Abstract

The cavity resonant properties of planar metal-dielectric layered structures with optically dense dielectric media are studied with the aim of realizing omnidirectional and polarization-insensitive operation. The angle-dependent coupling between free-space and cavity modes are revealed to be a key leverage factor in realizing nearly perfect absorbers well-matched to a wide range of incidence angles. We establish comprehensive analyses of the relationship between the structural and optical properties by means of theoretical modeling with numerical simulation results. The presented work is expected to provide a simple and cost-effective solution for light absorption and detection applications that exploit planar metal-dielectric optical devices.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377 (1998).
    [CrossRef]
  2. K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
    [CrossRef] [PubMed]
  3. Y. Q. Ye, Y. Jin, S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
    [CrossRef]
  4. X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [CrossRef] [PubMed]
  5. S. Shu, Z. Li, Y. Y. Li, “Triple-layer Fabry-Perot absorber with near-perfect absorption in visible and near-infrared regime,” Opt. Express 21(21), 25307–25315 (2013).
    [CrossRef] [PubMed]
  6. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
    [CrossRef]
  7. D. Y. Lei, H. C. Ong, “Enhanced forward emission from ZnO via surface plasmons,” Appl. Phys. Lett. 91(21), 211107 (2007).
    [CrossRef]
  8. F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
    [CrossRef] [PubMed]
  9. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  10. M. A. Kats, R. Blanchard, P. Genevet, F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
    [CrossRef] [PubMed]
  11. H. Shin, M. F. Yanik, S. Fan, R. Zia, M. L. Brongersma, “Omnidirectional resonance in a metal–dielectric–metal geometry,” Appl. Phys. Lett. 84(22), 4421 (2004).
    [CrossRef]
  12. J. S. Q. Liu, M. L. Brongersma, “Omnidirectional light emission via surface plasmon polaritons,” Appl. Phys. Lett. 90(9), 091116 (2007).
    [CrossRef]
  13. A. Hosseini, Y. Massoud, “Optical range microcavities and filters using multiple dielectric layers in metal-insulator-metal structures,” J. Opt. Soc. Am. A 24(1), 221–224 (2007).
    [CrossRef] [PubMed]
  14. J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011).
    [CrossRef]
  15. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
    [CrossRef]
  16. P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37(6), 1038–1040 (2012).
    [CrossRef] [PubMed]
  17. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011).
    [CrossRef] [PubMed]
  18. W.-J. Lee, J.-B. You, K. Kwon, B. Park, K. Yu, “Direction-selective emission with small angular divergence from a subwavelength aperture using radiative waveguide modes,” Phys. Rev. B 87(12), 125108 (2013).
    [CrossRef]
  19. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985), Vol. 1.
  20. M. A. Gilmore, B. L. Johnson, “Forbidden guided-wave plasmon polaritons in coupled thin films,” J. Appl. Phys. 93(8), 4497–4504 (2003).
    [CrossRef]
  21. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  22. T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
    [CrossRef] [PubMed]
  23. M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
    [CrossRef]
  24. R. A. Soref, B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [CrossRef]

2013 (2)

S. Shu, Z. Li, Y. Y. Li, “Triple-layer Fabry-Perot absorber with near-perfect absorption in visible and near-infrared regime,” Opt. Express 21(21), 25307–25315 (2013).
[CrossRef] [PubMed]

W.-J. Lee, J.-B. You, K. Kwon, B. Park, K. Yu, “Direction-selective emission with small angular divergence from a subwavelength aperture using radiative waveguide modes,” Phys. Rev. B 87(12), 125108 (2013).
[CrossRef]

2012 (5)

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37(6), 1038–1040 (2012).
[CrossRef] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[CrossRef]

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[CrossRef] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[CrossRef] [PubMed]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[CrossRef]

2011 (4)

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[CrossRef] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011).
[CrossRef] [PubMed]

J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011).
[CrossRef]

2010 (3)

Y. Q. Ye, Y. Jin, S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
[CrossRef]

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

2008 (1)

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

2007 (3)

J. S. Q. Liu, M. L. Brongersma, “Omnidirectional light emission via surface plasmon polaritons,” Appl. Phys. Lett. 90(9), 091116 (2007).
[CrossRef]

A. Hosseini, Y. Massoud, “Optical range microcavities and filters using multiple dielectric layers in metal-insulator-metal structures,” J. Opt. Soc. Am. A 24(1), 221–224 (2007).
[CrossRef] [PubMed]

