Abstract

Abstract: Dynamic properties of an erbium fiber laser (EFL) is researched and demonstrated for ultrasonic sensing in this research. The EFL has ring cavity incorporated with a phase-shifted fiber Bragg grating. A numerical model is used to analyze its dynamic responses to quasi-static change, continuous wave and burst wave. The ultrasonic behavior of the EFL resembles the forced single degree of freedom vibration with damping. Corresponding experimental results fit the simulation results well, showing some interesting ultrasonic properties of this EFL. After certain data process method, this EFL can be used in practical ultrasonic nondestructive testing.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Talaverano, S. Abad, S. Jarabo, M. Lopez-Amo, “Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability,” J. Lightwave Technol. 19(4), 553–558 (2001).
    [CrossRef]
  2. E. Lacot, F. Stoeckel, M. Chenevier, “Dynamics of an erbium-doped fiber laser,” Phys. Rev. A 49(5), 3997–4008 (1994).
    [CrossRef] [PubMed]
  3. M. Ding, P. K. Cheo, “Analysis of Er-doped fiber laser stability by suppressing relaxation oscillation,” IEEE Photonic. Tech. L. 8(9), 1151–1153 (1996).
    [CrossRef]
  4. Y. O. Barmenkov, A. Ortigosa-Blanch, A. Diez, J. L. Cruz, M. V. Andrés, “Time-domain fiber laser hydrogen sensor,” Opt. Lett. 29(21), 2461–2463 (2004).
    [CrossRef] [PubMed]
  5. G. Stewart, G. Whitenett, K. Vijayraghavan, S. Sridaran, “Investigation of the dynamic response of erbium fiber lasers with potential application for sensors,” J. Lightwave Technol. 25(7), 1786–1796 (2007).
    [CrossRef]
  6. G. Wild, S. Hinckley, “Acousto-ultrasonic optical fiber sensors: overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
    [CrossRef]
  7. Q. Wu, Y. Okabe, “High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system,” Opt. Express 20(27), 28353–28362 (2012).
    [CrossRef] [PubMed]
  8. B. Lissak, A. Arie, M. Tur, “Highly sensitive dynamic strain measurements by locking lasers to fiber Bragg gratings,” Opt. Lett. 23(24), 1930–1932 (1998).
    [CrossRef] [PubMed]
  9. S. Avino, J. A. Barnes, G. Gagliardi, X. Gu, D. Gutstein, J. R. Mester, C. Nicholaou, H. P. Loock, “Musical instrument pickup based on a laser locked to an optical fiber resonator,” Opt. Express 19(25), 25057–25065 (2011).
    [CrossRef] [PubMed]
  10. H. Tsuda, “Fiber Bragg grating vibration-sensing system, insensitive to Bragg wavelength and employing fiber ring laser,” Opt. Lett. 35(14), 2349–2351 (2010).
    [CrossRef] [PubMed]
  11. M. Han, T. Liu, L. Hu, Q. Zhang, “Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection,” Opt. Express 21(24), 29269–29276 (2013).
    [CrossRef] [PubMed]
  12. B. O. Guan, L. Jin, Y. Zhang, H. Y. Tam, “Polarimetric heterodyning fiber grating laser sensors,” J. Lightwave Technol. 30(8), 1097–1112 (2012).
    [CrossRef]
  13. T. Liu, M. Han, “Analysis of π-phase-shifted fiber Bragg gratings for ultrasonic detection,” IEEE Sens. J. 12(7), 2368–2373 (2012).
    [CrossRef]
  14. Y. Sun, J. Zyskind, A. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,”IEEE J Sel. Top. Quant. 3(4), 991–1007 (1997).
    [CrossRef]
  15. M. A. Mirza, G. Stewart, “Multiwavelength operation of erbium-doped fiber lasers by periodic filtering and phase modulation,” J. Lightwave Technol. 27(8), 1034–1044 (2009).
    [CrossRef]
  16. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
    [CrossRef]
  17. Y. Okabe, K. Fujibayashi, M. Shimazaki, H. Soejima, T. Ogisu, “Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves,” Smart Mater. Struct. 19(11), 115013 (2010).
    [CrossRef]
  18. W. Thomson, Theory of Vibration with Applications (Prentice-Hall, 1996).
  19. E. Rønnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol. 7(3), 206–235 (2001).
    [CrossRef]
  20. V. Giurgiutiu, Structural Health Monitoring: with Piezoelectric Wafer Active Sensors (Elsevier Academic Press, 2008).

