Abstract

We investigate nanoscale heat transfer and heat-flux overlapping effects in nanopatterning through interactions between interferogram produced by 5-ns laser pulses at 355 nm and gold films. These mechanisms played different roles in direct writing of gold nanolines with different periods. Continuous gold nanolines were produced for large periods, where heat-flux overlapping is too small to effect the laser-metal interactions. Thus, the heat-transfer distance and direct laser-ablation determined the width of resultant gold nanolines. However, gold nanolines consisting of isolated gold nanoparticles were produced for small periods, where the overlapped heat-flux exceeds the threshold for removing or melting gold films.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. McDonald, V. R. Mistry, K. E. Ray, S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88(18), 183113 (2006).
    [CrossRef]
  2. X. Yin, N. Fang, X. Zhang, I. B. Martini, B. J. Schwartz, “Near-field two-photon nanolithography using an apertureless optical probe,” Appl. Phys. Lett. 81(19), 3663–3665 (2002).
    [CrossRef]
  3. M. Svalgaard, “Direct writing of planar waveguide power splitters and directional couplers using a focused ultraviolet laser beam,” Electron. Lett. 33(20), 1694–1695 (1997).
    [CrossRef]
  4. T. Tavera, N. Pérez, A. Rodríguez, P. Yurrita, S. M. Olaizola, E. Castano, “Periodic patterning of silicon by direct nanosecond laser interference ablation,” Appl. Surf. Sci. 258(3), 1175–1180 (2011).
    [CrossRef]
  5. T. R. Zhai, Y. H. Lin, H. M. Liu, S. F. Feng, X. P. Zhang, “Nanoscale tensile stress approach for the direct writing of plasmonic nanostructures,” Opt. Express 21(21), 24490–24496 (2013).
    [CrossRef] [PubMed]
  6. G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
    [CrossRef]
  7. Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
    [CrossRef]
  8. C. Reinhardt, S. Passinger, B. N. Chichkov, W. Dickson, G. A. Wurtz, P. Evans, A. V. Zayats, “Restructuring and modification of metallic nanorod arrays using femtosecond laser direct writing,” Appl. Phys. Lett. 89(23), 231117 (2006).
    [CrossRef]
  9. A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, H. Giessen, “Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(27), 3018–3021 (2011).
    [CrossRef] [PubMed]
  10. Z. G. Pang, X. P. Zhang, “Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation,” Nanotechnology 22(14), 145303 (2011).
    [CrossRef] [PubMed]
  11. R. Kelly, A. Miotello, “Comments on explosive mechanisms of laser sputtering,” Appl. Surf. Sci. 96, 205–215 (1996).
    [CrossRef]
  12. J. M. Fishburn, M. J. Withford, D. W. Coutts, J. A. Piper, “Method for determination of the volume of material ejected as molten droplets during visible nanosecond ablation,” Appl. Opt. 43(35), 6473–6476 (2004).
    [CrossRef] [PubMed]
  13. S. K. Sundaram, E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
    [CrossRef] [PubMed]
  14. G. Chen, “Ballistic-diffusive heat-conduction equations,” Phys. Rev. Lett. 86(11), 2297–2300 (2001).
    [CrossRef] [PubMed]

2013 (1)

2011 (4)

T. Tavera, N. Pérez, A. Rodríguez, P. Yurrita, S. M. Olaizola, E. Castano, “Periodic patterning of silicon by direct nanosecond laser interference ablation,” Appl. Surf. Sci. 258(3), 1175–1180 (2011).
[CrossRef]

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[CrossRef]

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, H. Giessen, “Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(27), 3018–3021 (2011).
[CrossRef] [PubMed]

Z. G. Pang, X. P. Zhang, “Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation,” Nanotechnology 22(14), 145303 (2011).
[CrossRef] [PubMed]

2006 (2)

C. Reinhardt, S. Passinger, B. N. Chichkov, W. Dickson, G. A. Wurtz, P. Evans, A. V. Zayats, “Restructuring and modification of metallic nanorod arrays using femtosecond laser direct writing,” Appl. Phys. Lett. 89(23), 231117 (2006).
[CrossRef]

J. P. McDonald, V. R. Mistry, K. E. Ray, S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88(18), 183113 (2006).
[CrossRef]

2004 (1)

2003 (1)

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

2002 (2)

X. Yin, N. Fang, X. Zhang, I. B. Martini, B. J. Schwartz, “Near-field two-photon nanolithography using an apertureless optical probe,” Appl. Phys. Lett. 81(19), 3663–3665 (2002).
[CrossRef]

S. K. Sundaram, E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[CrossRef] [PubMed]

2001 (1)

G. Chen, “Ballistic-diffusive heat-conduction equations,” Phys. Rev. Lett. 86(11), 2297–2300 (2001).
[CrossRef] [PubMed]

1997 (1)

M. Svalgaard, “Direct writing of planar waveguide power splitters and directional couplers using a focused ultraviolet laser beam,” Electron. Lett. 33(20), 1694–1695 (1997).
[CrossRef]

1996 (1)

R. Kelly, A. Miotello, “Comments on explosive mechanisms of laser sputtering,” Appl. Surf. Sci. 96, 205–215 (1996).
[CrossRef]

Braun, P. V.

