Abstract

This paper presents a new method for fabricating arrayed metallic nano-structures with sub-micrometer line-widths over large patterning area sizes. It utilizes a soft mold containing arrayed surface micro-pyramids. A carbon-black photo-resist (PR) coating method is developed which can convert the soft mold into a photo-mask. This three-dimensional photo-mask is then applied for photolithographic ultraviolet (UV) patterning. In conjunction with standard metal lift-off process, arrayed metallic nano-structures are formed on glass substrates. A finite element simulation software is used to analyze the underlying mechanism of UV patterning using this new type of 3D photo-mask. The localized surface plasma resonance (LSPR) effects of the fabricated nano-structures are investigated both experimentally and theoretically. Good agreements are observed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
    [CrossRef]
  2. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi 205(12), 2844–2861 (2008).
    [CrossRef]
  3. B. Auguié, W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
    [CrossRef] [PubMed]
  4. N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66(24), 245407 (2002).
    [CrossRef]
  5. J. Stodolka, D. Nau, M. Frommberger, C. Zanke, H. Giessen, E. Quandt, “Fabrication of two-dimensional hybrid photonic crystals utilizing electron beam lithography,” Microelectron. Eng. 78–79, 442–447 (2005).
    [CrossRef]
  6. Y. Chu, E. Schonbrun, T. Yang, K. B. Crozier, “Experimental observation of narrow surface plasmon resonancesin gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
    [CrossRef]
  7. Y. C. Lee, C. Y. Chiu, “Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching,” J. Micromech. Microeng. 18(7), 075013 (2008).
    [CrossRef]
  8. Y. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99(7), 1823–1848 (1999).
    [CrossRef] [PubMed]
  9. W. Srituravanich, N. Fang, C. Sun, Q. Luo, X. Zhang, “Plasmonic Nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
    [CrossRef]
  10. L. Wang, S. M. Uppuluri, E. X. Jin, X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
    [CrossRef] [PubMed]
  11. Y. Kim, H. Jung, S. Kim, J. Jang, J. Y. Lee, J. W. Hahn, “Accurate near-field lithography modeling and quantitative mapping of the near-field distribution of a plasmonic nanoaperture in a metal,” Opt. Express 19(20), 19296–19309 (2011).
    [CrossRef] [PubMed]
  12. G. T. A. Kovacs, N. I. Maluf, K. E. Petersen, “Bulk micromachining of silicon,” Proc. IEEE 86(8), 1536–1551 (1998).
    [CrossRef]
  13. I. Barycka, I. Zubel, “Silicon anisotropic etching in KOH-isopropanol etchant,” Sens. Actuator A-Phys. 48(3), 229–238 (1995).
    [CrossRef]
  14. R. A. Norwood, L. A. Whitney, “Rapid and accurate measurements of photoresist refractive index dispersion using the prism coupling method,” Proc. SPIE 2725, 273–280 (1996).
    [CrossRef]
  15. http://www.minuta.co.kr/products/products_mold_template.html (Accessed February 5, 2014)
  16. http://www.everlightchemical-ecbu.com/EN/product_detail.asp?seq=70 (Accessed February 5, 2014)
  17. M. Bechelany, X. Maeder, J. Riesterer, J. Hankache, D. Lerose, S. Christiansen, J. Michler, L. Philippe, “Synthesis Mechanisms of Organized Gold Nanoparticles: Influence of Annealing Temperature and Atmosphere,” Cryst. Growth Des. 10(2), 587–596 (2010).
    [CrossRef]
  18. C. H. Chen, Y. C. Lee, “Fabrication of metallic micro/nano-particles by surface patterning and pulsed laser annealing,” Thin Solid Films 518(17), 4786–4790 (2010).
    [CrossRef]

2011 (1)

2010 (2)

M. Bechelany, X. Maeder, J. Riesterer, J. Hankache, D. Lerose, S. Christiansen, J. Michler, L. Philippe, “Synthesis Mechanisms of Organized Gold Nanoparticles: Influence of Annealing Temperature and Atmosphere,” Cryst. Growth Des. 10(2), 587–596 (2010).
[CrossRef]

C. H. Chen, Y. C. Lee, “Fabrication of metallic micro/nano-particles by surface patterning and pulsed laser annealing,” Thin Solid Films 518(17), 4786–4790 (2010).
[CrossRef]

