Abstract

Hybrid characteristics of propagating surface plasmons (PSPs) and localized surface plasmons (LSPs) appear at a combined structure of a thin silver (Ag) layer and silver core/silica shell nanocubes (AgNC@SiO2s) in the Kretschmann configuration, because the resonant condition of PSPs on the thin Ag layer is significantly modified by LSPs of the AgNC@SiO2s. We investigate theoretically and experimentally that due to the hybrid property, the slope and position of the minimum reflectance band can be controlled on a graph of incident angle versus wavelength of reflected light, by changing structural parameters. The hybrid properties of PSPs and LSPs have a potential to simultaneously detect surface plasmon resonance signals and fluorescence images.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
    [CrossRef] [PubMed]
  4. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [CrossRef] [PubMed]
  5. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
    [CrossRef] [PubMed]
  6. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [CrossRef]
  7. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
    [CrossRef] [PubMed]
  8. J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, C.-S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
    [CrossRef] [PubMed]
  9. B. Hötzer, I. L. Medintz, N. Hildebrandt, “Fluorescence in nanobiotechnology: sophisticated fluorophores for novel applications,” Small 8(15), 2297–2326 (2012).
    [CrossRef] [PubMed]
  10. J. Liu, Y. Lu, “Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor,” Anal. Chem. 76(6), 1627–1632 (2004).
    [CrossRef] [PubMed]
  11. G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, H. Haick, “Diagnosing lung cancer in exhaled breath using gold nanoparticles,” Nat. Nanotechnol. 4(10), 669–673 (2009).
    [CrossRef] [PubMed]
  12. O. G. Tovmachenko, C. Graf, D. J. van den Heuvel, A. van Blaaderen, H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18(1), 91–95 (2006).
    [CrossRef]
  13. F. Tam, G. P. Goodrich, B. R. Johnson, N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
    [CrossRef] [PubMed]
  14. J. Cesario, R. Quidant, G. Badenes, S. Enoch, “Electromagnetic coupling between a metal nanoparticle grating and a metallic surface,” Opt. Lett. 30(24), 3404–3406 (2005).
    [CrossRef] [PubMed]
  15. N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B 75(23), 235426 (2007).
    [CrossRef]
  16. Y. Chu, K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34(3), 244–246 (2009).
    [CrossRef] [PubMed]
  17. C. Hu, L. Liu, Z. Zhao, X. Chen, X. Luo, “Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies,” Opt. Express 17(19), 16745–16749 (2009).
    [CrossRef] [PubMed]
  18. A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
    [CrossRef] [PubMed]
  19. M. K. Kinnan, G. Chumanov, “Surface enhanced Raman scattering from silver nanoparticle arrays on silver mirror films: plasmon-induced electronic coupling as the enhancement mechanism,” J. Phys. Chem. C 111(49), 18010–18017 (2007).
    [CrossRef]
  20. H. Yun, I.-M. Lee, S.-Y. Lee, K.-Y. Kim, B. Lee, “Intermediate plasmonic characteristics in a quasi-continuous metallic monolayer,” Sci Rep 4, 3696 (2014).
    [CrossRef] [PubMed]
  21. W. Weibull, “A statistical distribution function of wide applicability,” J. Appl. Mech. 18, 293–297 (1951).
  22. Z. Fang, B. R. Patterson, M. E. J. Turner., “Modeling particle size distributions by the Weibull distribution function,” Mater. Charact. 31(3), 177–182 (1993).
    [CrossRef]
  23. H. Kim, I.-M. Lee, B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 24(8), 2313–2327 (2007).
    [CrossRef] [PubMed]
  24. H. Kim, J. Park, and B. Lee, Fourier Modal Method and Its Applications in Computational Nanophotonics (CRC, 2012).
  25. Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L.-P. Wen, Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010).
    [CrossRef] [PubMed]
  26. J. Jung, T. Søndergaard, S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
    [CrossRef]
  27. D. Cheng, Q.-H. Xu, “Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles,” Chem. Commun. (Camb.) 2007(3), 248–250 (2007).
    [CrossRef] [PubMed]
  28. F. Moreno, B. García-Cámara, J. M. Saiz, F. González, “Interaction of nanoparticles with substrates: effects on the dipolar behaviour of the particles,” Opt. Express 16(17), 12487–12504 (2008).
    [CrossRef] [PubMed]
  29. H. Shen, P. Bienstman, B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
    [CrossRef]
  30. F. Liu, W. Xie, Q. Xu, Y. Liu, K. Cui, X. Feng, W. Zhang, Y. Huang, “Plasmonic enhanced optical absorption in organic solar cells with metallic nanoparticles,” IEEE Photonics J. 5(4), 8400509 (2013).
    [CrossRef]
  31. E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
    [CrossRef]
  32. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
    [CrossRef]
  33. A. Hessel, A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4(10), 1275–1297 (1965).
    [CrossRef]
  34. E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, R. P. Van Duyne, “Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
    [CrossRef]
  35. B. Gao, G. Arya, A. R. Tao, “Self-orienting nanocubes for the assembly of plasmonic nanojunctions,” Nat. Nanotechnol. 7(7), 433–437 (2012).
    [CrossRef] [PubMed]
  36. A. Ghoshal, I. Divliansky, P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays,” Appl. Phys. Lett. 94(17), 171108 (2009).
    [CrossRef]
  37. P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
    [CrossRef]
  38. A. R. Siekkinen, J. M. McLellan, J. Chen, Y. Xia, “Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide,” Chem. Phys. Lett. 432(4-6), 491–496 (2006).
    [CrossRef] [PubMed]
  39. C. Graf, D. L. J. Vossen, A. Imhof, A. van Blaaderen, “A general method to coat colloidal particles with silica,” Langmuir 19(17), 6693–6700 (2003).
    [CrossRef]

