Abstract

A type of tunable femtosecond soliton logic gate based on fiber Raman Self-Frequency Shift (SFS) is studied in this paper. The Raman SFSs of femtosecond solitons governed by the Newton’s cradle mechanism in logic gate are analyzed with an Improved Split-Step Fast Fourier Transform (ISSFFT) algorithm. The impact factors of the solitonic pulse frequency shift and temporal time shift, which are included the Third-Order Dispersion (TOD) effect, are investigated. The existing theoretical equation of SFS is modified into a new expression for this type of soliton logic gate. A lower switching power and the small size of the soliton logic gate device is designed to realize the logic functions of AND, NOT, and XOR. The results demonstrate that the logic gate based on SFS is belonged to the asynchronous system and can be achieved with Milli-Watt switching power and good extinction ratio. ISSFFT is effective and accurately to analyze higher-order dispersive and nonlinear effects in the logic gates.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, S. H. Kim, “All-optical xor gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
    [CrossRef]
  2. K. Chan, C.-K. Chan, L. K. Chen, F. Tong, “Demonstration of 20-gb/s all-optical xor gate by four-wave mixing in semiconductor optical amplifier with rz-dpsk modulated inputs,” IEEE Photon. Technol. Lett. 16, 897–899 (2004).
    [CrossRef]
  3. J. M. Dailey, S. K. Ibrahim, R. J. Manning, R. P. Webb, S. Lardenois, G. D. Maxwell, A. J. Poustie, “42.6 gbit/s fully integrated all-optical xor gate,” Electron. Lett. 45, 1047–1049 (2009).
    [CrossRef]
  4. R. Webb, R. Manning, G. Maxwell, A. Poustie, “40 gbit/s all-optical xor gate based on hybrid-integrated mach-zehnder interferometer,” Electron. Lett. 39, 79–81 (2003).
    [CrossRef]
  5. S. Randel, A. M. de Melo, K. Petermann, V. Marembert, C. Schubert, “Novel scheme for ultrafast all-optical xor operation,” J. Lightwave Technol. 22, 2808–2815 (2004).
    [CrossRef]
  6. I. Kang, M. Rasras, L. Buhl, M. Dinu, S. Cabot, M. Cappuzzo, L. Gomez, Y. Chen, S. Patel, N. Dutta, “All-optical xor and xnor operations at 86.4 gb/s using a pair of semiconductor optical amplifier mach-zehnder interferometers,” Opt. Express 17, 19062–19066 (2009).
    [CrossRef]
  7. Y. Feng, X. Zhao, L. Wang, C. Lou, “High-performance all-optical or/nor logic gate in a single semiconductor optical amplifier with delay interference filtering,” Appl. Opt. 48, 2638–2641 (2009).
    [CrossRef] [PubMed]
  8. C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, A. E. Willner, “All-optical xor gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17, 1232–1234 (2005).
    [CrossRef]
  9. J. Wang, Q. Sun, J. Sun, “All-optical 40 gbit/s csrz-dpsk logic xor gate and format conversion using four-wave mixing,” Opt. Express 17, 12555–12563 (2009).
    [CrossRef] [PubMed]
  10. B.-E. Olsson, P. A. Andrekson, “Polarization-independent all-optical and-gate using randomly birefringent fiber in a nonlinear optical loop mirror,” in “Optical Fiber Communication Conference and Exhibit, 1998. OFC’98., Technical Digest,” (IEEE), pp. 375–376.
  11. R. Radhakrishnan, M. Lakshmanan, J. Hietarinta, “Inelastic collision and switching of coupled bright solitons in optical fibers,” Phys. Rev. E 56, 2213–2216 (1997).
    [CrossRef]
  12. O. V. Kolokoltsev, R. Salas, V. Vountesmeri, “All-optical phase-independent logic elements based on phase shift induced by coherent soliton collisions,” J. Lightwave Technol. 20, 1048 (2002).
    [CrossRef]
  13. M. Peccianti, C. Conti, G. Assanto, A. De Luca, C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
    [CrossRef]
  14. M. N. Islam, C. E. Soccolich, D. A. Miller, “Low-energy ultrafast fiber soliton logic gates,” Opt. Lett. 15, 909–911 (1990).
    [CrossRef] [PubMed]
  15. M. W. Chbat, B. Hong, M. N. Islam, C. E. Soccolich, P. R. Prucnal, “Ultrafast soliton-trapping and gate,” J. Lightwave Technol. 10, 2011–2016 (1992).
    [CrossRef]
  16. K. Steiglitz, “Time-gated manakov spatial solitons are computationally universal,” Phys. Rev. E 63, 016608(2001).
    [CrossRef]
  17. D. Taverner, N. Broderick, D. Richardson, M. Ibsen, R. Laming, “All-optical and gate based on coupled gap-soliton formation in a fiber bragg grating,” Opt. Lett. 23, 259–261 (1998).
    [CrossRef]
  18. Y. P. Shapira, M. Horowitz, “Optical and gate based on soliton interaction in a fiber bragg grating,” Opt. Lett. 32, 1211–1213 (2007).
    [CrossRef] [PubMed]
  19. J. Scheuer, M. Orenstein, “All-optical gates facilitated by soliton interactions in a multilayered kerr medium,” JOSA B 22, 1260–1267 (2005).
    [CrossRef]
  20. S. V. Serak, N. V. Tabiryan, M. Peccianti, G. Assanto, “Spatial soliton all-optical logic gates,” IEEE Photon. Technol. Lett. 18, 1287–1289 (2006).
    [CrossRef]
  21. G. Agrawal, Nonlinear Fiber Optics Principles and Applications (Electronic Industry Press, 2002).
  22. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
    [CrossRef] [PubMed]
  23. F. M. Mitschke, L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
    [CrossRef] [PubMed]
  24. C. L. Hagen, J. W. Walewski, S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping zblan fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
    [CrossRef]
  25. C. Xu, X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28, 986–988 (2003).
    [CrossRef] [PubMed]
  26. S. Oda, A. Maruta, “All-optical tunable delay line based on soliton self-frequency shift and filtering broadened spectrum due to self-phase modulation,” Opt. Express 14, 7895–7902 (2006).
    [CrossRef] [PubMed]
  27. J. H. Lee, J. van Howe, C. Xu, X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Select. Topics in Quantum Electron. 14, 713–723 (2008).
    [CrossRef]
  28. J. Lucek, K. Blow, “Optical-intensity dependent switching using soliton self-frequency shift,” Electron. Lett. 27, 882–884 (1991).
    [CrossRef]
  29. A. Bendahmane, O. Vanvincq, A. Mussot, A. Kudlinski, “Control of the soliton self-frequency shift dynamics using topographic optical fibers,” Opt. Lett. 38, 3390–3393 (2013).
    [CrossRef] [PubMed]
  30. R. Driben, B. A. Malomed, “Generation of tightly compressed solitons with a tunable frequency shift in raman-free fibers,” Opt. Lett. 38, 3623–3626 (2013).
    [CrossRef] [PubMed]
  31. K. Zhe, Y. Jin-Hui, L. Sha, X. Song-Lin, Y. Bin-Bin, S. Xin-Zhu, Y. Chong-Xiu, “Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques,” Chin. Phy. B. 22, 114211 (2013).
    [CrossRef]
  32. B. Memarzadeh Isfahani, T. Ahamdi Tameh, N. Granpayeh, A. R. Maleki Javan, “All-optical nor gate based on nonlinear photonic crystal microring resonators,” JOSA B 26, 1097–1102 (2009).
    [CrossRef]
  33. P. Andalib, N. Granpayeh, “All-optical ultracompact photonic crystal and gate based on nonlinear ring resonators,” JOSA B 26, 10–16 (2009).
    [CrossRef]
  34. T. Lakoba, D. Kaup, “Influence of the raman effect on dispersion-managed solitons and their interchannel collisions,” Opt. Lett. 24, 808–810 (1999).
    [CrossRef]
  35. A. Zheltikov, “Perturbative analytical treatment of adiabatically moderated soliton self-frequency shift,” Phys. Rev. E 75, 037603 (2007).
    [CrossRef]
  36. D. Skryabin, F. Luan, J. Knight, P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
    [CrossRef] [PubMed]
  37. R. Driben, B. Malomed, A. Yulin, D. Skryabin, “Newton’s cradles in optics: From n-soliton fission to soliton chains,” Phys. Rev. A 87, 063808 (2013).
    [CrossRef]
  38. A. A. Voronin, A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33, 1723–1725 (2008).
    [CrossRef] [PubMed]
  39. P. Mamyshev, L. Mollenauer, “Stability of soliton propagation with sliding-frequency guiding filters,” Opt. Lett. 19, 2083–2085 (1994).
    [CrossRef] [PubMed]
  40. O. V. Sinkin, R. Holzlhner, J. Zweck, C. R. Menyuk, “Optimization of the split-step fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol. 21, 61 (2003).
    [CrossRef]
  41. M. Ablowitz, H. Segur, “Solitons, nonlinear evolution equations and inverse scattering. by m. j,” J. Fluid Mech 244, 721–725 (1992).
  42. A. Nakamura, “A direct method of calculating periodic wave solutions to nonlinear evolution equations. ii. exact one-and two-periodic wave solution of the coupled bilinear equations,” Journal of the Physical Society of Japan 48, 1365–1370 (1980).
    [CrossRef]
  43. C. Luo, M. Ibanescu, S. G. Johnson, J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
    [CrossRef] [PubMed]

