Abstract

We demonstrate manipulation of photon emission efficiency in a tunneling gap by tuning the rates of elastic and inelastic electron tunneling processes with local electronic states. The artificial local electronic states are created by a scanning tunneling microscope tip on a CuN nanoisland grown on a Cu(100) surface at cryogenic temperature. These local electronic states can either enhance or suppress the excitation of tip-induced surface plasmon modes at specific bias voltages, and thus the induced photon emission rates. A theoretical model quantitatively analyzing inelastic and elastic tunneling processes associated with characteristic electronic states shows good agreement with experiments. We also show that tip-induced photon emission measurement can be used for probing the electronic states in the tunneling gap.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
    [CrossRef] [PubMed]
  2. K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
    [CrossRef] [PubMed]
  3. R. Esteban, A. G. Borisov, P. Nordlander, J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
    [CrossRef] [PubMed]
  4. N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, S. I. Bozhevolnyi, “Generalized nonlocal optical response in nanoplasmonics,” arXiv: cond-mat/1312.7190
  5. R. Berndt, J. K. Gimzewski, P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67, 3796–3799 (1991).
    [CrossRef] [PubMed]
  6. H.-M. Benia, P. Myrach, N. Nilius, “Photon emission spectroscopy of thin MgO films with the STM: from a tip-mediated to an intrinsic emission characteristic,” New J. Phys. 10, 013010 (2008).
    [CrossRef]
  7. M. Reinhardt, G. Schull, P. Ebert, R. Berndt, “Atomic resolution in tunneling induced light emission from GaAs(100),” Appl. Phys. Lett. 96, 152107 (2010).
    [CrossRef]
  8. X. H. Qiu, G. V. Nazin, W. Ho, “Vibrationally resolved fluorescence excited with submolecular precision,” Science 299, 542–546 (2003).
    [CrossRef] [PubMed]
  9. Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92, 086801 (2004).
    [CrossRef] [PubMed]
  10. N. Nilius, N. Ernst, H.-J. Freund, “Photon emission spectroscopy of individual oxide-supported silver clusters in a scanning tunneling microscope,” Phys. Rev. Lett. 84, 3994–3997 (2000).
    [CrossRef] [PubMed]
  11. G. Hoffmann, J. Kliewer, R. Berndt, “Luminescence from metallic quantum wells in a scanning tunneling microscope,” Phys. Rev. Lett. 87, 176803 (2001).
    [CrossRef] [PubMed]
  12. J. K. Gimzewski, J. K. Sass, R. R. Schlitter, J. Schott, “Enhanced photon emission in scanning tunnelling microscopy,” Europhys. Lett. 8, 435–440 (1989).
    [CrossRef]
  13. S. Ushioda, “Scanning tunneling microscope (STM) light emission spectroscopy of surface nanostructures,” J. Electron. Spectrosc. Rel. Phenom 109, 169–181 (2000).
    [CrossRef]
  14. G. Schull, N. Neel, P. Johansson, R. Berndt, “Electron-plasmon and electron-electron interactions at a single atom contact,” Phys. Rev. Lett. 102, 057401 (2009).
    [CrossRef] [PubMed]
  15. Y. Zhang, X. Tao, H. Y. Gao, Z. C. Dong, J. G. Hou, T. Okamoto, “Modulation of local plasmon mediated emission through molecular manipulation,” Phys. Rev. B 79, 075406 (2009).
    [CrossRef]
  16. F. Rossel, M. Pivetta, W.-D. Schneider, “Luminescence experiments on supported molecules with the scanning tunneling microscope,” Surf. Sci. Rep. 65, 129–144 (2010).
    [CrossRef]
  17. F. Geng, Y. Zhang, Y. Yu, Y. Kuang, Y. Liao, Z. C. Dong, J. G. Hou, “Modulation of nanocavity plasmonic emission by local molecular states of C60 on Au(111),” Opt. Express 20, 26725–26735 (2012).
    [CrossRef] [PubMed]
  18. J. Lambe, S. L. McCarthy, “Light emission from inelastic electron tunneling,” Phys. Rev. Lett. 37, 923–925 (1976).
    [CrossRef]
  19. B. N. J. Persson, A. Baratoff, “Theory of photon emission in electron tunneling to metallic particles,” Phys. Rev. Lett. 68, 3224–3227 (1992).
    [CrossRef] [PubMed]
  20. P. Johansson, R. Monreal, P. Apell, “Theory for light emission from a scanning tunneling microscope,” Phys. Rev. B 42, 9210–9213 (1990).