2014 (1)

H. Yun, I.-M. Lee, S.-Y. Lee, K.-Y. Kim, B. Lee, “Intermediate plasmonic characteristics in a quasi-continuous metallic monolayer,” Sci Rep 4, 3696 (2014).
[CrossRef] [PubMed]

2013 (1)

F. Liu, W. Xie, Q. Xu, Y. Liu, K. Cui, X. Feng, W. Zhang, Y. Huang, “Plasmonic enhanced optical absorption in organic solar cells with metallic nanoparticles,” IEEE Photonics J. 5(4), 8400509 (2013).
[CrossRef]

2012 (3)

B. Gao, G. Arya, A. R. Tao, “Self-orienting nanocubes for the assembly of plasmonic nanojunctions,” Nat. Nanotechnol. 7(7), 433–437 (2012).
[CrossRef] [PubMed]

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

B. Hötzer, I. L. Medintz, N. Hildebrandt, “Fluorescence in nanobiotechnology: sophisticated fluorophores for novel applications,” Small 8(15), 2297–2326 (2012).
[CrossRef] [PubMed]

2011 (2)

J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, C.-S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[CrossRef] [PubMed]

P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
[CrossRef]

2010 (3)

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, R. P. Van Duyne, “Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[CrossRef]

Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L.-P. Wen, Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010).
[CrossRef] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[CrossRef] [PubMed]

2009 (7)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, H. Haick, “Diagnosing lung cancer in exhaled breath using gold nanoparticles,” Nat. Nanotechnol. 4(10), 669–673 (2009).
[CrossRef] [PubMed]

J. Jung, T. Søndergaard, S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
[CrossRef]

Y. Chu, K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34(3), 244–246 (2009).
[CrossRef] [PubMed]

C. Hu, L. Liu, Z. Zhao, X. Chen, X. Luo, “Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies,” Opt. Express 17(19), 16745–16749 (2009).
[CrossRef] [PubMed]

A. Ghoshal, I. Divliansky, P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays,” Appl. Phys. Lett. 94(17), 171108 (2009).
[CrossRef]

H. Shen, P. Bienstman, B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

2008 (1)

2007 (5)

H. Kim, I.-M. Lee, B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 24(8), 2313–2327 (2007).
[CrossRef] [PubMed]

N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B 75(23), 235426 (2007).
[CrossRef]

D. Cheng, Q.-H. Xu, “Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles,” Chem. Commun. (Camb.) 2007(3), 248–250 (2007).
[CrossRef] [PubMed]

F. Tam, G. P. Goodrich, B. R. Johnson, N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

M. K. Kinnan, G. Chumanov, “Surface enhanced Raman scattering from silver nanoparticle arrays on silver mirror films: plasmon-induced electronic coupling as the enhancement mechanism,” J. Phys. Chem. C 111(49), 18010–18017 (2007).
[CrossRef]