2013 (4)

A. Bendahmane, O. Vanvincq, A. Mussot, A. Kudlinski, “Control of the soliton self-frequency shift dynamics using topographic optical fibers,” Opt. Lett. 38, 3390–3393 (2013).
[CrossRef] [PubMed]

R. Driben, B. A. Malomed, “Generation of tightly compressed solitons with a tunable frequency shift in raman-free fibers,” Opt. Lett. 38, 3623–3626 (2013).
[CrossRef] [PubMed]

K. Zhe, Y. Jin-Hui, L. Sha, X. Song-Lin, Y. Bin-Bin, S. Xin-Zhu, Y. Chong-Xiu, “Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques,” Chin. Phy. B. 22, 114211 (2013).
[CrossRef]

R. Driben, B. Malomed, A. Yulin, D. Skryabin, “Newton’s cradles in optics: From n-soliton fission to soliton chains,” Phys. Rev. A 87, 063808 (2013).
[CrossRef]

2009 (6)

B. Memarzadeh Isfahani, T. Ahamdi Tameh, N. Granpayeh, A. R. Maleki Javan, “All-optical nor gate based on nonlinear photonic crystal microring resonators,” JOSA B 26, 1097–1102 (2009).
[CrossRef]

P. Andalib, N. Granpayeh, “All-optical ultracompact photonic crystal and gate based on nonlinear ring resonators,” JOSA B 26, 10–16 (2009).
[CrossRef]

J. M. Dailey, S. K. Ibrahim, R. J. Manning, R. P. Webb, S. Lardenois, G. D. Maxwell, A. J. Poustie, “42.6 gbit/s fully integrated all-optical xor gate,” Electron. Lett. 45, 1047–1049 (2009).
[CrossRef]

I. Kang, M. Rasras, L. Buhl, M. Dinu, S. Cabot, M. Cappuzzo, L. Gomez, Y. Chen, S. Patel, N. Dutta, “All-optical xor and xnor operations at 86.4 gb/s using a pair of semiconductor optical amplifier mach-zehnder interferometers,” Opt. Express 17, 19062–19066 (2009).
[CrossRef]

Y. Feng, X. Zhao, L. Wang, C. Lou, “High-performance all-optical or/nor logic gate in a single semiconductor optical amplifier with delay interference filtering,” Appl. Opt. 48, 2638–2641 (2009).
[CrossRef] [PubMed]