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, H. Giessen, “Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(27), 3018–3021 (2011).
[CrossRef] [PubMed]

Castano, E.

T. Tavera, N. Pérez, A. Rodríguez, P. Yurrita, S. M. Olaizola, E. Castano, “Periodic patterning of silicon by direct nanosecond laser interference ablation,” Appl. Surf. Sci. 258(3), 1175–1180 (2011).
[CrossRef]

Chen, G.

G. Chen, “Ballistic-diffusive heat-conduction equations,” Phys. Rev. Lett. 86(11), 2297–2300 (2001).
[CrossRef] [PubMed]

Chichkov, B. N.

C. Reinhardt, S. Passinger, B. N. Chichkov, W. Dickson, G. A. Wurtz, P. Evans, A. V. Zayats, “Restructuring and modification of metallic nanorod arrays using femtosecond laser direct writing,” Appl. Phys. Lett. 89(23), 231117 (2006).
[CrossRef]

Coutts, D. W.

Cui, Y.

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[CrossRef]

Dickson, W.

C. Reinhardt, S. Passinger, B. N. Chichkov, W. Dickson, G. A. Wurtz, P. Evans, A. V. Zayats, “Restructuring and modification of metallic nanorod arrays using femtosecond laser direct writing,” Appl. Phys. Lett. 89(23), 231117 (2006).
[CrossRef]

Evans, P.

C. Reinhardt, S. Passinger, B. N. Chichkov, W. Dickson, G. A. Wurtz, P. Evans, A. V. Zayats, “Restructuring and modification of metallic nanorod arrays using femtosecond laser direct writing,” Appl. Phys. Lett. 89(23), 231117 (2006).
[CrossRef]

Fang, N.

X. Yin, N. Fang, X. Zhang, I. B. Martini, B. J. Schwartz, “Near-field two-photon nanolithography using an apertureless optical probe,” Appl. Phys. Lett. 81(19), 3663–3665 (2002).
[CrossRef]

Fang, N. X.

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[CrossRef]

Feldmann, J.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

Feng, S. F.

Fishburn, J. M.

Franzl, T.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

Giessen, H.

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, H. Giessen, “Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(27), 3018–3021 (2011).
[CrossRef] [PubMed]

Gissibl, T.

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, H. Giessen, “Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(27), 3018–3021 (2011).
[CrossRef] [PubMed]

He, S.

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[CrossRef]

Hung Fung, K.

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[CrossRef]

Jin, Y.

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[CrossRef]

Kelly, R.

R. Kelly, A. Miotello, “Comments on explosive mechanisms of laser sputtering,” Appl. Surf. Sci. 96, 205–215 (1996).
[CrossRef]

Klar, T. A.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

Klotzbücher, T.

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, H. Giessen, “Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(27), 3018–3021 (2011).
[CrossRef] [PubMed]

Kowarik, S.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

Kumar, A.

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[CrossRef]

Kürzinger, K.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

Lin, Y. H.

Liu, H. M.

Martini, I. B.

X. Yin, N. Fang, X. Zhang, I. B. Martini, B. J. Schwartz, “Near-field two-photon nanolithography using an apertureless optical probe,” Appl. Phys. Lett. 81(19), 3663–3665 (2002).
[CrossRef]

Mazur, E.

S. K. Sundaram, E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[CrossRef] [PubMed]

McDonald, J. P.

J. P. McDonald, V. R. Mistry, K. E. Ray, S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88(18), 183113 (2006).
[CrossRef]

Miotello, A.

R. Kelly, A. Miotello, “Comments on explosive mechanisms of laser sputtering,” Appl. Surf. Sci. 96, 205–215 (1996).
[CrossRef]

Mistry, V. R.

J. P. McDonald, V. R. Mistry, K. E. Ray, S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88(18), 183113 (2006).
[CrossRef]

Olaizola, S. M.

T. Tavera, N. Pérez, A. Rodríguez, P. Yurrita, S. M. Olaizola, E. Castano, “Periodic patterning of silicon by direct nanosecond laser interference ablation,” Appl. Surf. Sci. 258(3), 1175–1180 (2011).
[CrossRef]

Pang, Z. G.