2006 (2)

O. G. Tovmachenko, C. Graf, D. J. van den Heuvel, A. van Blaaderen, H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18(1), 91–95 (2006).
[CrossRef]

A. R. Siekkinen, J. M. McLellan, J. Chen, Y. Xia, “Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide,” Chem. Phys. Lett. 432(4-6), 491–496 (2006).
[CrossRef] [PubMed]

2005 (2)

J. Cesario, R. Quidant, G. Badenes, S. Enoch, “Electromagnetic coupling between a metal nanoparticle grating and a metallic surface,” Opt. Lett. 30(24), 3404–3406 (2005).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

2004 (3)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[CrossRef] [PubMed]

J. Liu, Y. Lu, “Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor,” Anal. Chem. 76(6), 1627–1632 (2004).
[CrossRef] [PubMed]

E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

2003 (2)

C. Graf, D. L. J. Vossen, A. Imhof, A. van Blaaderen, “A general method to coat colloidal particles with silica,” Langmuir 19(17), 6693–6700 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

1993 (1)

Z. Fang, B. R. Patterson, M. E. J. Turner., “Modeling particle size distributions by the Weibull distribution function,” Mater. Charact. 31(3), 177–182 (1993).
[CrossRef]

1965 (1)

1951 (1)

W. Weibull, “A statistical distribution function of wide applicability,” J. Appl. Mech. 18, 293–297 (1951).

1902 (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
[CrossRef]

Abdah-Bortnyak, R.

G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, H. Haick, “Diagnosing lung cancer in exhaled breath using gold nanoparticles,” Nat. Nanotechnol. 4(10), 669–673 (2009).
[CrossRef] [PubMed]

Adams, O.

G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, H. Haick, “Diagnosing lung cancer in exhaled breath using gold nanoparticles,” Nat. Nanotechnol. 4(10), 669–673 (2009).
[CrossRef] [PubMed]

Arya, G.

B. Gao, G. Arya, A. R. Tao, “Self-orienting nanocubes for the assembly of plasmonic nanojunctions,” Nat. Nanotechnol. 7(7), 433–437 (2012).
[CrossRef] [PubMed]

Badenes, G.

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Bienstman, P.

H. Shen, P. Bienstman, B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Billan, S.

G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, H. Haick, “Diagnosing lung cancer in exhaled breath using gold nanoparticles,” Nat. Nanotechnol. 4(10), 669–673 (2009).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

J. Jung, T. Søndergaard, S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

Broza, Y. Y.

G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, H. Haick, “Diagnosing lung cancer in exhaled breath using gold nanoparticles,” Nat. Nanotechnol. 4(10), 669–673 (2009).
[CrossRef] [PubMed]

Cai, G.

P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
[CrossRef]

Cesario, J.

Chen, F.-C.

J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, C.-S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[CrossRef] [PubMed]

Chen, J.

Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L.-P. Wen, Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010).
[CrossRef] [PubMed]

A. R. Siekkinen, J. M. McLellan, J. Chen, Y. Xia, “Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide,” Chem. Phys. Lett. 432(4-6), 491–496 (2006).
[CrossRef] [PubMed]

Chen, P.

J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, C.-S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[CrossRef] [PubMed]

Chen, X.

Cheng, D.

D. Cheng, Q.-H. Xu, “Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles,” Chem. Commun. (Camb.) 2007(3), 248–250 (2007).
[CrossRef] [PubMed]

Chien, F.-C.

J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, C.-S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[CrossRef] [PubMed]

Chilkoti, A.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

Chu, Y.

Chumanov, G.

M. K. Kinnan, G. Chumanov, “Surface enhanced Raman scattering from silver nanoparticle arrays on silver mirror films: plasmon-induced electronic coupling as the enhancement mechanism,” J. Phys. Chem. C 111(49), 18010–18017 (2007).
[CrossRef]

Ciracì, C.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

Cobley, C.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, R. P. Van Duyne, “Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Crozier, K. B.

Cui, K.

F. Liu, W. Xie, Q. Xu, Y. Liu, K. Cui, X. Feng, W. Zhang, Y. Huang, “Plasmonic enhanced optical absorption in organic solar cells with metallic nanoparticles,” IEEE Photonics J. 5(4), 8400509 (2013).
[CrossRef]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

Ding, P.