    [CrossRef]
  21. R. Berndt, J. K. Gimzewski, “Photon emission in scanning tunneling microscopy: interpretation of photon maps of metallic systems,” Phys. Rev. B 48, 4746–4754. (1993).
    [CrossRef]
  22. K. Perronet, L. Barbier, F. Charra, “Influence of the Au(111) reconstruction on the light emission induced by a scanning tunneling microscope,” Phys. Rev. B 70, 201405 (2004).
    [CrossRef]
  23. G. Hoffmann, T. Maroutian, R. Berndt, “Color view of atomic highs and lows in tunneling induced light emission,” Phys. Rev. Lett. 93, 076102 (2004).
    [CrossRef] [PubMed]
  24. C. Chen, C. A. Bobisch, W. Ho, “Visualization of Fermi’s golden rule through imaging of light emission from atomic silver chains,” Science 325, 981–985 (2009).
    [CrossRef] [PubMed]
  25. M. Sakurai, C. Thirstrup, M. Aono, “New aspects of light emission from STM,” Appl. Phys. A 80, 1153–1160 (2005).
    [CrossRef]
  26. G. V. Nazin, X. H. Qiu, W. Ho, “Atomic engineering of photon emission with a scanning tunneling microscope,” Phys. Rev. Lett. 90, 216110 (2003).
    [CrossRef] [PubMed]
  27. G. Schull, M. Becker, R. Berndt, “Imaging confined electrons with plasmonic light,” Phys. Rev. Lett. 101, 136801 (2008).
    [CrossRef] [PubMed]
  28. T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13, 2846–2850 (2013).
    [CrossRef] [PubMed]
  29. N. L. Schneider, P. Johansson, R. Berndt, “Hot electron cascades in the scanning tunneling microscope,” Phys. Rev. B 87, 045409 (2013).
    [CrossRef]
  30. F. M. Leibsle, S. S. Dhesi, S. D. Barrett, A. W. Robinson, “STM observations of Cu(100)-c(2×2)N surfaces: evidence for attractive interactions and an incommensurate c(2 × 2) structure,” Surf. Sci. 317, 309–320 (1994).
    [CrossRef]
  31. C. D. Ruggiero, T. Choi, J. A. Gupta, “Tunneling spectroscopy of ultrathin insulating films: CuN on Cu(100),” Appl. Phys. Lett. 91, 253106 (2007).
    [CrossRef]
  32. C. F. Hirjibehedin, C.-Y. Lin, A. F. Otte, M. Ternes, C. P. Lutz, B. A. Jones, A. J. Heinrich, “Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network,” Science 317, 1199–1203 (2007).
    [CrossRef] [PubMed]
  33. S. Wang, W. Wang, Y. Hong, B. Z. Tang, N. Lin, “Vibronic state assisted resonant transport in molecules strongly anchored at an electrode,” Phys. Rev. B 83, 115431 (2011).
    [CrossRef]
  34. K. Meguro, K. Sakamoto, R. Arafune, M. Satoh, S. Ushioda, “Origin of multiple peaks in the light emission spectra of a Au(111) surface induced by the scanning tunneling microscope,” Phys. Rev. B 65, 165405 (2002).
    [CrossRef]
  35. P. Johansson, “Light emission from a scanning tunneling microscope: fully retarded calculation,” Phys. Rev. B 58, 10823–10834 (1998).
    [CrossRef]
  36. J. Aizpurua, S. P. Apell, R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B 62, 2065–2073 (2000).
    [CrossRef]
  37. X. Tao, Z. C. Dong, J. L. Yang, Y. Luo, J. G. Hou, J. Aizpurua, “Influence of a dielectric layer on photon emission induced by a scanning tunneling microscope,” J. Chem. Phys 130, 084706 (2009).
    [CrossRef] [PubMed]
  38. N. Nilius, N Ernst, H.-J. Freund, “Tip influence on plasmon excitations in single gold particles in an STM,” Phys. Rev. B 65, 115421 (2002).
    [CrossRef]
  39. Z. Q. Zou, Z. C. Dong, A. K. Kar, H. Nejo, “STM-induced photon emission spectra from the Cu(100) surface,” Surf. Sci. 512, L373–L378 (2002).
    [CrossRef]
  40. L. Douillard, F. Charra, “High-resolution mapping of plasmonic modes: photoemission and scanning tunnelling luminescence microscopies,” J. Phys. D Appl. Phys. 44, 464002 (2011).
    [CrossRef]
  41. S.-W. Hla, K.-F. Braun, V. Iancu, A. Deshpande, “Single-atom extraction by scanning tunneling microscope tip crash and nanoscale surface engineering,” Nano Lett. 4, 1997–2001 (2004).
    [CrossRef]
  42. S.-W. Hla, “Scanning tunneling microscopy single atom/molecule manipulation and its application to nanoscience and technology,” J. Vac. Sci. Technol. B 23, 1351–1360 (2005).
    [CrossRef]