Z. G. Pang, X. P. Zhang, “Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation,” Nanotechnology 22(14), 145303 (2011).
[CrossRef] [PubMed]

Passinger, S.

C. Reinhardt, S. Passinger, B. N. Chichkov, W. Dickson, G. A. Wurtz, P. Evans, A. V. Zayats, “Restructuring and modification of metallic nanorod arrays using femtosecond laser direct writing,” Appl. Phys. Lett. 89(23), 231117 (2006).
[CrossRef]

Pérez, N.

T. Tavera, N. Pérez, A. Rodríguez, P. Yurrita, S. M. Olaizola, E. Castano, “Periodic patterning of silicon by direct nanosecond laser interference ablation,” Appl. Surf. Sci. 258(3), 1175–1180 (2011).
[CrossRef]

Piper, J. A.

Radke, A.

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, H. Giessen, “Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(27), 3018–3021 (2011).
[CrossRef] [PubMed]

Raschke, G.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

Ray, K. E.

J. P. McDonald, V. R. Mistry, K. E. Ray, S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88(18), 183113 (2006).
[CrossRef]

Reinhardt, C.

C. Reinhardt, S. Passinger, B. N. Chichkov, W. Dickson, G. A. Wurtz, P. Evans, A. V. Zayats, “Restructuring and modification of metallic nanorod arrays using femtosecond laser direct writing,” Appl. Phys. Lett. 89(23), 231117 (2006).
[CrossRef]

Rodríguez, A.

T. Tavera, N. Pérez, A. Rodríguez, P. Yurrita, S. M. Olaizola, E. Castano, “Periodic patterning of silicon by direct nanosecond laser interference ablation,” Appl. Surf. Sci. 258(3), 1175–1180 (2011).
[CrossRef]

Schwartz, B. J.

X. Yin, N. Fang, X. Zhang, I. B. Martini, B. J. Schwartz, “Near-field two-photon nanolithography using an apertureless optical probe,” Appl. Phys. Lett. 81(19), 3663–3665 (2002).
[CrossRef]

Sönnichsen, C.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

Sundaram, S. K.

S. K. Sundaram, E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[CrossRef] [PubMed]

Svalgaard, M.

M. Svalgaard, “Direct writing of planar waveguide power splitters and directional couplers using a focused ultraviolet laser beam,” Electron. Lett. 33(20), 1694–1695 (1997).
[CrossRef]

Tavera, T.

T. Tavera, N. Pérez, A. Rodríguez, P. Yurrita, S. M. Olaizola, E. Castano, “Periodic patterning of silicon by direct nanosecond laser interference ablation,” Appl. Surf. Sci. 258(3), 1175–1180 (2011).
[CrossRef]

Withford, M. J.

Wurtz, G. A.

C. Reinhardt, S. Passinger, B. N. Chichkov, W. Dickson, G. A. Wurtz, P. Evans, A. V. Zayats, “Restructuring and modification of metallic nanorod arrays using femtosecond laser direct writing,” Appl. Phys. Lett. 89(23), 231117 (2006).
[CrossRef]

Xu, J.

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[CrossRef]

Yalisove, S. M.

J. P. McDonald, V. R. Mistry, K. E. Ray, S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88(18), 183113 (2006).
[CrossRef]

Yin, X.

X. Yin, N. Fang, X. Zhang, I. B. Martini, B. J. Schwartz, “Near-field two-photon nanolithography using an apertureless optical probe,” Appl. Phys. Lett. 81(19), 3663–3665 (2002).
[CrossRef]

Yurrita, P.

T. Tavera, N. Pérez, A. Rodríguez, P. Yurrita, S. M. Olaizola, E. Castano, “Periodic patterning of silicon by direct nanosecond laser interference ablation,” Appl. Surf. Sci. 258(3), 1175–1180 (2011).
[CrossRef]

Zayats, A. V.

C. Reinhardt, S. Passinger, B. N. Chichkov, W. Dickson, G. A. Wurtz, P. Evans, A. V. Zayats, “Restructuring and modification of metallic nanorod arrays using femtosecond laser direct writing,” Appl. Phys. Lett. 89(23), 231117 (2006).
[CrossRef]

Zhai, T. R.

Zhang, X.

X. Yin, N. Fang, X. Zhang, I. B. Martini, B. J. Schwartz, “Near-field two-photon nanolithography using an apertureless optical probe,” Appl. Phys. Lett. 81(19), 3663–3665 (2002).
[CrossRef]

Zhang, X. P.