P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
[CrossRef]

Divliansky, I.

A. Ghoshal, I. Divliansky, P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays,” Appl. Phys. Lett. 94(17), 171108 (2009).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

Enoch, S.

Fan, C.

P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
[CrossRef]

Fang, Z.

Z. Fang, B. R. Patterson, M. E. J. Turner., “Modeling particle size distributions by the Weibull distribution function,” Mater. Charact. 31(3), 177–182 (1993).
[CrossRef]

Fendler, J. H.

E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

Feng, X.

F. Liu, W. Xie, Q. Xu, Y. Liu, K. Cui, X. Feng, W. Zhang, Y. Huang, “Plasmonic enhanced optical absorption in organic solar cells with metallic nanoparticles,” IEEE Photonics J. 5(4), 8400509 (2013).
[CrossRef]

Gao, B.

B. Gao, G. Arya, A. R. Tao, “Self-orienting nanocubes for the assembly of plasmonic nanojunctions,” Nat. Nanotechnol. 7(7), 433–437 (2012).
[CrossRef] [PubMed]

García-Cámara, B.

Gerritsen, H. C.

O. G. Tovmachenko, C. Graf, D. J. van den Heuvel, A. van Blaaderen, H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18(1), 91–95 (2006).
[CrossRef]

Ghoshal, A.

A. Ghoshal, I. Divliansky, P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays,” Appl. Phys. Lett. 94(17), 171108 (2009).
[CrossRef]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

González, F.

Goodrich, G. P.

F. Tam, G. P. Goodrich, B. R. Johnson, N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

Graf, C.

O. G. Tovmachenko, C. Graf, D. J. van den Heuvel, A. van Blaaderen, H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18(1), 91–95 (2006).
[CrossRef]

C. Graf, D. L. J. Vossen, A. Imhof, A. van Blaaderen, “A general method to coat colloidal particles with silica,” Langmuir 19(17), 6693–6700 (2003).
[CrossRef]

Haick, H.

G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, H. Haick, “Diagnosing lung cancer in exhaled breath using gold nanoparticles,” Nat. Nanotechnol. 4(10), 669–673 (2009).
[CrossRef] [PubMed]

Hakim, M.

G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, H. Haick, “Diagnosing lung cancer in exhaled breath using gold nanoparticles,” Nat. Nanotechnol. 4(10), 669–673 (2009).
[CrossRef] [PubMed]

Halas, N. J.

F. Tam, G. P. Goodrich, B. R. Johnson, N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

Hessel, A.

Hildebrandt, N.

B. Hötzer, I. L. Medintz, N. Hildebrandt, “Fluorescence in nanobiotechnology: sophisticated fluorophores for novel applications,” Small 8(15), 2297–2326 (2012).
[CrossRef] [PubMed]

Hill, R. T.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

Hötzer, B.

B. Hötzer, I. L. Medintz, N. Hildebrandt, “Fluorescence in nanobiotechnology: sophisticated fluorophores for novel applications,” Small 8(15), 2297–2326 (2012).
[CrossRef] [PubMed]

Hsiao, Y.-S.

J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, C.-S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[CrossRef] [PubMed]

Hsu, C.-S.

J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, C.-S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[CrossRef] [PubMed]

Hu, C.

Hu, W.

P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
[CrossRef]

Huang, J.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, R. P. Van Duyne, “Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[CrossRef]

Huang, M. H.

J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, C.-S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[CrossRef] [PubMed]

Huang, Y.

F. Liu, W. Xie, Q. Xu, Y. Liu, K. Cui, X. Feng, W. Zhang, Y. Huang, “Plasmonic enhanced optical absorption in organic solar cells with metallic nanoparticles,” IEEE Photonics J. 5(4), 8400509 (2013).
[CrossRef]

Hutter, E.

E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

Imhof, A.

C. Graf, D. L. J. Vossen, A. Imhof, A. van Blaaderen, “A general method to coat colloidal particles with silica,” Langmuir 19(17), 6693–6700 (2003).
[CrossRef]

Johnson, B. R.

F. Tam, G. P. Goodrich, B. R. Johnson, N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

Jung, J.

