,” IEEE Photonics Technol. Lett. 23(18), 1352–1354 (2011).
[CrossRef]

Takai, T.

Y. Matsuoka, D. Kawamura, K. Adachi, Y. Lee, S. Hamamura, T. Takai, T. Shibata, H. Masuda, N. Chujo, T. Sugawara, “20-Gb/s/ch High-speed low-power 1-Tb/s multilayer optical printed circuit board with lens-integrated optical devices and CMOS IC,” IEEE Photonics Technol. Lett. 23(18), 1352–1354 (2011).
[CrossRef]

Takeyoshi, Y.

Tsang, C. K.

Uno, H.

Wang, K.

IEEE J. Sel. Top. Quantum Electron. (1)

K. Soma, T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

Y. Matsuoka, D. Kawamura, K. Adachi, Y. Lee, S. Hamamura, T. Takai, T. Shibata, H. Masuda, N. Chujo, T. Sugawara, “20-Gb/s/ch High-speed low-power 1-Tb/s multilayer optical printed circuit board with lens-integrated optical devices and CMOS IC,” IEEE Photonics Technol. Lett. 23(18), 1352–1354 (2011).
[CrossRef]

J. Lightwave Technol. (4)

J. Sel. Top. Quantum Electron. (1)

H. Nasu, “Short-reach optical interconnects employing high density parallel-optical modules,” J. Sel. Top. Quantum Electron. 16(5), 1337–1346 (2010).
[CrossRef]

Opt. Express (3)

Other (4)

S. Yakabe, T. Ishigure, and S. Nakagawa, “Link power budget advantage of GI-core polymer optical waveguide for waveguide-based optical link,” in Technical Digest of Opt. Fiber Commun. Conf., OM2J.3, Los Angeles, California, USA., 4–9, Mar., 2012.
[CrossRef]

M. A. Taubenblatt, “Optical interconnects for high performance computing,” in Technical Digest of Opt. Fiber Commun. Conf.,OThH3, Los Angeles, California, USA., 6–11 Mar., 2011.
[CrossRef]

http://www.musashi-engineering.co.jp.e.cn.hp.transer.com/products/115_3-4-1-12.html

T. I. R. Ishiguro, H. Uno, and H.-H. Hsu, “Maximum channel density in multimode optical waveguides for parallel interconnections,” in Proceeding of 61st Electron. Compon. Technol. Conf. (Institute of Electrical and Electronics Engineers, New York, 2011), pp. 1847–1851.
[CrossRef]

Supplementary Material (1)

» Media 1: MP4 (3158 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

(a) The fabrication process of the Mosquito method (Media 1). (b) Formation of GI refractive index profile by the monomer diffusion.

Fig. 2
Fig. 2

A cross-sectional view of a GI-core polymer parallel optical waveguide whose pitch is controlled to 250 μm.

Fig. 3
Fig. 3

Concern about fabricating the narrow-pitch waveguide.

Fig. 4
Fig. 4

A cross-sectional view of a polymer parallel optical waveguide with a 125-μm pitch.

Fig. 5
Fig. 5

(a) A cross-sectional view of polymer optical waveguide when the needle-tip height is varied for fabrication. (b) Relationship between the circularity and the core height from the substrate. (c) A schematic representation of the height difference between the needle tip and dispensed cores.

Fig. 6
Fig. 6

A cross-sectional view of a polymer parallel optical waveguide with a 62.5-μm pitch.

Fig. 7
Fig. 7

Measurement setup for crosstalk characterization.

Fig. 8
Fig. 8

(a) Interchannel crosstalk in GI-core waveguides with 250-, 125- and 62.5-μm pitches excited via a 50-μmø GI-MMF. (b) Relationships between the interchannel crosstalk value and the inter-core distance.

Fig. 9
Fig. 9

Experimental set up of parallel channel operation of a waveguide.

Fig. 10
Fig. 10

A near-field pattern of waveguide when 12-Ch.cores are excited.

Fig. 11
Fig. 11

Experimental setup for multiple-core operation.

Fig. 12
Fig. 12

Eye diagrams for 11.3 Gbps parallel-optical signals after transmitting a 5-cm long waveguide with a 125-μm pitch.

Fig. 13
Fig. 13

Bit error rate curves for 11.3 Gbps transmission when only Ch. 6 is operated and 12 channels are operated.

Tables (2)

Tables Icon

Table 1 Insertion Losses of Waveguides with 125- and 62.5-μm Pitches at 1060-nm Wavelength [dB]

Tables Icon

Table 2 Output Power and Insertion Loss for Link with a 5-cm Long Waveguide.

Metrics