2008 (4)

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi 205(12), 2844–2861 (2008).
[CrossRef]

B. Auguié, W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[CrossRef] [PubMed]

Y. Chu, E. Schonbrun, T. Yang, K. B. Crozier, “Experimental observation of narrow surface plasmon resonancesin gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[CrossRef]

Y. C. Lee, C. Y. Chiu, “Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching,” J. Micromech. Microeng. 18(7), 075013 (2008).
[CrossRef]

2006 (1)

L. Wang, S. M. Uppuluri, E. X. Jin, X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[CrossRef] [PubMed]

2005 (1)

J. Stodolka, D. Nau, M. Frommberger, C. Zanke, H. Giessen, E. Quandt, “Fabrication of two-dimensional hybrid photonic crystals utilizing electron beam lithography,” Microelectron. Eng. 78–79, 442–447 (2005).
[CrossRef]

2004 (2)

E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, X. Zhang, “Plasmonic Nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

2002 (1)

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66(24), 245407 (2002).
[CrossRef]

1999 (1)

Y. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99(7), 1823–1848 (1999).
[CrossRef] [PubMed]

1998 (1)

G. T. A. Kovacs, N. I. Maluf, K. E. Petersen, “Bulk micromachining of silicon,” Proc. IEEE 86(8), 1536–1551 (1998).
[CrossRef]

1996 (1)

R. A. Norwood, L. A. Whitney, “Rapid and accurate measurements of photoresist refractive index dispersion using the prism coupling method,” Proc. SPIE 2725, 273–280 (1996).
[CrossRef]

1995 (1)

I. Barycka, I. Zubel, “Silicon anisotropic etching in KOH-isopropanol etchant,” Sens. Actuator A-Phys. 48(3), 229–238 (1995).
[CrossRef]

Aubard, J.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66(24), 245407 (2002).
[CrossRef]

Auguié, B.

B. Auguié, W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[CrossRef] [PubMed]

Aussenegg, F. R.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66(24), 245407 (2002).
[CrossRef]

Barnes, W. L.

B. Auguié, W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[CrossRef] [PubMed]

Barycka, I.

I. Barycka, I. Zubel, “Silicon anisotropic etching in KOH-isopropanol etchant,” Sens. Actuator A-Phys. 48(3), 229–238 (1995).
[CrossRef]

Bechelany, M.

M. Bechelany, X. Maeder, J. Riesterer, J. Hankache, D. Lerose, S. Christiansen, J. Michler, L. Philippe, “Synthesis Mechanisms of Organized Gold Nanoparticles: Influence of Annealing Temperature and Atmosphere,” Cryst. Growth Des. 10(2), 587–596 (2010).
[CrossRef]

Chen, C. H.

C. H. Chen, Y. C. Lee, “Fabrication of metallic micro/nano-particles by surface patterning and pulsed laser annealing,” Thin Solid Films 518(17), 4786–4790 (2010).
[CrossRef]

Chiu, C. Y.

Y. C. Lee, C. Y. Chiu, “Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching,” J. Micromech. Microeng. 18(7), 075013 (2008).
[CrossRef]

Christiansen, S.

M. Bechelany, X. Maeder, J. Riesterer, J. Hankache, D. Lerose, S. Christiansen, J. Michler, L. Philippe, “Synthesis Mechanisms of Organized Gold Nanoparticles: Influence of Annealing Temperature and Atmosphere,” Cryst. Growth Des. 10(2), 587–596 (2010).
[CrossRef]

Chu, Y.

Y. Chu, E. Schonbrun, T. Yang, K. B. Crozier, “Experimental observation of narrow surface plasmon resonancesin gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[CrossRef]

Crozier, K. B.

Y. Chu, E. Schonbrun, T. Yang, K. B. Crozier, “Experimental observation of narrow surface plasmon resonancesin gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[CrossRef]

Fahr, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi 205(12), 2844–2861 (2008).
[CrossRef]

Fang, N.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, X. Zhang, “Plasmonic Nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

Felidj, N.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66(24), 245407 (2002).
[CrossRef]

Fendler, J. H.

E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

Frommberger, M.