J. Jung, T. Søndergaard, S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Kik, P. G.

A. Ghoshal, I. Divliansky, P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays,” Appl. Phys. Lett. 94(17), 171108 (2009).
[CrossRef]

Kim, H.

Kim, K.-Y.

H. Yun, I.-M. Lee, S.-Y. Lee, K.-Y. Kim, B. Lee, “Intermediate plasmonic characteristics in a quasi-continuous metallic monolayer,” Sci Rep 4, 3696 (2014).
[CrossRef] [PubMed]

Kinnan, M. K.

M. K. Kinnan, G. Chumanov, “Surface enhanced Raman scattering from silver nanoparticle arrays on silver mirror films: plasmon-induced electronic coupling as the enhancement mechanism,” J. Phys. Chem. C 111(49), 18010–18017 (2007).
[CrossRef]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Kuo, C.-H.

J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, C.-S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[CrossRef] [PubMed]

Kuten, A.

G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, H. Haick, “Diagnosing lung cancer in exhaled breath using gold nanoparticles,” Nat. Nanotechnol. 4(10), 669–673 (2009).
[CrossRef] [PubMed]

Lee, B.

H. Yun, I.-M. Lee, S.-Y. Lee, K.-Y. Kim, B. Lee, “Intermediate plasmonic characteristics in a quasi-continuous metallic monolayer,” Sci Rep 4, 3696 (2014).
[CrossRef] [PubMed]

H. Kim, I.-M. Lee, B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 24(8), 2313–2327 (2007).
[CrossRef] [PubMed]

Lee, I.-M.

H. Yun, I.-M. Lee, S.-Y. Lee, K.-Y. Kim, B. Lee, “Intermediate plasmonic characteristics in a quasi-continuous metallic monolayer,” Sci Rep 4, 3696 (2014).
[CrossRef] [PubMed]

H. Kim, I.-M. Lee, B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 24(8), 2313–2327 (2007).
[CrossRef] [PubMed]

Lee, S.-Y.

H. Yun, I.-M. Lee, S.-Y. Lee, K.-Y. Kim, B. Lee, “Intermediate plasmonic characteristics in a quasi-continuous metallic monolayer,” Sci Rep 4, 3696 (2014).
[CrossRef] [PubMed]

Li, W.

Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L.-P. Wen, Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010).
[CrossRef] [PubMed]

Liang, E.

P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
[CrossRef]

Liu, F.

F. Liu, W. Xie, Q. Xu, Y. Liu, K. Cui, X. Feng, W. Zhang, Y. Huang, “Plasmonic enhanced optical absorption in organic solar cells with metallic nanoparticles,” IEEE Photonics J. 5(4), 8400509 (2013).
[CrossRef]

Liu, J.

J. Liu, Y. Lu, “Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor,” Anal. Chem. 76(6), 1627–1632 (2004).
[CrossRef] [PubMed]

Liu, L.

Liu, Y.

F. Liu, W. Xie, Q. Xu, Y. Liu, K. Cui, X. Feng, W. Zhang, Y. Huang, “Plasmonic enhanced optical absorption in organic solar cells with metallic nanoparticles,” IEEE Photonics J. 5(4), 8400509 (2013).
[CrossRef]

Lu, Y.

J. Liu, Y. Lu, “Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor,” Anal. Chem. 76(6), 1627–1632 (2004).
[CrossRef] [PubMed]

Luo, X.

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Maes, B.

H. Shen, P. Bienstman, B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Marks, L. D.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, R. P. Van Duyne, “Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[CrossRef]

McLellan, J. M.

A. R. Siekkinen, J. M. McLellan, J. Chen, Y. Xia, “Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide,” Chem. Phys. Lett. 432(4-6), 491–496 (2006).
[CrossRef] [PubMed]

McMahon, J. M.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, R. P. Van Duyne, “Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[CrossRef]

Medintz, I. L.

B. Hötzer, I. L. Medintz, N. Hildebrandt, “Fluorescence in nanobiotechnology: sophisticated fluorophores for novel applications,” Small 8(15), 2297–2326 (2012).
[CrossRef] [PubMed]

Mock, J. J.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

Moran, C.

Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L.-P. Wen, Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010).
[CrossRef] [PubMed]

Moreau, A.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

Moreno, F.

Oliner, A. A.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Papanikolaou, N.

N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B 75(23), 235426 (2007).
[CrossRef]

Patterson, B. R.