2013 (1)

2012 (3)

2011 (1)

2010 (2)

H. Tsuda, “Fiber Bragg grating vibration-sensing system, insensitive to Bragg wavelength and employing fiber ring laser,” Opt. Lett. 35(14), 2349–2351 (2010).
[CrossRef] [PubMed]

Y. Okabe, K. Fujibayashi, M. Shimazaki, H. Soejima, T. Ogisu, “Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves,” Smart Mater. Struct. 19(11), 115013 (2010).
[CrossRef]

2009 (1)

2008 (1)

G. Wild, S. Hinckley, “Acousto-ultrasonic optical fiber sensors: overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
[CrossRef]

2007 (1)

2004 (1)

2001 (2)

L. Talaverano, S. Abad, S. Jarabo, M. Lopez-Amo, “Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability,” J. Lightwave Technol. 19(4), 553–558 (2001).
[CrossRef]

E. Rønnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol. 7(3), 206–235 (2001).
[CrossRef]

1998 (1)

1997 (2)

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[CrossRef]

Y. Sun, J. Zyskind, A. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,”IEEE J Sel. Top. Quant. 3(4), 991–1007 (1997).
[CrossRef]

1996 (1)

M. Ding, P. K. Cheo, “Analysis of Er-doped fiber laser stability by suppressing relaxation oscillation,” IEEE Photonic. Tech. L. 8(9), 1151–1153 (1996).
[CrossRef]

1994 (1)

E. Lacot, F. Stoeckel, M. Chenevier, “Dynamics of an erbium-doped fiber laser,” Phys. Rev. A 49(5), 3997–4008 (1994).
[CrossRef] [PubMed]

Abad, S.

Andrés, M. V.

Arie, A.

Avino, S.

Barmenkov, Y. O.

Barnes, J. A.

Chenevier, M.

E. Lacot, F. Stoeckel, M. Chenevier, “Dynamics of an erbium-doped fiber laser,” Phys. Rev. A 49(5), 3997–4008 (1994).
[CrossRef] [PubMed]

Cheo, P. K.

M. Ding, P. K. Cheo, “Analysis of Er-doped fiber laser stability by suppressing relaxation oscillation,” IEEE Photonic. Tech. L. 8(9), 1151–1153 (1996).
[CrossRef]

Cruz, J. L.

Diez, A.

Ding, M.

M. Ding, P. K. Cheo, “Analysis of Er-doped fiber laser stability by suppressing relaxation oscillation,” IEEE Photonic. Tech. L. 8(9), 1151–1153 (1996).
[CrossRef]

Fujibayashi, K.

Y. Okabe, K. Fujibayashi, M. Shimazaki, H. Soejima, T. Ogisu, “Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves,” Smart Mater. Struct. 19(11), 115013 (2010).
[CrossRef]

Gagliardi, G.

Gu, X.

Guan, B. O.

Gutstein, D.

Han, M.

M. Han, T. Liu, L. Hu, Q. Zhang, “Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection,” Opt. Express 21(24), 29269–29276 (2013).
[CrossRef] [PubMed]

T. Liu, M. Han, “Analysis of π-phase-shifted fiber Bragg gratings for ultrasonic detection,” IEEE Sens. J. 12(7), 2368–2373 (2012).
[CrossRef]

Hinckley, S.

G. Wild, S. Hinckley, “Acousto-ultrasonic optical fiber sensors: overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
[CrossRef]

Hu, L.

Jarabo, S.

Jin, L.

Lacot, E.

E. Lacot, F. Stoeckel, M. Chenevier, “Dynamics of an erbium-doped fiber laser,” Phys. Rev. A 49(5), 3997–4008 (1994).
[CrossRef] [PubMed]

Lissak, B.