J. Wang, Q. Sun, J. Sun, “All-optical 40 gbit/s csrz-dpsk logic xor gate and format conversion using four-wave mixing,” Opt. Express 17, 12555–12563 (2009).
[CrossRef] [PubMed]

2008 (2)

A. A. Voronin, A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33, 1723–1725 (2008).
[CrossRef] [PubMed]

J. H. Lee, J. van Howe, C. Xu, X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Select. Topics in Quantum Electron. 14, 713–723 (2008).
[CrossRef]

2007 (2)

A. Zheltikov, “Perturbative analytical treatment of adiabatically moderated soliton self-frequency shift,” Phys. Rev. E 75, 037603 (2007).
[CrossRef]

Y. P. Shapira, M. Horowitz, “Optical and gate based on soliton interaction in a fiber bragg grating,” Opt. Lett. 32, 1211–1213 (2007).
[CrossRef] [PubMed]

2006 (3)

S. V. Serak, N. V. Tabiryan, M. Peccianti, G. Assanto, “Spatial soliton all-optical logic gates,” IEEE Photon. Technol. Lett. 18, 1287–1289 (2006).
[CrossRef]

C. L. Hagen, J. W. Walewski, S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping zblan fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[CrossRef]

S. Oda, A. Maruta, “All-optical tunable delay line based on soliton self-frequency shift and filtering broadened spectrum due to self-phase modulation,” Opt. Express 14, 7895–7902 (2006).
[CrossRef] [PubMed]

2005 (2)

J. Scheuer, M. Orenstein, “All-optical gates facilitated by soliton interactions in a multilayered kerr medium,” JOSA B 22, 1260–1267 (2005).
[CrossRef]

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, A. E. Willner, “All-optical xor gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17, 1232–1234 (2005).
[CrossRef]

2004 (2)

K. Chan, C.-K. Chan, L. K. Chen, F. Tong, “Demonstration of 20-gb/s all-optical xor gate by four-wave mixing in semiconductor optical amplifier with rz-dpsk modulated inputs,” IEEE Photon. Technol. Lett. 16, 897–899 (2004).
[CrossRef]

S. Randel, A. M. de Melo, K. Petermann, V. Marembert, C. Schubert, “Novel scheme for ultrafast all-optical xor operation,” J. Lightwave Technol. 22, 2808–2815 (2004).
[CrossRef]

2003 (5)

R. Webb, R. Manning, G. Maxwell, A. Poustie, “40 gbit/s all-optical xor gate based on hybrid-integrated mach-zehnder interferometer,” Electron. Lett. 39, 79–81 (2003).
[CrossRef]

C. Xu, X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28, 986–988 (2003).
[CrossRef] [PubMed]

D. Skryabin, F. Luan, J. Knight, P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

O. V. Sinkin, R. Holzlhner, J. Zweck, C. R. Menyuk, “Optimization of the split-step fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol. 21, 61 (2003).
[CrossRef]

C. Luo, M. Ibanescu, S. G. Johnson, J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
[CrossRef] [PubMed]

2002 (3)

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, S. H. Kim, “All-optical xor gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
[CrossRef]

O. V. Kolokoltsev, R. Salas, V. Vountesmeri, “All-optical phase-independent logic elements based on phase shift induced by coherent soliton collisions,” J. Lightwave Technol. 20, 1048 (2002).
[CrossRef]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[CrossRef]

2001 (1)

K. Steiglitz, “Time-gated manakov spatial solitons are computationally universal,” Phys. Rev. E 63, 016608(2001).
[CrossRef]

1999 (1)

1998 (1)

1997 (1)

R. Radhakrishnan, M. Lakshmanan, J. Hietarinta, “Inelastic collision and switching of coupled bright solitons in optical fibers,” Phys. Rev. E 56, 2213–2216 (1997).
[CrossRef]

1994 (1)

1992 (2)

M. Ablowitz, H. Segur, “Solitons, nonlinear evolution equations and inverse scattering. by m. j,” J. Fluid Mech 244, 721–725 (1992).

M. W. Chbat, B. Hong, M. N. Islam, C. E. Soccolich, P. R. Prucnal, “Ultrafast soliton-trapping and gate,” J. Lightwave Technol. 10, 2011–2016 (1992).
[CrossRef]

1991 (1)

J. Lucek, K. Blow, “Optical-intensity dependent switching using soliton self-frequency shift,” Electron. Lett. 27, 882–884 (1991).
[CrossRef]

1990 (1)

1986 (2)

1980 (1)

A. Nakamura, “A direct method of calculating periodic wave solutions to nonlinear evolution equations. ii. exact one-and two-periodic wave solution of the coupled bilinear equations,” Journal of the Physical Society of Japan 48, 1365–1370 (1980).
[CrossRef]

Ablowitz, M.

M. Ablowitz, H. Segur, “Solitons, nonlinear evolution equations and inverse scattering. by m. j,” J. Fluid Mech 244, 721–725 (1992).

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics Principles and Applications (Electronic Industry Press, 2002).

Ahamdi Tameh, T.

B. Memarzadeh Isfahani, T. Ahamdi Tameh, N. Granpayeh, A. R. Maleki Javan, “All-optical nor gate based on nonlinear photonic crystal microring resonators,” JOSA B 26, 1097–1102 (2009).
[CrossRef]

Andalib, P.

P. Andalib, N. Granpayeh, “All-optical ultracompact photonic crystal and gate based on nonlinear ring resonators,” JOSA B 26, 10–16 (2009).
[CrossRef]

Andrekson, P. A.

B.-E. Olsson, P. A. Andrekson, “Polarization-independent all-optical and-gate using randomly birefringent fiber in a nonlinear optical loop mirror,” in “Optical Fiber Communication Conference and Exhibit, 1998. OFC’98., Technical Digest,” (IEEE), pp. 375–376.

Assanto, G.