D. Y. Lei, H. C. Ong, “Enhanced forward emission from ZnO via surface plasmons,” Appl. Phys. Lett. 91(21), 211107 (2007).
[CrossRef]

2004 (1)

H. Shin, M. F. Yanik, S. Fan, R. Zia, M. L. Brongersma, “Omnidirectional resonance in a metal–dielectric–metal geometry,” Appl. Phys. Lett. 84(22), 4421 (2004).
[CrossRef]

2003 (1)

M. A. Gilmore, B. L. Johnson, “Forbidden guided-wave plasmon polaritons in coupled thin films,” J. Appl. Phys. 93(8), 4497–4504 (2003).
[CrossRef]

1998 (1)

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377 (1998).
[CrossRef]

1987 (1)

R. A. Soref, B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Abdelsalam, M.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Asano, T.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[CrossRef]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

Bai, W.

J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011).
[CrossRef]

Bartlett, P. N.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Basov, D.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[CrossRef]

Baumberg, J. J.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Bennett, B. R.

R. A. Soref, B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Bi, Y.

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[CrossRef] [PubMed]

Blanchard, R.

M. A. Kats, R. Blanchard, P. Genevet, F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[CrossRef] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[CrossRef]

Bloemer, M. J.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377 (1998).
[CrossRef]

Bokor, J.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[CrossRef] [PubMed]

Borisov, A. G.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Bouchon, P.

Bowden, C. M.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377 (1998).
[CrossRef]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

Brongersma, M. L.

J. S. Q. Liu, M. L. Brongersma, “Omnidirectional light emission via surface plasmon polaritons,” Appl. Phys. Lett. 90(9), 091116 (2007).
[CrossRef]

H. Shin, M. F. Yanik, S. Fan, R. Zia, M. L. Brongersma, “Omnidirectional resonance in a metal–dielectric–metal geometry,” Appl. Phys. Lett. 84(22), 4421 (2004).
[CrossRef]

Cabrini, S.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[CrossRef] [PubMed]

Cai, L.

J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011).
[CrossRef]

Capasso, F.

M. A. Kats, R. Blanchard, P. Genevet, F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[CrossRef] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[CrossRef]

Chen, X.

J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011).
[CrossRef]

Choo, H.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[CrossRef] [PubMed]

De Zoysa, M.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[CrossRef]

Dhuey, S.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[CrossRef] [PubMed]

Dong, Q.

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[CrossRef] [PubMed]

Dowling, J. P.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377 (1998).
[CrossRef]

Fan, S.

H. Shin, M. F. Yanik, S. Fan, R. Zia, M. L. Brongersma, “Omnidirectional resonance in a metal–dielectric–metal geometry,” Appl. Phys. Lett. 84(22), 4421 (2004).
[CrossRef]

Feng, Q.

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

Gan, Q.

J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011).
[CrossRef]

García de Abajo, F. J.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Genevet, P.

M. A. Kats, R. Blanchard, P. Genevet, F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[CrossRef] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[CrossRef]

Gilmore, M. A.

M. A. Gilmore, B. L. Johnson, “Forbidden guided-wave plasmon polaritons in coupled thin films,” J. Appl. Phys. 93(8), 4497–4504 (2003).
[CrossRef]

Guo, F.

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[CrossRef] [PubMed]

Haïdar, R.

He, S.

Hosseini, A.

Hu, C.

Huang, C.

Huang, J.

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[CrossRef] [PubMed]

Inoue, T.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[CrossRef]

Jamshidi, A.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[CrossRef] [PubMed]

Jin, Y.

Johnson, B. L.

M. A. Gilmore, B. L. Johnson, “Forbidden guided-wave plasmon polaritons in coupled thin films,” J. Appl. Phys. 93(8), 4497–4504 (2003).
[CrossRef]

Kats, M. A.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[CrossRef]

M. A. Kats, R. Blanchard, P. Genevet, F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[CrossRef] [PubMed]

Kim, M.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[CrossRef] [PubMed]

Koechlin, C.

Kwon, K.

W.-J. Lee, J.-B. You, K. Kwon, B. Park, K. Yu, “Direction-selective emission with small angular divergence from a subwavelength aperture using radiative waveguide modes,” Phys. Rev. B 87(12), 125108 (2013).
[CrossRef]

Lakhani, A.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[CrossRef] [PubMed]

Lee, W.-J.