Z. Fang, B. R. Patterson, M. E. J. Turner., “Modeling particle size distributions by the Weibull distribution function,” Mater. Charact. 31(3), 177–182 (1993).
[CrossRef]

Peng, G.

G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, H. Haick, “Diagnosing lung cancer in exhaled breath using gold nanoparticles,” Nat. Nanotechnol. 4(10), 669–673 (2009).
[CrossRef] [PubMed]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[CrossRef] [PubMed]

J. Cesario, R. Quidant, G. Badenes, S. Enoch, “Electromagnetic coupling between a metal nanoparticle grating and a metallic surface,” Opt. Lett. 30(24), 3404–3406 (2005).
[CrossRef] [PubMed]

Ringe, E.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, R. P. Van Duyne, “Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[CrossRef]

Saiz, J. M.

Schatz, G. C.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, R. P. Van Duyne, “Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Shehada, N.

G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, H. Haick, “Diagnosing lung cancer in exhaled breath using gold nanoparticles,” Nat. Nanotechnol. 4(10), 669–673 (2009).
[CrossRef] [PubMed]

Shen, H.

H. Shen, P. Bienstman, B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Siekkinen, A. R.

A. R. Siekkinen, J. M. McLellan, J. Chen, Y. Xia, “Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide,” Chem. Phys. Lett. 432(4-6), 491–496 (2006).
[CrossRef] [PubMed]

Smith, D. R.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

Sohn, K.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, R. P. Van Duyne, “Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[CrossRef]

Søndergaard, T.

J. Jung, T. Søndergaard, S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
[CrossRef]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[CrossRef] [PubMed]

Tam, F.

F. Tam, G. P. Goodrich, B. R. Johnson, N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Tao, A. R.

B. Gao, G. Arya, A. R. Tao, “Self-orienting nanocubes for the assembly of plasmonic nanojunctions,” Nat. Nanotechnol. 7(7), 433–437 (2012).
[CrossRef] [PubMed]

Tisch, U.

G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, H. Haick, “Diagnosing lung cancer in exhaled breath using gold nanoparticles,” Nat. Nanotechnol. 4(10), 669–673 (2009).
[CrossRef] [PubMed]

Tovmachenko, O. G.

O. G. Tovmachenko, C. Graf, D. J. van den Heuvel, A. van Blaaderen, H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18(1), 91–95 (2006).
[CrossRef]

Turner, M. E. J.

Z. Fang, B. R. Patterson, M. E. J. Turner., “Modeling particle size distributions by the Weibull distribution function,” Mater. Charact. 31(3), 177–182 (1993).
[CrossRef]

van Blaaderen, A.

O. G. Tovmachenko, C. Graf, D. J. van den Heuvel, A. van Blaaderen, H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18(1), 91–95 (2006).
[CrossRef]

C. Graf, D. L. J. Vossen, A. Imhof, A. van Blaaderen, “A general method to coat colloidal particles with silica,” Langmuir 19(17), 6693–6700 (2003).
[CrossRef]

van den Heuvel, D. J.

O. G. Tovmachenko, C. Graf, D. J. van den Heuvel, A. van Blaaderen, H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18(1), 91–95 (2006).
[CrossRef]

Van Duyne, R. P.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, R. P. Van Duyne, “Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[CrossRef]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Vossen, D. L. J.

C. Graf, D. L. J. Vossen, A. Imhof, A. van Blaaderen, “A general method to coat colloidal particles with silica,” Langmuir 19(17), 6693–6700 (2003).
[CrossRef]

Wang, Q.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

Weibull, W.

W. Weibull, “A statistical distribution function of wide applicability,” J. Appl. Mech. 18, 293–297 (1951).

Wen, L.-P.

Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L.-P. Wen, Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010).
[CrossRef] [PubMed]

Wiley, B. J.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

Wood, R. W.

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
[CrossRef]

Wu, J.-L.

J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, C.-S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[CrossRef] [PubMed]

Xia, Y.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, R. P. Van Duyne, “Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[CrossRef]

Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L.-P. Wen, Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010).
[CrossRef] [PubMed]

A. R. Siekkinen, J. M. McLellan, J. Chen, Y. Xia, “Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide,” Chem. Phys. Lett. 432(4-6), 491–496 (2006).
[CrossRef] [PubMed]

Xie, W.