S. V. Serak, N. V. Tabiryan, M. Peccianti, G. Assanto, “Spatial soliton all-optical logic gates,” IEEE Photon. Technol. Lett. 18, 1287–1289 (2006).
[CrossRef]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[CrossRef]

Bendahmane, A.

Bin-Bin, Y.

K. Zhe, Y. Jin-Hui, L. Sha, X. Song-Lin, Y. Bin-Bin, S. Xin-Zhu, Y. Chong-Xiu, “Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques,” Chin. Phy. B. 22, 114211 (2013).
[CrossRef]

Blow, K.

J. Lucek, K. Blow, “Optical-intensity dependent switching using soliton self-frequency shift,” Electron. Lett. 27, 882–884 (1991).
[CrossRef]

Broderick, N.

Buhl, L.

Byun, Y. T.

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, S. H. Kim, “All-optical xor gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
[CrossRef]

Cabot, S.

Cappuzzo, M.

Chan, C.-K.

K. Chan, C.-K. Chan, L. K. Chen, F. Tong, “Demonstration of 20-gb/s all-optical xor gate by four-wave mixing in semiconductor optical amplifier with rz-dpsk modulated inputs,” IEEE Photon. Technol. Lett. 16, 897–899 (2004).
[CrossRef]

Chan, K.

K. Chan, C.-K. Chan, L. K. Chen, F. Tong, “Demonstration of 20-gb/s all-optical xor gate by four-wave mixing in semiconductor optical amplifier with rz-dpsk modulated inputs,” IEEE Photon. Technol. Lett. 16, 897–899 (2004).
[CrossRef]

Chbat, M. W.

M. W. Chbat, B. Hong, M. N. Islam, C. E. Soccolich, P. R. Prucnal, “Ultrafast soliton-trapping and gate,” J. Lightwave Technol. 10, 2011–2016 (1992).
[CrossRef]

Chen, L. K.

K. Chan, C.-K. Chan, L. K. Chen, F. Tong, “Demonstration of 20-gb/s all-optical xor gate by four-wave mixing in semiconductor optical amplifier with rz-dpsk modulated inputs,” IEEE Photon. Technol. Lett. 16, 897–899 (2004).
[CrossRef]

Chen, Y.

Chong-Xiu, Y.

K. Zhe, Y. Jin-Hui, L. Sha, X. Song-Lin, Y. Bin-Bin, S. Xin-Zhu, Y. Chong-Xiu, “Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques,” Chin. Phy. B. 22, 114211 (2013).
[CrossRef]

Christen, L.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, A. E. Willner, “All-optical xor gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17, 1232–1234 (2005).
[CrossRef]

Conti, C.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[CrossRef]

Dailey, J. M.

J. M. Dailey, S. K. Ibrahim, R. J. Manning, R. P. Webb, S. Lardenois, G. D. Maxwell, A. J. Poustie, “42.6 gbit/s fully integrated all-optical xor gate,” Electron. Lett. 45, 1047–1049 (2009).
[CrossRef]

De Luca, A.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[CrossRef]

de Melo, A. M.

Dinu, M.

Driben, R.

R. Driben, B. Malomed, A. Yulin, D. Skryabin, “Newton’s cradles in optics: From n-soliton fission to soliton chains,” Phys. Rev. A 87, 063808 (2013).
[CrossRef]

R. Driben, B. A. Malomed, “Generation of tightly compressed solitons with a tunable frequency shift in raman-free fibers,” Opt. Lett. 38, 3623–3626 (2013).
[CrossRef] [PubMed]

Dutta, N.

Feng, Y.

Gomez, L.

Gordon, J. P.

Granpayeh, N.

P. Andalib, N. Granpayeh, “All-optical ultracompact photonic crystal and gate based on nonlinear ring resonators,” JOSA B 26, 10–16 (2009).
[CrossRef]

B. Memarzadeh Isfahani, T. Ahamdi Tameh, N. Granpayeh, A. R. Maleki Javan, “All-optical nor gate based on nonlinear photonic crystal microring resonators,” JOSA B 26, 1097–1102 (2009).
[CrossRef]

Hagen, C. L.

C. L. Hagen, J. W. Walewski, S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping zblan fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[CrossRef]

Hietarinta, J.

R. Radhakrishnan, M. Lakshmanan, J. Hietarinta, “Inelastic collision and switching of coupled bright solitons in optical fibers,” Phys. Rev. E 56, 2213–2216 (1997).
[CrossRef]

Holzlhner, R.

Hong, B.

M. W. Chbat, B. Hong, M. N. Islam, C. E. Soccolich, P. R. Prucnal, “Ultrafast soliton-trapping and gate,” J. Lightwave Technol. 10, 2011–2016 (1992).
[CrossRef]

Horowitz, M.

Ibanescu, M.

C. Luo, M. Ibanescu, S. G. Johnson, J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
[CrossRef] [PubMed]

Ibrahim, S. K.

J. M. Dailey, S. K. Ibrahim, R. J. Manning, R. P. Webb, S. Lardenois, G. D. Maxwell, A. J. Poustie, “42.6 gbit/s fully integrated all-optical xor gate,” Electron. Lett. 45, 1047–1049 (2009).
[CrossRef]

Ibsen, M.

Islam, M. N.

M. W. Chbat, B. Hong, M. N. Islam, C. E. Soccolich, P. R. Prucnal, “Ultrafast soliton-trapping and gate,” J. Lightwave Technol. 10, 2011–2016 (1992).
[CrossRef]

M. N. Islam, C. E. Soccolich, D. A. Miller, “Low-energy ultrafast fiber soliton logic gates,” Opt. Lett. 15, 909–911 (1990).
[CrossRef] [PubMed]

Jhon, Y. M.

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, S. H. Kim, “All-optical xor gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
[CrossRef]

Jin-Hui, Y.

K. Zhe, Y. Jin-Hui, L. Sha, X. Song-Lin, Y. Bin-Bin, S. Xin-Zhu, Y. Chong-Xiu, “Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques,” Chin. Phy. B. 22, 114211 (2013).
[CrossRef]

Joannopoulos, J. D.