W.-J. Lee, J.-B. You, K. Kwon, B. Park, K. Yu, “Direction-selective emission with small angular divergence from a subwavelength aperture using radiative waveguide modes,” Phys. Rev. B 87(12), 125108 (2013).
[CrossRef]

Lei, D. Y.

D. Y. Lei, H. C. Ong, “Enhanced forward emission from ZnO via surface plasmons,” Appl. Phys. Lett. 91(21), 211107 (2007).
[CrossRef]

Li, Y. Y.

Li, Z.

Lin, J.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[CrossRef]

Liu, J. S. Q.

J. S. Q. Liu, M. L. Brongersma, “Omnidirectional light emission via surface plasmon polaritons,” Appl. Phys. Lett. 90(9), 091116 (2007).
[CrossRef]

Liu, X.

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

Luo, X.

Manka, A. S.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377 (1998).
[CrossRef]

Massoud, Y.

Mochizuki, K.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[CrossRef]

Noda, S.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[CrossRef]

Ong, H. C.

D. Y. Lei, H. C. Ong, “Enhanced forward emission from ZnO via surface plasmons,” Appl. Phys. Lett. 91(21), 211107 (2007).
[CrossRef]

Oskooi, A.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[CrossRef]

Padilla, W. J.

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

Pardo, F.

Park, B.

W.-J. Lee, J.-B. You, K. Kwon, B. Park, K. Yu, “Direction-selective emission with small angular divergence from a subwavelength aperture using radiative waveguide modes,” Phys. Rev. B 87(12), 125108 (2013).
[CrossRef]

Pelouard, J.-L.

Pethel, A. S.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377 (1998).
[CrossRef]

Polman, A.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Pu, M.

Qazilbash, M. M.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[CrossRef]

Ramanathan, S.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[CrossRef]

Scalora, M.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377 (1998).
[CrossRef]

Schuck, P. J.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[CrossRef] [PubMed]

Schwartzberg, A. M.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[CrossRef] [PubMed]

Seok, T. J.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[CrossRef] [PubMed]

Sharma, D.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[CrossRef]

Shin, H.

H. Shin, M. F. Yanik, S. Fan, R. Zia, M. L. Brongersma, “Omnidirectional resonance in a metal–dielectric–metal geometry,” Appl. Phys. Lett. 84(22), 4421 (2004).
[CrossRef]

Shu, S.

Song, G.

J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011).
[CrossRef]

Soref, R. A.

R. A. Soref, B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

Sugawara, Y.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Teperik, T. V.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Wang, C.

Wang, M.

Wu, M. C.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[CrossRef] [PubMed]

Xiao, Z.

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[CrossRef] [PubMed]

Yablonovitch, E.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[CrossRef] [PubMed]

Yang, B.

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[CrossRef] [PubMed]

Yang, Z.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[CrossRef]

Yanik, M. F.

H. Shin, M. F. Yanik, S. Fan, R. Zia, M. L. Brongersma, “Omnidirectional resonance in a metal–dielectric–metal geometry,” Appl. Phys. Lett. 84(22), 4421 (2004).
[CrossRef]

Ye, Y. Q.

You, J.-B.

W.-J. Lee, J.-B. You, K. Kwon, B. Park, K. Yu, “Direction-selective emission with small angular divergence from a subwavelength aperture using radiative waveguide modes,” Phys. Rev. B 87(12), 125108 (2013).
[CrossRef]

Yu, K.

W.-J. Lee, J.-B. You, K. Kwon, B. Park, K. Yu, “Direction-selective emission with small angular divergence from a subwavelength aperture using radiative waveguide modes,” Phys. Rev. B 87(12), 125108 (2013).
[CrossRef]

Yuan, Y.

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[CrossRef] [PubMed]

Zhang, J.

J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011).
[CrossRef]

Zhao, Z.

Zia, R.