F. Liu, W. Xie, Q. Xu, Y. Liu, K. Cui, X. Feng, W. Zhang, Y. Huang, “Plasmonic enhanced optical absorption in organic solar cells with metallic nanoparticles,” IEEE Photonics J. 5(4), 8400509 (2013).
[CrossRef]

Xu, Q.

F. Liu, W. Xie, Q. Xu, Y. Liu, K. Cui, X. Feng, W. Zhang, Y. Huang, “Plasmonic enhanced optical absorption in organic solar cells with metallic nanoparticles,” IEEE Photonics J. 5(4), 8400509 (2013).
[CrossRef]

Xu, Q.-H.

D. Cheng, Q.-H. Xu, “Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles,” Chem. Commun. (Camb.) 2007(3), 248–250 (2007).
[CrossRef] [PubMed]

Xue, Q.

P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
[CrossRef]

Yun, H.

H. Yun, I.-M. Lee, S.-Y. Lee, K.-Y. Kim, B. Lee, “Intermediate plasmonic characteristics in a quasi-continuous metallic monolayer,” Sci Rep 4, 3696 (2014).
[CrossRef] [PubMed]

Zeng, J.

Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L.-P. Wen, Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010).
[CrossRef] [PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhang, Q.

Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L.-P. Wen, Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010).
[CrossRef] [PubMed]

Zhang, W.

F. Liu, W. Xie, Q. Xu, Y. Liu, K. Cui, X. Feng, W. Zhang, Y. Huang, “Plasmonic enhanced optical absorption in organic solar cells with metallic nanoparticles,” IEEE Photonics J. 5(4), 8400509 (2013).
[CrossRef]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Zhao, Z.

ACS Nano (1)

J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, C.-S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[CrossRef] [PubMed]

Adv. Mater. (2)

O. G. Tovmachenko, C. Graf, D. J. van den Heuvel, A. van Blaaderen, H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18(1), 91–95 (2006).
[CrossRef]

E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

Anal. Chem. (1)

J. Liu, Y. Lu, “Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor,” Anal. Chem. 76(6), 1627–1632 (2004).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Ghoshal, I. Divliansky, P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays,” Appl. Phys. Lett. 94(17), 171108 (2009).
[CrossRef]

Chem. Commun. (Camb.) (1)

D. Cheng, Q.-H. Xu, “Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles,” Chem. Commun. (Camb.) 2007(3), 248–250 (2007).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

A. R. Siekkinen, J. M. McLellan, J. Chen, Y. Xia, “Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide,” Chem. Phys. Lett. 432(4-6), 491–496 (2006).
[CrossRef] [PubMed]

IEEE Photonics J. (1)

F. Liu, W. Xie, Q. Xu, Y. Liu, K. Cui, X. Feng, W. Zhang, Y. Huang, “Plasmonic enhanced optical absorption in organic solar cells with metallic nanoparticles,” IEEE Photonics J. 5(4), 8400509 (2013).
[CrossRef]

J. Am. Chem. Soc. (1)

Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L.-P. Wen, Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010).
[CrossRef] [PubMed]

J. Appl. Mech. (1)

W. Weibull, “A statistical distribution function of wide applicability,” J. Appl. Mech. 18, 293–297 (1951).

J. Appl. Phys. (1)

H. Shen, P. Bienstman, B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

J. Opt. (1)

P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

J. Phys. Chem. C (2)

M. K. Kinnan, G. Chumanov, “Surface enhanced Raman scattering from silver nanoparticle arrays on silver mirror films: plasmon-induced electronic coupling as the enhancement mechanism,” J. Phys. Chem. C 111(49), 18010–18017 (2007).
[CrossRef]

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, R. P. Van Duyne, “Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[CrossRef]

Langmuir (1)

C. Graf, D. L. J. Vossen, A. Imhof, A. van Blaaderen, “A general method to coat colloidal particles with silica,” Langmuir 19(17), 6693–6700 (2003).
[CrossRef]

Mater. Charact. (1)

Z. Fang, B. R. Patterson, M. E. J. Turner., “Modeling particle size distributions by the Weibull distribution function,” Mater. Charact. 31(3), 177–182 (1993).
[CrossRef]

Nano Lett. (1)

F. Tam, G. P. Goodrich, B. R. Johnson, N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

Nat. Nanotechnol. (2)