C. Luo, M. Ibanescu, S. G. Johnson, J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
[CrossRef] [PubMed]

Johnson, S. G.

C. Luo, M. Ibanescu, S. G. Johnson, J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
[CrossRef] [PubMed]

Kang, I.

Kaup, D.

Kim, J. H.

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, S. H. Kim, “All-optical xor gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
[CrossRef]

Kim, S. H.

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, S. H. Kim, “All-optical xor gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
[CrossRef]

Knight, J.

D. Skryabin, F. Luan, J. Knight, P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Kolokoltsev, O. V.

Kudlinski, A.

Lakoba, T.

Lakshmanan, M.

R. Radhakrishnan, M. Lakshmanan, J. Hietarinta, “Inelastic collision and switching of coupled bright solitons in optical fibers,” Phys. Rev. E 56, 2213–2216 (1997).
[CrossRef]

Laming, R.

Lardenois, S.

J. M. Dailey, S. K. Ibrahim, R. J. Manning, R. P. Webb, S. Lardenois, G. D. Maxwell, A. J. Poustie, “42.6 gbit/s fully integrated all-optical xor gate,” Electron. Lett. 45, 1047–1049 (2009).
[CrossRef]

Lee, J. H.

J. H. Lee, J. van Howe, C. Xu, X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Select. Topics in Quantum Electron. 14, 713–723 (2008).
[CrossRef]

Lee, S.

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, S. H. Kim, “All-optical xor gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
[CrossRef]

Liu, X.

J. H. Lee, J. van Howe, C. Xu, X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Select. Topics in Quantum Electron. 14, 713–723 (2008).
[CrossRef]

C. Xu, X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28, 986–988 (2003).
[CrossRef] [PubMed]

Lou, C.

Luan, F.

D. Skryabin, F. Luan, J. Knight, P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Lucek, J.

J. Lucek, K. Blow, “Optical-intensity dependent switching using soliton self-frequency shift,” Electron. Lett. 27, 882–884 (1991).
[CrossRef]

Luo, C.

C. Luo, M. Ibanescu, S. G. Johnson, J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
[CrossRef] [PubMed]

Luo, T.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, A. E. Willner, “All-optical xor gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17, 1232–1234 (2005).
[CrossRef]

Maleki Javan, A. R.

B. Memarzadeh Isfahani, T. Ahamdi Tameh, N. Granpayeh, A. R. Maleki Javan, “All-optical nor gate based on nonlinear photonic crystal microring resonators,” JOSA B 26, 1097–1102 (2009).
[CrossRef]

Malomed, B.

R. Driben, B. Malomed, A. Yulin, D. Skryabin, “Newton’s cradles in optics: From n-soliton fission to soliton chains,” Phys. Rev. A 87, 063808 (2013).
[CrossRef]

Malomed, B. A.

Mamyshev, P.

Manning, R.

R. Webb, R. Manning, G. Maxwell, A. Poustie, “40 gbit/s all-optical xor gate based on hybrid-integrated mach-zehnder interferometer,” Electron. Lett. 39, 79–81 (2003).
[CrossRef]

Manning, R. J.

J. M. Dailey, S. K. Ibrahim, R. J. Manning, R. P. Webb, S. Lardenois, G. D. Maxwell, A. J. Poustie, “42.6 gbit/s fully integrated all-optical xor gate,” Electron. Lett. 45, 1047–1049 (2009).
[CrossRef]

Marembert, V.

Maruta, A.

Maxwell, G.

R. Webb, R. Manning, G. Maxwell, A. Poustie, “40 gbit/s all-optical xor gate based on hybrid-integrated mach-zehnder interferometer,” Electron. Lett. 39, 79–81 (2003).
[CrossRef]

Maxwell, G. D.

J. M. Dailey, S. K. Ibrahim, R. J. Manning, R. P. Webb, S. Lardenois, G. D. Maxwell, A. J. Poustie, “42.6 gbit/s fully integrated all-optical xor gate,” Electron. Lett. 45, 1047–1049 (2009).
[CrossRef]

Memarzadeh Isfahani, B.

B. Memarzadeh Isfahani, T. Ahamdi Tameh, N. Granpayeh, A. R. Maleki Javan, “All-optical nor gate based on nonlinear photonic crystal microring resonators,” JOSA B 26, 1097–1102 (2009).
[CrossRef]

Menyuk, C. R.

Miller, D. A.

Mitschke, F. M.

Mollenauer, L.

Mollenauer, L. F.

Mussot, A.

Nakamura, A.

A. Nakamura, “A direct method of calculating periodic wave solutions to nonlinear evolution equations. ii. exact one-and two-periodic wave solution of the coupled bilinear equations,” Journal of the Physical Society of Japan 48, 1365–1370 (1980).
[CrossRef]

Oda, S.

Olsson, B.-E.

B.-E. Olsson, P. A. Andrekson, “Polarization-independent all-optical and-gate using randomly birefringent fiber in a nonlinear optical loop mirror,” in “Optical Fiber Communication Conference and Exhibit, 1998. OFC’98., Technical Digest,” (IEEE), pp. 375–376.

Orenstein, M.

J. Scheuer, M. Orenstein, “All-optical gates facilitated by soliton interactions in a multilayered kerr medium,” JOSA B 22, 1260–1267 (2005).
[CrossRef]

Pan, Z.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, A. E. Willner, “All-optical xor gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17, 1232–1234 (2005).
[CrossRef]

Patel, S.

Peccianti, M.

S. V. Serak, N. V. Tabiryan, M. Peccianti, G. Assanto, “Spatial soliton all-optical logic gates,” IEEE Photon. Technol. Lett. 18, 1287–1289 (2006).
[CrossRef]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[CrossRef]

Petermann, K.

Poustie, A.