2013 (2)

T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13, 2846–2850 (2013).
[CrossRef] [PubMed]

N. L. Schneider, P. Johansson, R. Berndt, “Hot electron cascades in the scanning tunneling microscope,” Phys. Rev. B 87, 045409 (2013).
[CrossRef]

2012 (4)

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[CrossRef] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[CrossRef] [PubMed]

F. Geng, Y. Zhang, Y. Yu, Y. Kuang, Y. Liao, Z. C. Dong, J. G. Hou, “Modulation of nanocavity plasmonic emission by local molecular states of C60 on Au(111),” Opt. Express 20, 26725–26735 (2012).
[CrossRef] [PubMed]

2011 (2)

S. Wang, W. Wang, Y. Hong, B. Z. Tang, N. Lin, “Vibronic state assisted resonant transport in molecules strongly anchored at an electrode,” Phys. Rev. B 83, 115431 (2011).
[CrossRef]

L. Douillard, F. Charra, “High-resolution mapping of plasmonic modes: photoemission and scanning tunnelling luminescence microscopies,” J. Phys. D Appl. Phys. 44, 464002 (2011).
[CrossRef]

2010 (2)

F. Rossel, M. Pivetta, W.-D. Schneider, “Luminescence experiments on supported molecules with the scanning tunneling microscope,” Surf. Sci. Rep. 65, 129–144 (2010).
[CrossRef]

M. Reinhardt, G. Schull, P. Ebert, R. Berndt, “Atomic resolution in tunneling induced light emission from GaAs(100),” Appl. Phys. Lett. 96, 152107 (2010).
[CrossRef]

2009 (4)

G. Schull, N. Neel, P. Johansson, R. Berndt, “Electron-plasmon and electron-electron interactions at a single atom contact,” Phys. Rev. Lett. 102, 057401 (2009).
[CrossRef] [PubMed]

Y. Zhang, X. Tao, H. Y. Gao, Z. C. Dong, J. G. Hou, T. Okamoto, “Modulation of local plasmon mediated emission through molecular manipulation,” Phys. Rev. B 79, 075406 (2009).
[CrossRef]

C. Chen, C. A. Bobisch, W. Ho, “Visualization of Fermi’s golden rule through imaging of light emission from atomic silver chains,” Science 325, 981–985 (2009).
[CrossRef] [PubMed]

X. Tao, Z. C. Dong, J. L. Yang, Y. Luo, J. G. Hou, J. Aizpurua, “Influence of a dielectric layer on photon emission induced by a scanning tunneling microscope,” J. Chem. Phys 130, 084706 (2009).
[CrossRef] [PubMed]

2008 (2)

G. Schull, M. Becker, R. Berndt, “Imaging confined electrons with plasmonic light,” Phys. Rev. Lett. 101, 136801 (2008).
[CrossRef] [PubMed]

H.-M. Benia, P. Myrach, N. Nilius, “Photon emission spectroscopy of thin MgO films with the STM: from a tip-mediated to an intrinsic emission characteristic,” New J. Phys. 10, 013010 (2008).
[CrossRef]

2007 (2)

C. D. Ruggiero, T. Choi, J. A. Gupta, “Tunneling spectroscopy of ultrathin insulating films: CuN on Cu(100),” Appl. Phys. Lett. 91, 253106 (2007).
[CrossRef]