T. R. Zhai, Y. H. Lin, H. M. Liu, S. F. Feng, X. P. Zhang, “Nanoscale tensile stress approach for the direct writing of plasmonic nanostructures,” Opt. Express 21(21), 24490–24496 (2013).
[CrossRef] [PubMed]

Z. G. Pang, X. P. Zhang, “Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation,” Nanotechnology 22(14), 145303 (2011).
[CrossRef] [PubMed]

Adv. Mater. (1)

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, H. Giessen, “Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(27), 3018–3021 (2011).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[CrossRef]

C. Reinhardt, S. Passinger, B. N. Chichkov, W. Dickson, G. A. Wurtz, P. Evans, A. V. Zayats, “Restructuring and modification of metallic nanorod arrays using femtosecond laser direct writing,” Appl. Phys. Lett. 89(23), 231117 (2006).
[CrossRef]

J. P. McDonald, V. R. Mistry, K. E. Ray, S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88(18), 183113 (2006).
[CrossRef]

X. Yin, N. Fang, X. Zhang, I. B. Martini, B. J. Schwartz, “Near-field two-photon nanolithography using an apertureless optical probe,” Appl. Phys. Lett. 81(19), 3663–3665 (2002).
[CrossRef]

Appl. Surf. Sci. (2)

T. Tavera, N. Pérez, A. Rodríguez, P. Yurrita, S. M. Olaizola, E. Castano, “Periodic patterning of silicon by direct nanosecond laser interference ablation,” Appl. Surf. Sci. 258(3), 1175–1180 (2011).
[CrossRef]

R. Kelly, A. Miotello, “Comments on explosive mechanisms of laser sputtering,” Appl. Surf. Sci. 96, 205–215 (1996).
[CrossRef]

Electron. Lett. (1)

M. Svalgaard, “Direct writing of planar waveguide power splitters and directional couplers using a focused ultraviolet laser beam,” Electron. Lett. 33(20), 1694–1695 (1997).
[CrossRef]

Nano Lett. (1)

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

Nanotechnology (1)

Z. G. Pang, X. P. Zhang, “Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation,” Nanotechnology 22(14), 145303 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

S. K. Sundaram, E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. Lett. (1)

G. Chen, “Ballistic-diffusive heat-conduction equations,” Phys. Rev. Lett. 86(11), 2297–2300 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of single-pulse single-shot interference ablation on gold films. (a) The sample consisting of gold film thermally evaporated onto the ITO-coated silica substrate. (b) Interference ablation geometry using 355-nm laser pulses with a large separation angle α1 between the two laser beams. (c) The resultant grating structures produced by the geometry in (b), which have a small period of Λ1 with each gold nanoline consisting of gold nanoparticles with a diameter of WP. (d) Interference ablation geometry using a small separation angle α2 between the two laser beams. (e) The resultant grating structures produced by the geometry shown in (d), which have a large period of Λ2 with each gold nanoline consisting of continuous gold films with a width of WP.

Fig. 2
Fig. 2

The scanning electronic microscope (SEM) images of the grating structures consisting of periodically arranged gold nanolines with different periods: (a) Λ = 350 nm, (b) Λ = 450 nm, (c) Λ = 550 nm, (d) Λ = 750 nm, (e) Λ = 850 nm, and (f) Λ = 1000 nm. WP denotes the practical width of the gold nanolines or the diameter of the gold nanoparticles.

Fig. 3
Fig. 3

(a) The AFM image of the grating consisting of continuous gold films with a period of Λ = 850 nm. (b) The cross-section measurement on the gratings at a position marked by the horizontal red line in (a).

Fig. 4
Fig. 4

Quantitative evaluation on the heat transfer distance (XT) on the gold film using a comparison between the calculated laser intensity distribution over the interference fringes and the measured gold nanoline widths (WP). This is characterized by the threshold laser intensity for direct ablation It, direct removal width WD, and the threshold-defined gold nano-line width W t =Λ W D .

Fig. 5
Fig. 5

Schematic illustration of the heat-flux overlapping effect. It, HD, and HM denote the threshold laser intensity for direct ablation, the threshold heat flux for direct removal of the gold, and that for melting the gold, respectively. R(X) and L(X) denote the heat-flux function induced by the bright fringes on the right and left sides, respectively. H( X )=R(X)+L(X) is the overlapped heat-flux function. F(X) is the laser intensity distribution over the two adjacent bright fringes.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

W D + W t =Λ.
W P =Λ W D 2 X T .
W P = W t 2 X T .
X T = W t1 W P1 = W t2 W P2 = W t3 W P3
X T = Λ 1 W D1 W P1 = Λ 2 W D2 W P2 = Λ 3 W D3 W P3 .

Metrics