R. Webb, R. Manning, G. Maxwell, A. Poustie, “40 gbit/s all-optical xor gate based on hybrid-integrated mach-zehnder interferometer,” Electron. Lett. 39, 79–81 (2003).
[CrossRef]

Poustie, A. J.

J. M. Dailey, S. K. Ibrahim, R. J. Manning, R. P. Webb, S. Lardenois, G. D. Maxwell, A. J. Poustie, “42.6 gbit/s fully integrated all-optical xor gate,” Electron. Lett. 45, 1047–1049 (2009).
[CrossRef]

Prucnal, P. R.

M. W. Chbat, B. Hong, M. N. Islam, C. E. Soccolich, P. R. Prucnal, “Ultrafast soliton-trapping and gate,” J. Lightwave Technol. 10, 2011–2016 (1992).
[CrossRef]

Radhakrishnan, R.

R. Radhakrishnan, M. Lakshmanan, J. Hietarinta, “Inelastic collision and switching of coupled bright solitons in optical fibers,” Phys. Rev. E 56, 2213–2216 (1997).
[CrossRef]

Randel, S.

Rasras, M.

Richardson, D.

Russell, P. S. J.

D. Skryabin, F. Luan, J. Knight, P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Salas, R.

Sanders, S. T.

C. L. Hagen, J. W. Walewski, S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping zblan fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[CrossRef]

Scheuer, J.

J. Scheuer, M. Orenstein, “All-optical gates facilitated by soliton interactions in a multilayered kerr medium,” JOSA B 22, 1260–1267 (2005).
[CrossRef]

Schubert, C.

Segur, H.

M. Ablowitz, H. Segur, “Solitons, nonlinear evolution equations and inverse scattering. by m. j,” J. Fluid Mech 244, 721–725 (1992).

Serak, S. V.

S. V. Serak, N. V. Tabiryan, M. Peccianti, G. Assanto, “Spatial soliton all-optical logic gates,” IEEE Photon. Technol. Lett. 18, 1287–1289 (2006).
[CrossRef]

Sha, L.

K. Zhe, Y. Jin-Hui, L. Sha, X. Song-Lin, Y. Bin-Bin, S. Xin-Zhu, Y. Chong-Xiu, “Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques,” Chin. Phy. B. 22, 114211 (2013).
[CrossRef]

Shapira, Y. P.

Sinkin, O. V.

Skryabin, D.

R. Driben, B. Malomed, A. Yulin, D. Skryabin, “Newton’s cradles in optics: From n-soliton fission to soliton chains,” Phys. Rev. A 87, 063808 (2013).
[CrossRef]

D. Skryabin, F. Luan, J. Knight, P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Soccolich, C. E.

M. W. Chbat, B. Hong, M. N. Islam, C. E. Soccolich, P. R. Prucnal, “Ultrafast soliton-trapping and gate,” J. Lightwave Technol. 10, 2011–2016 (1992).
[CrossRef]

M. N. Islam, C. E. Soccolich, D. A. Miller, “Low-energy ultrafast fiber soliton logic gates,” Opt. Lett. 15, 909–911 (1990).
[CrossRef] [PubMed]

Song-Lin, X.

K. Zhe, Y. Jin-Hui, L. Sha, X. Song-Lin, Y. Bin-Bin, S. Xin-Zhu, Y. Chong-Xiu, “Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques,” Chin. Phy. B. 22, 114211 (2013).
[CrossRef]

Steiglitz, K.

K. Steiglitz, “Time-gated manakov spatial solitons are computationally universal,” Phys. Rev. E 63, 016608(2001).
[CrossRef]

Sun, J.

Sun, Q.

Tabiryan, N. V.

S. V. Serak, N. V. Tabiryan, M. Peccianti, G. Assanto, “Spatial soliton all-optical logic gates,” IEEE Photon. Technol. Lett. 18, 1287–1289 (2006).
[CrossRef]

Taverner, D.

Tong, F.

K. Chan, C.-K. Chan, L. K. Chen, F. Tong, “Demonstration of 20-gb/s all-optical xor gate by four-wave mixing in semiconductor optical amplifier with rz-dpsk modulated inputs,” IEEE Photon. Technol. Lett. 16, 897–899 (2004).
[CrossRef]

Umeton, C.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[CrossRef]

van Howe, J.

J. H. Lee, J. van Howe, C. Xu, X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Select. Topics in Quantum Electron. 14, 713–723 (2008).
[CrossRef]

Vanvincq, O.

Voronin, A. A.

Vountesmeri, V.

Walewski, J. W.

C. L. Hagen, J. W. Walewski, S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping zblan fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[CrossRef]

Wang, J.

Wang, L.

Wang, Y.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, A. E. Willner, “All-optical xor gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17, 1232–1234 (2005).
[CrossRef]

Webb, R.

R. Webb, R. Manning, G. Maxwell, A. Poustie, “40 gbit/s all-optical xor gate based on hybrid-integrated mach-zehnder interferometer,” Electron. Lett. 39, 79–81 (2003).
[CrossRef]

Webb, R. P.

J. M. Dailey, S. K. Ibrahim, R. J. Manning, R. P. Webb, S. Lardenois, G. D. Maxwell, A. J. Poustie, “42.6 gbit/s fully integrated all-optical xor gate,” Electron. Lett. 45, 1047–1049 (2009).
[CrossRef]

Willner, A. E.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, A. E. Willner, “All-optical xor gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17, 1232–1234 (2005).
[CrossRef]

Woo, D. H.

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, S. H. Kim, “All-optical xor gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
[CrossRef]

Xin-Zhu, S.

K. Zhe, Y. Jin-Hui, L. Sha, X. Song-Lin, Y. Bin-Bin, S. Xin-Zhu, Y. Chong-Xiu, “Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques,” Chin. Phy. B. 22, 114211 (2013).
[CrossRef]

Xu, C.