C. F. Hirjibehedin, C.-Y. Lin, A. F. Otte, M. Ternes, C. P. Lutz, B. A. Jones, A. J. Heinrich, “Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network,” Science 317, 1199–1203 (2007).
[CrossRef] [PubMed]

2005 (2)

M. Sakurai, C. Thirstrup, M. Aono, “New aspects of light emission from STM,” Appl. Phys. A 80, 1153–1160 (2005).
[CrossRef]

S.-W. Hla, “Scanning tunneling microscopy single atom/molecule manipulation and its application to nanoscience and technology,” J. Vac. Sci. Technol. B 23, 1351–1360 (2005).
[CrossRef]

2004 (4)

S.-W. Hla, K.-F. Braun, V. Iancu, A. Deshpande, “Single-atom extraction by scanning tunneling microscope tip crash and nanoscale surface engineering,” Nano Lett. 4, 1997–2001 (2004).
[CrossRef]

K. Perronet, L. Barbier, F. Charra, “Influence of the Au(111) reconstruction on the light emission induced by a scanning tunneling microscope,” Phys. Rev. B 70, 201405 (2004).
[CrossRef]

G. Hoffmann, T. Maroutian, R. Berndt, “Color view of atomic highs and lows in tunneling induced light emission,” Phys. Rev. Lett. 93, 076102 (2004).
[CrossRef] [PubMed]

Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92, 086801 (2004).
[CrossRef] [PubMed]

2003 (2)

X. H. Qiu, G. V. Nazin, W. Ho, “Vibrationally resolved fluorescence excited with submolecular precision,” Science 299, 542–546 (2003).
[CrossRef] [PubMed]

G. V. Nazin, X. H. Qiu, W. Ho, “Atomic engineering of photon emission with a scanning tunneling microscope,” Phys. Rev. Lett. 90, 216110 (2003).
[CrossRef] [PubMed]

2002 (3)

K. Meguro, K. Sakamoto, R. Arafune, M. Satoh, S. Ushioda, “Origin of multiple peaks in the light emission spectra of a Au(111) surface induced by the scanning tunneling microscope,” Phys. Rev. B 65, 165405 (2002).
[CrossRef]

N. Nilius, N Ernst, H.-J. Freund, “Tip influence on plasmon excitations in single gold particles in an STM,” Phys. Rev. B 65, 115421 (2002).
[CrossRef]

Z. Q. Zou, Z. C. Dong, A. K. Kar, H. Nejo, “STM-induced photon emission spectra from the Cu(100) surface,” Surf. Sci. 512, L373–L378 (2002).
[CrossRef]

2001 (1)

G. Hoffmann, J. Kliewer, R. Berndt, “Luminescence from metallic quantum wells in a scanning tunneling microscope,” Phys. Rev. Lett. 87, 176803 (2001).
[CrossRef] [PubMed]

2000 (3)

S. Ushioda, “Scanning tunneling microscope (STM) light emission spectroscopy of surface nanostructures,” J. Electron. Spectrosc. Rel. Phenom 109, 169–181 (2000).
[CrossRef]

N. Nilius, N. Ernst, H.-J. Freund, “Photon emission spectroscopy of individual oxide-supported silver clusters in a scanning tunneling microscope,” Phys. Rev. Lett. 84, 3994–3997 (2000).
[CrossRef] [PubMed]

J. Aizpurua, S. P. Apell, R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B 62, 2065–2073 (2000).
[CrossRef]

1998 (1)

P. Johansson, “Light emission from a scanning tunneling microscope: fully retarded calculation,” Phys. Rev. B 58, 10823–10834 (1998).
[CrossRef]

1994 (1)

F. M. Leibsle, S. S. Dhesi, S. D. Barrett, A. W. Robinson, “STM observations of Cu(100)-c(2×2)N surfaces: evidence for attractive interactions and an incommensurate c(2 × 2) structure,” Surf. Sci. 317, 309–320 (1994).
[CrossRef]

1993 (1)

R. Berndt, J. K. Gimzewski, “Photon emission in scanning tunneling microscopy: interpretation of photon maps of metallic systems,” Phys. Rev. B 48, 4746–4754. (1993).
[CrossRef]