H. Shin, M. F. Yanik, S. Fan, R. Zia, M. L. Brongersma, “Omnidirectional resonance in a metal–dielectric–metal geometry,” Appl. Phys. Lett. 84(22), 4421 (2004).
[CrossRef]

Appl. Phys. Lett. (5)

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[CrossRef]

D. Y. Lei, H. C. Ong, “Enhanced forward emission from ZnO via surface plasmons,” Appl. Phys. Lett. 91(21), 211107 (2007).
[CrossRef]

H. Shin, M. F. Yanik, S. Fan, R. Zia, M. L. Brongersma, “Omnidirectional resonance in a metal–dielectric–metal geometry,” Appl. Phys. Lett. 84(22), 4421 (2004).
[CrossRef]

J. S. Q. Liu, M. L. Brongersma, “Omnidirectional light emission via surface plasmon polaritons,” Appl. Phys. Lett. 90(9), 091116 (2007).
[CrossRef]

J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref, B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

J. Appl. Phys. (2)

M. A. Gilmore, B. L. Johnson, “Forbidden guided-wave plasmon polaritons in coupled thin films,” J. Appl. Phys. 93(8), 4497–4504 (2003).
[CrossRef]

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377 (1998).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011).
[CrossRef] [PubMed]

Nat Commun (1)

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[CrossRef] [PubMed]

Nat. Mater. (2)

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012).
[CrossRef] [PubMed]

Nat. Photonics (2)

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

W.-J. Lee, J.-B. You, K. Kwon, B. Park, K. Yu, “Direction-selective emission with small angular divergence from a subwavelength aperture using radiative waveguide modes,” Phys. Rev. B 87(12), 125108 (2013).
[CrossRef]

Phys. Rev. Lett. (1)

X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985), Vol. 1.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic description of a metal-dielectric-metal (MDM) structure. The gray and blue regions represent the metal and dielectric layers, respectively. (b) Normalized field profile of the RWMs (two nodes within the dielectric core and thus m = 2) of the MDM structure (t = 20 nm, d = 300 nm) with a Si core layer (blue region). The calculated dispersion curves of TM (blue solid lines) and TE (red dotted lines) modes supported by the MDM structure with the core layer material of (c) SiO2 and (d) Si are shown.

Fig. 2
Fig. 2

(a) Theoretical model describing the coupling and absorption procedures of the MD-layered structures. Cavity losses and absortivity A under normal incidence for (b) the Si-core double-layer structures (t = 0) as a fuction of dielectric thickness d and (c) triple-layer structures (d = 40 nm) as a function of the top metal thickness t. The blue and red solid lines in the upper panels indicate the radiative (κ) and absorptive (α) losses per round-trip, respectively. The absorptivity A (lower panels) is calculated based on the FDTD method (gray solid lines) and the theoretical model (gray dotted lines).

Fig. 3
Fig. 3

Calculated (a) TE and (b) TM absorption spectra as a function of top metal thickness t for the Si-core MDM structure (d = 300 nm) at the incident angle of 0°, 40°, and 80°. The color bar on the right side of the figure provides color codes for absorptivity. The optimum values (t) achieving near-perfect absorption for the RWMs (m = 2, 4) are displayed (star) in each panel.

Fig. 4
Fig. 4

Calculated (a) TE and (b) TM absorption spectra as a function of the incident angle for the Si-core MDM structures (d = 300 nm) with different t of 0 nm, 15 nm, and 30 nm. The star symbol in the center panels indicate the critical angles (optimal absorption points).

Fig. 5
Fig. 5

Isotropic factor (IF) for each polarization and cross polarization coupling (XPC) of the Si-core MDM structures (d = 300 nm). The IF (upper panels) and XPC (lower panels) as a function of the top metal thickness t are plotted in left, center, and right panels for m = 2, 3, and 4, respectively. Polar plots are displayed in the insets at each optimal condition. In each panel, the red and blue curves represent the results for the TE and TM modes.

Fig. 6
Fig. 6

(a) Critical angles of the second-order TE and TM resonances (m = 2) for the Si-cored MDM structures (d = 300 nm) when varying the top metal thickness t from 0 to 28 nm. The red and blue lines indicate TE and TM modes, respectively. (b) Angular absortivity profiles of each polarization for six different top metal thicknesses: 8, 12, 16, 20, 24, and 28 nm.

Tables (1)

Tables Icon

Table 1 ODR frequency shift at 80° and the optical constants of Si

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[ b 1 b 2 ]=[ rκ κ * r * ][ a 1 a 2 ].
a 2 =C e iϕ b 2 ,
b 1 = rC e iϕ 1 r * C e iϕ .
A=1 | b 1 | 2 = α 2 κ 2 ( ( 1 α 2 )( 1 κ 2 ) 1 ) 2 .

Metrics