J. Stodolka, D. Nau, M. Frommberger, C. Zanke, H. Giessen, E. Quandt, “Fabrication of two-dimensional hybrid photonic crystals utilizing electron beam lithography,” Microelectron. Eng. 78–79, 442–447 (2005).
[CrossRef]

Giessen, H.

J. Stodolka, D. Nau, M. Frommberger, C. Zanke, H. Giessen, E. Quandt, “Fabrication of two-dimensional hybrid photonic crystals utilizing electron beam lithography,” Microelectron. Eng. 78–79, 442–447 (2005).
[CrossRef]

Graener, H.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi 205(12), 2844–2861 (2008).
[CrossRef]

Hahn, J. W.

Hallermann, F.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi 205(12), 2844–2861 (2008).
[CrossRef]

Hankache, J.

M. Bechelany, X. Maeder, J. Riesterer, J. Hankache, D. Lerose, S. Christiansen, J. Michler, L. Philippe, “Synthesis Mechanisms of Organized Gold Nanoparticles: Influence of Annealing Temperature and Atmosphere,” Cryst. Growth Des. 10(2), 587–596 (2010).
[CrossRef]

Hutter, E.

E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

Jang, J.

Jin, E. X.

L. Wang, S. M. Uppuluri, E. X. Jin, X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[CrossRef] [PubMed]

Jung, H.

Kim, S.

Kim, Y.

Kovacs, G. T. A.

G. T. A. Kovacs, N. I. Maluf, K. E. Petersen, “Bulk micromachining of silicon,” Proc. IEEE 86(8), 1536–1551 (1998).
[CrossRef]

Krenn, J. R.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66(24), 245407 (2002).
[CrossRef]

Lederer, F.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi 205(12), 2844–2861 (2008).
[CrossRef]

Lee, J. Y.

Lee, Y. C.

C. H. Chen, Y. C. Lee, “Fabrication of metallic micro/nano-particles by surface patterning and pulsed laser annealing,” Thin Solid Films 518(17), 4786–4790 (2010).
[CrossRef]

Y. C. Lee, C. Y. Chiu, “Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching,” J. Micromech. Microeng. 18(7), 075013 (2008).
[CrossRef]

Leitner, A.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66(24), 245407 (2002).
[CrossRef]

Lerose, D.

M. Bechelany, X. Maeder, J. Riesterer, J. Hankache, D. Lerose, S. Christiansen, J. Michler, L. Philippe, “Synthesis Mechanisms of Organized Gold Nanoparticles: Influence of Annealing Temperature and Atmosphere,” Cryst. Growth Des. 10(2), 587–596 (2010).
[CrossRef]

Levi, G.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66(24), 245407 (2002).
[CrossRef]

Luo, Q.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, X. Zhang, “Plasmonic Nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

Maeder, X.

M. Bechelany, X. Maeder, J. Riesterer, J. Hankache, D. Lerose, S. Christiansen, J. Michler, L. Philippe, “Synthesis Mechanisms of Organized Gold Nanoparticles: Influence of Annealing Temperature and Atmosphere,” Cryst. Growth Des. 10(2), 587–596 (2010).
[CrossRef]

Maluf, N. I.

G. T. A. Kovacs, N. I. Maluf, K. E. Petersen, “Bulk micromachining of silicon,” Proc. IEEE 86(8), 1536–1551 (1998).
[CrossRef]

Michler, J.

M. Bechelany, X. Maeder, J. Riesterer, J. Hankache, D. Lerose, S. Christiansen, J. Michler, L. Philippe, “Synthesis Mechanisms of Organized Gold Nanoparticles: Influence of Annealing Temperature and Atmosphere,” Cryst. Growth Des. 10(2), 587–596 (2010).
[CrossRef]

Nau, D.

J. Stodolka, D. Nau, M. Frommberger, C. Zanke, H. Giessen, E. Quandt, “Fabrication of two-dimensional hybrid photonic crystals utilizing electron beam lithography,” Microelectron. Eng. 78–79, 442–447 (2005).
[CrossRef]

Norwood, R. A.

R. A. Norwood, L. A. Whitney, “Rapid and accurate measurements of photoresist refractive index dispersion using the prism coupling method,” Proc. SPIE 2725, 273–280 (1996).
[CrossRef]

Paul, K. E.

Y. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99(7), 1823–1848 (1999).
[CrossRef] [PubMed]

Petersen, K. E.