J. H. Lee, J. van Howe, C. Xu, X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Select. Topics in Quantum Electron. 14, 713–723 (2008).
[CrossRef]

C. Xu, X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28, 986–988 (2003).
[CrossRef] [PubMed]

Yan, L.-S.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, A. E. Willner, “All-optical xor gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17, 1232–1234 (2005).
[CrossRef]

Yu, C.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, A. E. Willner, “All-optical xor gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17, 1232–1234 (2005).
[CrossRef]

Yulin, A.

R. Driben, B. Malomed, A. Yulin, D. Skryabin, “Newton’s cradles in optics: From n-soliton fission to soliton chains,” Phys. Rev. A 87, 063808 (2013).
[CrossRef]

Zhao, X.

Zhe, K.

K. Zhe, Y. Jin-Hui, L. Sha, X. Song-Lin, Y. Bin-Bin, S. Xin-Zhu, Y. Chong-Xiu, “Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques,” Chin. Phy. B. 22, 114211 (2013).
[CrossRef]

Zheltikov, A.

A. Zheltikov, “Perturbative analytical treatment of adiabatically moderated soliton self-frequency shift,” Phys. Rev. E 75, 037603 (2007).
[CrossRef]

Zheltikov, A. M.

Zweck, J.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Peccianti, C. Conti, G. Assanto, A. De Luca, C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[CrossRef]

Chin. Phy. B. (1)

K. Zhe, Y. Jin-Hui, L. Sha, X. Song-Lin, Y. Bin-Bin, S. Xin-Zhu, Y. Chong-Xiu, “Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques,” Chin. Phy. B. 22, 114211 (2013).
[CrossRef]

Electron. Lett. (3)

J. Lucek, K. Blow, “Optical-intensity dependent switching using soliton self-frequency shift,” Electron. Lett. 27, 882–884 (1991).
[CrossRef]

J. M. Dailey, S. K. Ibrahim, R. J. Manning, R. P. Webb, S. Lardenois, G. D. Maxwell, A. J. Poustie, “42.6 gbit/s fully integrated all-optical xor gate,” Electron. Lett. 45, 1047–1049 (2009).
[CrossRef]

R. Webb, R. Manning, G. Maxwell, A. Poustie, “40 gbit/s all-optical xor gate based on hybrid-integrated mach-zehnder interferometer,” Electron. Lett. 39, 79–81 (2003).
[CrossRef]

IEEE J. Select. Topics in Quantum Electron. (1)

J. H. Lee, J. van Howe, C. Xu, X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Select. Topics in Quantum Electron. 14, 713–723 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, A. E. Willner, “All-optical xor gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17, 1232–1234 (2005).
[CrossRef]

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, S. H. Kim, “All-optical xor gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002).
[CrossRef]

K. Chan, C.-K. Chan, L. K. Chen, F. Tong, “Demonstration of 20-gb/s all-optical xor gate by four-wave mixing in semiconductor optical amplifier with rz-dpsk modulated inputs,” IEEE Photon. Technol. Lett. 16, 897–899 (2004).
[CrossRef]

S. V. Serak, N. V. Tabiryan, M. Peccianti, G. Assanto, “Spatial soliton all-optical logic gates,” IEEE Photon. Technol. Lett. 18, 1287–1289 (2006).
[CrossRef]

C. L. Hagen, J. W. Walewski, S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping zblan fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006).
[CrossRef]

J. Fluid Mech (1)

M. Ablowitz, H. Segur, “Solitons, nonlinear evolution equations and inverse scattering. by m. j,” J. Fluid Mech 244, 721–725 (1992).

J. Lightwave Technol. (4)

JOSA B (3)

J. Scheuer, M. Orenstein, “All-optical gates facilitated by soliton interactions in a multilayered kerr medium,” JOSA B 22, 1260–1267 (2005).
[CrossRef]

B. Memarzadeh Isfahani, T. Ahamdi Tameh, N. Granpayeh, A. R. Maleki Javan, “All-optical nor gate based on nonlinear photonic crystal microring resonators,” JOSA B 26, 1097–1102 (2009).
[CrossRef]

P. Andalib, N. Granpayeh, “All-optical ultracompact photonic crystal and gate based on nonlinear ring resonators,” JOSA B 26, 10–16 (2009).
[CrossRef]

Journal of the Physical Society of Japan (1)

A. Nakamura, “A direct method of calculating periodic wave solutions to nonlinear evolution equations. ii. exact one-and two-periodic wave solution of the coupled bilinear equations,” Journal of the Physical Society of Japan 48, 1365–1370 (1980).
[CrossRef]

Opt. Express (3)

Opt. Lett. (11)

M. N. Islam, C. E. Soccolich, D. A. Miller, “Low-energy ultrafast fiber soliton logic gates,” Opt. Lett. 15, 909–911 (1990).
[CrossRef] [PubMed]

A. Bendahmane, O. Vanvincq, A. Mussot, A. Kudlinski, “Control of the soliton self-frequency shift dynamics using topographic optical fibers,” Opt. Lett. 38, 3390–3393 (2013).
[CrossRef] [PubMed]

R. Driben, B. A. Malomed, “Generation of tightly compressed solitons with a tunable frequency shift in raman-free fibers,” Opt. Lett. 38, 3623–3626 (2013).
[CrossRef] [PubMed]

T. Lakoba, D. Kaup, “Influence of the raman effect on dispersion-managed solitons and their interchannel collisions,” Opt. Lett. 24, 808–810 (1999).
[CrossRef]

C. Xu, X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28, 986–988 (2003).
[CrossRef] [PubMed]

J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
[CrossRef] [PubMed]

F. M. Mitschke, L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
[CrossRef] [PubMed]

D. Taverner, N. Broderick, D. Richardson, M. Ibsen, R. Laming, “All-optical and gate based on coupled gap-soliton formation in a fiber bragg grating,” Opt. Lett. 23, 259–261 (1998).
[CrossRef]

Y. P. Shapira, M. Horowitz, “Optical and gate based on soliton interaction in a fiber bragg grating,” Opt. Lett. 32, 1211–1213 (2007).
[CrossRef] [PubMed]