Liu, T.

M. Han, T. Liu, L. Hu, Q. Zhang, “Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection,” Opt. Express 21(24), 29269–29276 (2013).
[CrossRef] [PubMed]

T. Liu, M. Han, “Analysis of π-phase-shifted fiber Bragg gratings for ultrasonic detection,” IEEE Sens. J. 12(7), 2368–2373 (2012).
[CrossRef]

Loock, H. P.

Lopez-Amo, M.

Mester, J. R.

Mirza, M. A.

Nicholaou, C.

Ogisu, T.

Y. Okabe, K. Fujibayashi, M. Shimazaki, H. Soejima, T. Ogisu, “Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves,” Smart Mater. Struct. 19(11), 115013 (2010).
[CrossRef]

Okabe, Y.

Q. Wu, Y. Okabe, “High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system,” Opt. Express 20(27), 28353–28362 (2012).
[CrossRef] [PubMed]

Y. Okabe, K. Fujibayashi, M. Shimazaki, H. Soejima, T. Ogisu, “Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves,” Smart Mater. Struct. 19(11), 115013 (2010).
[CrossRef]

Ortigosa-Blanch, A.

Othonos, A.

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[CrossRef]

Rønnekleiv, E.

E. Rønnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol. 7(3), 206–235 (2001).
[CrossRef]

Shimazaki, M.

Y. Okabe, K. Fujibayashi, M. Shimazaki, H. Soejima, T. Ogisu, “Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves,” Smart Mater. Struct. 19(11), 115013 (2010).
[CrossRef]

Soejima, H.

Y. Okabe, K. Fujibayashi, M. Shimazaki, H. Soejima, T. Ogisu, “Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves,” Smart Mater. Struct. 19(11), 115013 (2010).
[CrossRef]

Sridaran, S.

Srivastava, A.

Y. Sun, J. Zyskind, A. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,”IEEE J Sel. Top. Quant. 3(4), 991–1007 (1997).
[CrossRef]

Stewart, G.

Stoeckel, F.

E. Lacot, F. Stoeckel, M. Chenevier, “Dynamics of an erbium-doped fiber laser,” Phys. Rev. A 49(5), 3997–4008 (1994).
[CrossRef] [PubMed]

Sun, Y.

Y. Sun, J. Zyskind, A. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,”IEEE J Sel. Top. Quant. 3(4), 991–1007 (1997).
[CrossRef]

Talaverano, L.

Tam, H. Y.

Tsuda, H.

Tur, M.

Vijayraghavan, K.

Whitenett, G.

Wild, G.

G. Wild, S. Hinckley, “Acousto-ultrasonic optical fiber sensors: overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
[CrossRef]

Wu, Q.

Zhang, Q.

Zhang, Y.

Zyskind, J.

Y. Sun, J. Zyskind, A. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,”IEEE J Sel. Top. Quant. 3(4), 991–1007 (1997).
[CrossRef]

IEEE J Sel. Top. Quant. (1)

Y. Sun, J. Zyskind, A. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,”IEEE J Sel. Top. Quant. 3(4), 991–1007 (1997).
[CrossRef]

IEEE Photonic. Tech. L. (1)

M. Ding, P. K. Cheo, “Analysis of Er-doped fiber laser stability by suppressing relaxation oscillation,” IEEE Photonic. Tech. L. 8(9), 1151–1153 (1996).
[CrossRef]

IEEE Sens. J. (2)

G. Wild, S. Hinckley, “Acousto-ultrasonic optical fiber sensors: overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
[CrossRef]

T. Liu, M. Han, “Analysis of π-phase-shifted fiber Bragg gratings for ultrasonic detection,” IEEE Sens. J. 12(7), 2368–2373 (2012).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (3)

Opt. Fiber Technol. (1)

E. Rønnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol. 7(3), 206–235 (2001).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (1)

E. Lacot, F. Stoeckel, M. Chenevier, “Dynamics of an erbium-doped fiber laser,” Phys. Rev. A 49(5), 3997–4008 (1994).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[CrossRef]