G. T. A. Kovacs, N. I. Maluf, K. E. Petersen, “Bulk micromachining of silicon,” Proc. IEEE 86(8), 1536–1551 (1998).
[CrossRef]

Philippe, L.

M. Bechelany, X. Maeder, J. Riesterer, J. Hankache, D. Lerose, S. Christiansen, J. Michler, L. Philippe, “Synthesis Mechanisms of Organized Gold Nanoparticles: Influence of Annealing Temperature and Atmosphere,” Cryst. Growth Des. 10(2), 587–596 (2010).
[CrossRef]

Plessen, G. V.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi 205(12), 2844–2861 (2008).
[CrossRef]

Quandt, E.

J. Stodolka, D. Nau, M. Frommberger, C. Zanke, H. Giessen, E. Quandt, “Fabrication of two-dimensional hybrid photonic crystals utilizing electron beam lithography,” Microelectron. Eng. 78–79, 442–447 (2005).
[CrossRef]

Riesterer, J.

M. Bechelany, X. Maeder, J. Riesterer, J. Hankache, D. Lerose, S. Christiansen, J. Michler, L. Philippe, “Synthesis Mechanisms of Organized Gold Nanoparticles: Influence of Annealing Temperature and Atmosphere,” Cryst. Growth Des. 10(2), 587–596 (2010).
[CrossRef]

Rockstuhl, C.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi 205(12), 2844–2861 (2008).
[CrossRef]

Rogers, J. A.

Y. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99(7), 1823–1848 (1999).
[CrossRef] [PubMed]

Schider, G.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66(24), 245407 (2002).
[CrossRef]

Schonbrun, E.

Y. Chu, E. Schonbrun, T. Yang, K. B. Crozier, “Experimental observation of narrow surface plasmon resonancesin gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[CrossRef]

Seifert, G.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi 205(12), 2844–2861 (2008).
[CrossRef]

Srituravanich, W.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, X. Zhang, “Plasmonic Nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

Stodolka, J.

J. Stodolka, D. Nau, M. Frommberger, C. Zanke, H. Giessen, E. Quandt, “Fabrication of two-dimensional hybrid photonic crystals utilizing electron beam lithography,” Microelectron. Eng. 78–79, 442–447 (2005).
[CrossRef]

Sun, C.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, X. Zhang, “Plasmonic Nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

Uppuluri, S. M.

L. Wang, S. M. Uppuluri, E. X. Jin, X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[CrossRef] [PubMed]

Wackerow, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi 205(12), 2844–2861 (2008).
[CrossRef]

Wang, L.

L. Wang, S. M. Uppuluri, E. X. Jin, X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[CrossRef] [PubMed]

Whitesides, G. M.

Y. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99(7), 1823–1848 (1999).
[CrossRef] [PubMed]

Whitney, L. A.

R. A. Norwood, L. A. Whitney, “Rapid and accurate measurements of photoresist refractive index dispersion using the prism coupling method,” Proc. SPIE 2725, 273–280 (1996).
[CrossRef]

Xia, Y.

Y. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99(7), 1823–1848 (1999).
[CrossRef] [PubMed]

Xu, X.

L. Wang, S. M. Uppuluri, E. X. Jin, X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[CrossRef] [PubMed]

Yang, T.

Y. Chu, E. Schonbrun, T. Yang, K. B. Crozier, “Experimental observation of narrow surface plasmon resonancesin gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[CrossRef]

Zanke, C.

J. Stodolka, D. Nau, M. Frommberger, C. Zanke, H. Giessen, E. Quandt, “Fabrication of two-dimensional hybrid photonic crystals utilizing electron beam lithography,” Microelectron. Eng. 78–79, 442–447 (2005).
[CrossRef]

Zhang, X.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, X. Zhang, “Plasmonic Nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

Zubel, I.