A. A. Voronin, A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33, 1723–1725 (2008).
[CrossRef] [PubMed]

P. Mamyshev, L. Mollenauer, “Stability of soliton propagation with sliding-frequency guiding filters,” Opt. Lett. 19, 2083–2085 (1994).
[CrossRef] [PubMed]

Phys. Rev. A (1)

R. Driben, B. Malomed, A. Yulin, D. Skryabin, “Newton’s cradles in optics: From n-soliton fission to soliton chains,” Phys. Rev. A 87, 063808 (2013).
[CrossRef]

Phys. Rev. E (3)

A. Zheltikov, “Perturbative analytical treatment of adiabatically moderated soliton self-frequency shift,” Phys. Rev. E 75, 037603 (2007).
[CrossRef]

K. Steiglitz, “Time-gated manakov spatial solitons are computationally universal,” Phys. Rev. E 63, 016608(2001).
[CrossRef]

R. Radhakrishnan, M. Lakshmanan, J. Hietarinta, “Inelastic collision and switching of coupled bright solitons in optical fibers,” Phys. Rev. E 56, 2213–2216 (1997).
[CrossRef]

Science (2)

D. Skryabin, F. Luan, J. Knight, P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

C. Luo, M. Ibanescu, S. G. Johnson, J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
[CrossRef] [PubMed]

Other (2)

G. Agrawal, Nonlinear Fiber Optics Principles and Applications (Electronic Industry Press, 2002).

B.-E. Olsson, P. A. Andrekson, “Polarization-independent all-optical and-gate using randomly birefringent fiber in a nonlinear optical loop mirror,” in “Optical Fiber Communication Conference and Exhibit, 1998. OFC’98., Technical Digest,” (IEEE), pp. 375–376.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1:
Fig. 1:

The analysis on phase errors of ISSFFT and the fixed step size FFT method with the single step size errors along the different step sizes is shown in Fig. 1(a) and the higher order errors along the different transmission distances is shown in Fig. 1(b).

Fig. 2:
Fig. 2:

The evolutions of time and frequency domains about the first- and second-order of soliton simulated with ISSFFT method. The time-domain (a) and frequency-domain (b) of a first-order soliton pulse are calculated to show the effect of SFS and TOD. The fission of the second-order soliton in time-domain (c) and frequency domain (d) are caused by SFS.

Fig. 3:
Fig. 3:

The math fitting curves of the relationships between ΔωTOD with T0, z and β3, which are shown in (a), (b) and (c), respectively.

Fig. 4:
Fig. 4:

The pulse delay arisen from SFS in the time-domain. The first-order solitons without SFS and TOD effects have stably characteristic of transmission in (a), but there are time’s delay caused by the SFS and the TOD effects in (b).

Fig. 5:
Fig. 5:

The math fitting curves of the relationships among ΔτTOD and z, β3, in which (a) is the relationship between ΔτTOD and z and (b) is the relationship between ΔτTOD and β3.

Fig. 6:
Fig. 6:

The relationships between SFS with different powers and parameters of Raman response along with distance of PCF in SFS-based soliton logic gate

Fig. 7:
Fig. 7:

SFS-based soilton logic AND gate

Fig. 8:
Fig. 8:

The numerical results of signals in SFS-based soliton logic AND gate. The initial input signal pulse (a) and its spectrum (b) is sent into the logic AND gate. The pulse of input “01”, “10” and its spectrum after PCF are simulated in (c) and (d), respectively. The pulse of input “11” and its spectrum after PCF are simulated in (e) and (f), respectively. The logic ouput of “0” and “1” after SFGF are simulated in (g) and (h), respectively.

Fig. 9:
Fig. 9:

The numerical results of data flow in SFS-based all-optical soliton logic AND gate. The output of coupler, PCF and SFGF are simulated in (a), (b) and (c), respectively.

Fig. 10:
Fig. 10:

The numerical results of all-optical logic NOT gate. The spectrum of input “0” and “1” after PCF are simulated in (a) and (b), respectively. The output of PCF and SFGF in logic NOT gate is “01101010” and “10010101” simulated in (c) and (d), respectively.

Fig. 11:
Fig. 11:

The numerical results of all-optical logic XOR gate. The second-order soliton and its spectrum after PCF is simulated in (a) and (b). The output of SFGF in XOR operation is “11110101” shown in (c)

Tables (1)

Tables Icon

Table 1: Truth table of SFS-based soliton logic gate of AND, XOR, and NOT

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

i u ξ sgn ( β 2 ) 1 2 2 u τ 2 + | u | 2 u = i δ 3 3 u τ 3 i s τ ( | u | 2 u ) + τ R u | u | 2 τ
Δ ω R ( z ) = 8 | β 2 | T R z / ( 15 T 0 4 )
d Δ f d z = τ R T 0 2 ( 2 ln 2 π ) γ P 0 ( 1 + S 2 ) 1 / 2
Δ ω = 8 | β 2 | T R z / ( 15 T 0 4 ) + 7.9 T 0 7 Z 5 / 2 β 3 4 / 5
E out = 10 α 20 2 ( E in 1 + E in 2 )
P out = E out 2 = ( 1 2 P 0 ) 2 = 1 2 P 0
P out = E out 2 = ( 1 2 ( P 0 + P 0 ) ) 2 = 2 P 0
P out 0 = E out 2 = ( 1 2 2 P 0 ) 2 = P 0
P out 1 = E out 2 = ( 1 2 ( 2 P 0 + P s ) ) 2 = P 0 + 2 P 0 P s + 1 2 P s
( υ υ 0 ) T 0 = ( 193.1 THz 192.8 THz ) 0.2556 p s = 0.07668 .
( υ υ 0 ) T 0 = 8 | β 2 | T R z 15 T 0 3 = 8 × 20 × 0.002 × 0.06 15 × 0.2556 3 = 0.07665 .

Metrics