Smart Mater. Struct. (1)

Y. Okabe, K. Fujibayashi, M. Shimazaki, H. Soejima, T. Ogisu, “Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves,” Smart Mater. Struct. 19(11), 115013 (2010).
[CrossRef]

Other (2)

W. Thomson, Theory of Vibration with Applications (Prentice-Hall, 1996).

V. Giurgiutiu, Structural Health Monitoring: with Piezoelectric Wafer Active Sensors (Elsevier Academic Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Experimental setup and spectra of FBGs. (a) Configuration of the EFL. (b) The transmitted spectrum of the PS-FBG and the reflected spectrum of the AFBG. The inset shows the peak area of the PS-FBG has a FWHM of approximately 1.6 pm.

Fig. 2
Fig. 2

Sensing and self-adjustment principles.

Fig. 3
Fig. 3

Transmittance of the filter and lasing wavelength of the EFL. Red line is the transmittance of the filter; blue dots are the laser output power in each longitudinal mode positions. Inset shows 9 different initial lasing longitudinal mode positions near to the peak of the filter.

Fig. 4
Fig. 4

Laser establishing process at different initial longitudinal mode positions shows spikes and damped ROs. The inset shows different DC output when the laser is stable.

Fig. 5
Fig. 5

(a) Bragg wavelength shift of the PS-FBG under the quasi-static strain change or temperature change. (b) Lasing mode hopping. (c) Amount output change shows very small power fluctuation.

Fig. 6
Fig. 6

Dynamic response of the EFL to continuous sinusoidal wave. The inset shows a short time range of the dynamic response.

Fig. 7
Fig. 7

Dynamic response of the EFL to burst sinusoidal wave. (a) When the input strain signal is small; (b) when the input strain signal is relative large.

Fig. 8
Fig. 8

(a) Original normalized burst signals; (b) the corresponding spectra; (c) burst signals after high-pass filter.

Fig. 9
Fig. 9

Comparison results of the effective estimated sensitivity between the EFL and the same PS-FBG demodulated by external independent TLS.

Fig. 10
Fig. 10

Intensity of the detected signals from the EFL to different frequencies shows Lorentz curve with resonance equal to the frequency of RO.

Fig. 11
Fig. 11

Characteristics of the EFL. (a) A number of spikes and damped ROs were observed in laser establishing process. (b) Stable DC output voltage in the quasi-steady-state condition with sometimes mode hopping signals. Inset shows a typical mode hopping signal in short time period. (c) Optical spectrum shows low efficiency of the EFL caused by large insertion loss.

Fig. 12
Fig. 12

Typical dynamic response of (a) the traditional PZT sensor and (b) the EFL to continuous sinusoidal wave. (c) Spectra of the detected signals from the EFL.

Fig. 13
Fig. 13

Response of the PZT and the EFL to every frequency. (a) Original data of detected energy and noise in the PZT and the EFL. (b) Sensitivity of the PZT and the EFL obtained after data process method.

Fig. 14
Fig. 14

(a) Waveform detected by the PZT after 1024 times averaging. Dot line shows the detected signal without averaging. (b) Waveform detected by the PS-FBG balanced sensing system after 1024 times averaging. (c) Waveform detected by the EFL in real time. (d) Corresponding spectra. (e) Recovered waveform after high-pass filter detected by the EFL.

Tables (1)

Tables Icon

Table 1 Parameters used in the simulation

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

F m =exp( ( λ m λ Δλ ) 2 ).
( ρSl ) d N 2 dt = P p ( 1 e g p l )( ρSl ) N 2 τ 0 1 m M m τ ( 1 e g g l )4m γ g l N 2 τ ( A g 1 ).
d M m dt = M m τ ( F m e g g lα 1 )+ 2 τ γ g l N 2 A g .
P out = hc τλ 1 m M m .
Sensitivity = ( V max V min ) V DC S .
d 2 ( δ M g ) d t 2 +2α d( δ M g ) dt + ω 0 2 δ M g =0.

Metrics