1992 (1)

B. N. J. Persson, A. Baratoff, “Theory of photon emission in electron tunneling to metallic particles,” Phys. Rev. Lett. 68, 3224–3227 (1992).
[CrossRef] [PubMed]

1991 (1)

R. Berndt, J. K. Gimzewski, P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67, 3796–3799 (1991).
[CrossRef] [PubMed]

1990 (1)

P. Johansson, R. Monreal, P. Apell, “Theory for light emission from a scanning tunneling microscope,” Phys. Rev. B 42, 9210–9213 (1990).
[CrossRef]

1989 (1)

J. K. Gimzewski, J. K. Sass, R. R. Schlitter, J. Schott, “Enhanced photon emission in scanning tunnelling microscopy,” Europhys. Lett. 8, 435–440 (1989).
[CrossRef]

1976 (1)

J. Lambe, S. L. McCarthy, “Light emission from inelastic electron tunneling,” Phys. Rev. Lett. 37, 923–925 (1976).
[CrossRef]

Aizpurua, J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[CrossRef] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[CrossRef] [PubMed]

X. Tao, Z. C. Dong, J. L. Yang, Y. Luo, J. G. Hou, J. Aizpurua, “Influence of a dielectric layer on photon emission induced by a scanning tunneling microscope,” J. Chem. Phys 130, 084706 (2009).
[CrossRef] [PubMed]

J. Aizpurua, S. P. Apell, R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B 62, 2065–2073 (2000).
[CrossRef]

Aono, M.

M. Sakurai, C. Thirstrup, M. Aono, “New aspects of light emission from STM,” Appl. Phys. A 80, 1153–1160 (2005).
[CrossRef]

Apell, P.

P. Johansson, R. Monreal, P. Apell, “Theory for light emission from a scanning tunneling microscope,” Phys. Rev. B 42, 9210–9213 (1990).
[CrossRef]

Apell, S. P.

J. Aizpurua, S. P. Apell, R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B 62, 2065–2073 (2000).
[CrossRef]

Arafune, R.

K. Meguro, K. Sakamoto, R. Arafune, M. Satoh, S. Ushioda, “Origin of multiple peaks in the light emission spectra of a Au(111) surface induced by the scanning tunneling microscope,” Phys. Rev. B 65, 165405 (2002).
[CrossRef]

Baratoff, A.

B. N. J. Persson, A. Baratoff, “Theory of photon emission in electron tunneling to metallic particles,” Phys. Rev. Lett. 68, 3224–3227 (1992).
[CrossRef] [PubMed]

Barbier, L.

K. Perronet, L. Barbier, F. Charra, “Influence of the Au(111) reconstruction on the light emission induced by a scanning tunneling microscope,” Phys. Rev. B 70, 201405 (2004).
[CrossRef]

Barrett, S. D.

F. M. Leibsle, S. S. Dhesi, S. D. Barrett, A. W. Robinson, “STM observations of Cu(100)-c(2×2)N surfaces: evidence for attractive interactions and an incommensurate c(2 × 2) structure,” Surf. Sci. 317, 309–320 (1994).
[CrossRef]

Baumberg, J. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[CrossRef] [PubMed]

Becker, M.

G. Schull, M. Becker, R. Berndt, “Imaging confined electrons with plasmonic light,” Phys. Rev. Lett. 101, 136801 (2008).
[CrossRef] [PubMed]

Benia, H.-M.

H.-M. Benia, P. Myrach, N. Nilius, “Photon emission spectroscopy of thin MgO films with the STM: from a tip-mediated to an intrinsic emission characteristic,” New J. Phys. 10, 013010 (2008).
[CrossRef]

Berndt, R.