G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, H. Haick, “Diagnosing lung cancer in exhaled breath using gold nanoparticles,” Nat. Nanotechnol. 4(10), 669–673 (2009).
[CrossRef] [PubMed]

B. Gao, G. Arya, A. R. Tao, “Self-orienting nanocubes for the assembly of plasmonic nanojunctions,” Nat. Nanotechnol. 7(7), 433–437 (2012).
[CrossRef] [PubMed]

Nature (2)

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Philos. Mag. (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
[CrossRef]

Phys. Rev. B (2)

J. Jung, T. Søndergaard, S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
[CrossRef]

N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B 75(23), 235426 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[CrossRef] [PubMed]

Sci Rep (1)

H. Yun, I.-M. Lee, S.-Y. Lee, K.-Y. Kim, B. Lee, “Intermediate plasmonic characteristics in a quasi-continuous metallic monolayer,” Sci Rep 4, 3696 (2014).
[CrossRef] [PubMed]

Science (1)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Small (1)

B. Hötzer, I. L. Medintz, N. Hildebrandt, “Fluorescence in nanobiotechnology: sophisticated fluorophores for novel applications,” Small 8(15), 2297–2326 (2012).
[CrossRef] [PubMed]

Other (3)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

H. Kim, J. Park, and B. Lee, Fourier Modal Method and Its Applications in Computational Nanophotonics (CRC, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic illustration of the combined structure of AgNC@SiO2s on a thin Ag layer for dual detection of SPR signal and fluorescence image. (b) Schematic diagram of the structure and parameters for numerical simulations.

Fig. 2
Fig. 2

Changes of the minimum reflectance band on θ-λR map depending on inter-particle distance (D) among AgNC@SiO2s. θ-λR maps for AgNCs (30 nm) with SiO2 shell (10nm) on Ag layer (50 nm) in (a) an infinite, (b) 2000 nm, (c) 800 nm, (d) 350 nm, (e) 200 nm, (f) 100 nm, and (g) 60 nm of inter-particle distance. Hy-field profiles at (h) 44° and (i) 69.5° of different incident angles and 580 nm of same wavelength of incident light. Black dotted circles marked on the maps of (b) and (f) indicate positions where Hy-field profiles of (h) and (i) were calculated, respectively.

Fig. 3
Fig. 3

Effect of (a)-(c) Ag core size (d), (d)-(f) SiO2 shell thickness (t), and (g)-(i) Ag layer thickness (T) on the minimum reflectance band. The AgNC core sizes are (a) 20 nm, (b) 30 nm, and (c) 40 nm. The SiO2 shell thicknesses are (d) 10 nm, (e) 25 nm, (f) 35 nm. The Ag layer thicknesses are (g) 30 nm, (h) 50 nm, and (i) 70 nm.

Fig. 4
Fig. 4

(a) TEM image and (b) size distribution of AgNC@SiO2s. FE-SEM images of AgNC@SiO2s coated on Ag layer with (c) 20-, (d) 1.25-fold dilutions, and (e) undiluted solutions. They are named NC1000, NC200, and NC117, respectively. The scale bars are (a) 50 nm and (c)-(e) 500 nm. (f) Image of total internal reflection set-up with the hemi-cylindrical prism, white light source, spectrometer, and microscope lens. The polarizer makes incident light be TM polarization, and the incident angle is changed from 40° to 70° by a motorized rotation stage. CCD camera, which is not shown here, is adapted to microscopy.

Fig. 5
Fig. 5

Experimental θ-λR maps of (a) NC1000, (b) NC200, and (c) NC117.

Fig. 6
Fig. 6

(a) Inter-particle distance distribution of NC117, (b) the Weibull distribution calculated with experimental μ and σ of NC117, and (c) schematic illustration of a structure and parameters for simulation including the Weibull distribution. Comparison of three kinds of data for (d)-(g) NC1000 and (h)-(k) NC117. (d) and (h) are simulation θ-λR maps including the Weibull distribution factor. The circular yellow dots indicate the minimum reflectance dips in the experimental data of Fig. 5. The corresponding fluorescence images are measured at (e) 44°, (f) 43°, (g) 42°, (i) 57°, (j) 55°, and (k) 51° of incident angle. The scale bars are 5 μm.

Metrics