I. Barycka, I. Zubel, “Silicon anisotropic etching in KOH-isopropanol etchant,” Sens. Actuator A-Phys. 48(3), 229–238 (1995).
[CrossRef]

Adv. Mater. (1)

E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Chu, E. Schonbrun, T. Yang, K. B. Crozier, “Experimental observation of narrow surface plasmon resonancesin gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[CrossRef]

Chem. Rev. (1)

Y. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99(7), 1823–1848 (1999).
[CrossRef] [PubMed]

Cryst. Growth Des. (1)

M. Bechelany, X. Maeder, J. Riesterer, J. Hankache, D. Lerose, S. Christiansen, J. Michler, L. Philippe, “Synthesis Mechanisms of Organized Gold Nanoparticles: Influence of Annealing Temperature and Atmosphere,” Cryst. Growth Des. 10(2), 587–596 (2010).
[CrossRef]

J. Micromech. Microeng. (1)

Y. C. Lee, C. Y. Chiu, “Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching,” J. Micromech. Microeng. 18(7), 075013 (2008).
[CrossRef]

Microelectron. Eng. (1)

J. Stodolka, D. Nau, M. Frommberger, C. Zanke, H. Giessen, E. Quandt, “Fabrication of two-dimensional hybrid photonic crystals utilizing electron beam lithography,” Microelectron. Eng. 78–79, 442–447 (2005).
[CrossRef]

Nano Lett. (2)

W. Srituravanich, N. Fang, C. Sun, Q. Luo, X. Zhang, “Plasmonic Nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

L. Wang, S. M. Uppuluri, E. X. Jin, X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. B (1)

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66(24), 245407 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

B. Auguié, W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[CrossRef] [PubMed]

Phys. Status Solidi (1)

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi 205(12), 2844–2861 (2008).
[CrossRef]

Proc. IEEE (1)

G. T. A. Kovacs, N. I. Maluf, K. E. Petersen, “Bulk micromachining of silicon,” Proc. IEEE 86(8), 1536–1551 (1998).
[CrossRef]

Proc. SPIE (1)

R. A. Norwood, L. A. Whitney, “Rapid and accurate measurements of photoresist refractive index dispersion using the prism coupling method,” Proc. SPIE 2725, 273–280 (1996).
[CrossRef]

Sens. Actuator A-Phys. (1)

I. Barycka, I. Zubel, “Silicon anisotropic etching in KOH-isopropanol etchant,” Sens. Actuator A-Phys. 48(3), 229–238 (1995).
[CrossRef]

Thin Solid Films (1)

C. H. Chen, Y. C. Lee, “Fabrication of metallic micro/nano-particles by surface patterning and pulsed laser annealing,” Thin Solid Films 518(17), 4786–4790 (2010).
[CrossRef]

Other (2)

http://www.minuta.co.kr/products/products_mold_template.html (Accessed February 5, 2014)

http://www.everlightchemical-ecbu.com/EN/product_detail.asp?seq=70 (Accessed February 5, 2014)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Silicon mold with an hexagonal array of pyramidal micro-cavities after silicon bulk machining on a (100) silicon crystal using a patterned silicon nitride (Si3N4) film as the etching mask; (a) the hole-arrayed pattern design of the Si3N4 film, and (b) the cross-sectional SEM image of the etched micro-cavities with an inverted pyramidal shape.

Fig. 2
Fig. 2

Flow diagram of making a carbon-black-PR-coated PUA/PET mold, which can be used as a photo-mask for UV patterning at sub-micrometer scale.

Fig. 3
Fig. 3

The SEM images of (a) a PUA/PET mold containing a hexagonal array of micro-pyramids negatively replicated from a silicon mold, and after being spin-coated with a carbon-black PR (b) the cross-section view of a PUA micro-pyramid covered by a carbon-black PR layer.

Fig. 4
Fig. 4

Simulation of UV light intensity distribution during UV exposure of a carbon-black-PR/PUA/PET hybrid photo-mask on top of a 100 nm thick AZ1500 PR layer coated on a glass substrate; (a) a cross-sectional view of the 3D model and (b) the UV light intensity distribution.

Fig. 5
Fig. 5

SEM images of obtained metallic nano-dot arrays after UV patterning using the carbon-black-PR/PUA/PET photo-mask and a metal lift-off process; the average dot diameter is (a) 400 nm and (b) 500 nm.

Fig. 6
Fig. 6

Optical transmission coefficients of glass plates patterned with metallic arrayed dots with an average dot diameter of (a) 400 nm and (b) 500 nm.

Fig. 7
Fig. 7

(a) The model created by the FEM software for simulating the transmission of a normally incident plane EM wave. (b) The magnitude of the electric field at a resonant frequency.

Metrics