N. L. Schneider, P. Johansson, R. Berndt, “Hot electron cascades in the scanning tunneling microscope,” Phys. Rev. B 87, 045409 (2013).
[CrossRef]

M. Reinhardt, G. Schull, P. Ebert, R. Berndt, “Atomic resolution in tunneling induced light emission from GaAs(100),” Appl. Phys. Lett. 96, 152107 (2010).
[CrossRef]

G. Schull, N. Neel, P. Johansson, R. Berndt, “Electron-plasmon and electron-electron interactions at a single atom contact,” Phys. Rev. Lett. 102, 057401 (2009).
[CrossRef] [PubMed]

G. Schull, M. Becker, R. Berndt, “Imaging confined electrons with plasmonic light,” Phys. Rev. Lett. 101, 136801 (2008).
[CrossRef] [PubMed]

G. Hoffmann, T. Maroutian, R. Berndt, “Color view of atomic highs and lows in tunneling induced light emission,” Phys. Rev. Lett. 93, 076102 (2004).
[CrossRef] [PubMed]

G. Hoffmann, J. Kliewer, R. Berndt, “Luminescence from metallic quantum wells in a scanning tunneling microscope,” Phys. Rev. Lett. 87, 176803 (2001).
[CrossRef] [PubMed]

J. Aizpurua, S. P. Apell, R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B 62, 2065–2073 (2000).
[CrossRef]

R. Berndt, J. K. Gimzewski, “Photon emission in scanning tunneling microscopy: interpretation of photon maps of metallic systems,” Phys. Rev. B 48, 4746–4754. (1993).
[CrossRef]

R. Berndt, J. K. Gimzewski, P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67, 3796–3799 (1991).
[CrossRef] [PubMed]

Bobisch, C. A.

C. Chen, C. A. Bobisch, W. Ho, “Visualization of Fermi’s golden rule through imaging of light emission from atomic silver chains,” Science 325, 981–985 (2009).
[CrossRef] [PubMed]

Borisov, A. G.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[CrossRef] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, S. I. Bozhevolnyi, “Generalized nonlocal optical response in nanoplasmonics,” arXiv: cond-mat/1312.7190

Braun, K.-F.

S.-W. Hla, K.-F. Braun, V. Iancu, A. Deshpande, “Single-atom extraction by scanning tunneling microscope tip crash and nanoscale surface engineering,” Nano Lett. 4, 1997–2001 (2004).
[CrossRef]

Chang, W.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Charra, F.

L. Douillard, F. Charra, “High-resolution mapping of plasmonic modes: photoemission and scanning tunnelling luminescence microscopies,” J. Phys. D Appl. Phys. 44, 464002 (2011).
[CrossRef]

K. Perronet, L. Barbier, F. Charra, “Influence of the Au(111) reconstruction on the light emission induced by a scanning tunneling microscope,” Phys. Rev. B 70, 201405 (2004).
[CrossRef]

Chen, C.

C. Chen, C. A. Bobisch, W. Ho, “Visualization of Fermi’s golden rule through imaging of light emission from atomic silver chains,” Science 325, 981–985 (2009).
[CrossRef] [PubMed]

Chen, H.-Y.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Chen, L.-J.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Choi, T.

C. D. Ruggiero, T. Choi, J. A. Gupta, “Tunneling spectroscopy of ultrathin insulating films: CuN on Cu(100),” Appl. Phys. Lett. 91, 253106 (2007).
[CrossRef]

Dabidian, N.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Deshpande, A.

S.-W. Hla, K.-F. Braun, V. Iancu, A. Deshpande, “Single-atom extraction by scanning tunneling microscope tip crash and nanoscale surface engineering,” Nano Lett. 4, 1997–2001 (2004).
[CrossRef]

Dette, C.

T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13, 2846–2850 (2013).
[CrossRef] [PubMed]

Dhesi, S. S.

F. M. Leibsle, S. S. Dhesi, S. D. Barrett, A. W. Robinson, “STM observations of Cu(100)-c(2×2)N surfaces: evidence for attractive interactions and an incommensurate c(2 × 2) structure,” Surf. Sci. 317, 309–320 (1994).
[CrossRef]

Dong, Z. C.

F. Geng, Y. Zhang, Y. Yu, Y. Kuang, Y. Liao, Z. C. Dong, J. G. Hou, “Modulation of nanocavity plasmonic emission by local molecular states of C60 on Au(111),” Opt. Express 20, 26725–26735 (2012).
[CrossRef] [PubMed]

X. Tao, Z. C. Dong, J. L. Yang, Y. Luo, J. G. Hou, J. Aizpurua, “Influence of a dielectric layer on photon emission induced by a scanning tunneling microscope,” J. Chem. Phys 130, 084706 (2009).
[CrossRef] [PubMed]

Y. Zhang, X. Tao, H. Y. Gao, Z. C. Dong, J. G. Hou, T. Okamoto, “Modulation of local plasmon mediated emission through molecular manipulation,” Phys. Rev. B 79, 075406 (2009).
[CrossRef]

Z. Q. Zou, Z. C. Dong, A. K. Kar, H. Nejo, “STM-induced photon emission spectra from the Cu(100) surface,” Surf. Sci. 512, L373–L378 (2002).
[CrossRef]

Dong, Z.-C.

Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92, 086801 (2004).
[CrossRef] [PubMed]

Dorozhkin, P. S.

Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92, 086801 (2004).
[CrossRef] [PubMed]

Douillard, L.

L. Douillard, F. Charra, “High-resolution mapping of plasmonic modes: photoemission and scanning tunnelling luminescence microscopies,” J. Phys. D Appl. Phys. 44, 464002 (2011).
[CrossRef]

Ebert, P.

M. Reinhardt, G. Schull, P. Ebert, R. Berndt, “Atomic resolution in tunneling induced light emission from GaAs(100),” Appl. Phys. Lett. 96, 152107 (2010).
[CrossRef]

Ernst, N

N. Nilius, N Ernst, H.-J. Freund, “Tip influence on plasmon excitations in single gold particles in an STM,” Phys. Rev. B 65, 115421 (2002).
[CrossRef]

Ernst, N.

N. Nilius, N. Ernst, H.-J. Freund, “Photon emission spectroscopy of individual oxide-supported silver clusters in a scanning tunneling microscope,” Phys. Rev. Lett. 84, 3994–3997 (2000).
[CrossRef] [PubMed]

Esteban, R.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[CrossRef] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[CrossRef] [PubMed]

Freund, H.-J.

N. Nilius, N Ernst, H.-J. Freund, “Tip influence on plasmon excitations in single gold particles in an STM,” Phys. Rev. B 65, 115421 (2002).
[CrossRef]

N. Nilius, N. Ernst, H.-J. Freund, “Photon emission spectroscopy of individual oxide-supported silver clusters in a scanning tunneling microscope,” Phys. Rev. Lett. 84, 3994–3997 (2000).
[CrossRef] [PubMed]

Gao, H. Y.

Y. Zhang, X. Tao, H. Y. Gao, Z. C. Dong, J. G. Hou, T. Okamoto, “Modulation of local plasmon mediated emission through molecular manipulation,” Phys. Rev. B 79, 075406 (2009).
[CrossRef]

Geng, F.

Gimzewski, J. K.

R. Berndt, J. K. Gimzewski, “Photon emission in scanning tunneling microscopy: interpretation of photon maps of metallic systems,” Phys. Rev. B 48, 4746–4754. (1993).
[CrossRef]

R. Berndt, J. K. Gimzewski, P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67, 3796–3799 (1991).
[CrossRef] [PubMed]

J. K. Gimzewski, J. K. Sass, R. R. Schlitter, J. Schott, “Enhanced photon emission in scanning tunnelling microscopy,” Europhys. Lett. 8, 435–440 (1989).
[CrossRef]

Große, C.

T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13, 2846–2850 (2013).
[CrossRef] [PubMed]

Guo, X.-L.

Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92, 086801 (2004).
[CrossRef] [PubMed]

Gupta, J. A.

C. D. Ruggiero, T. Choi, J. A. Gupta, “Tunneling spectroscopy of ultrathin insulating films: CuN on Cu(100),” Appl. Phys. Lett. 91, 253106 (2007).
[CrossRef]

Gutzler, R.

T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13, 2846–2850 (2013).
[CrossRef] [PubMed]

Gwo, S.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Hawkeye, M. M.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[CrossRef] [PubMed]

Heinrich, A. J.

C. F. Hirjibehedin, C.-Y. Lin, A. F. Otte, M. Ternes, C. P. Lutz, B. A. Jones, A. J. Heinrich, “Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network,” Science 317, 1199–1203 (2007).
[CrossRef] [PubMed]

Hirjibehedin, C. F.

C. F. Hirjibehedin, C.-Y. Lin, A. F. Otte, M. Ternes, C. P. Lutz, B. A. Jones, A. J. Heinrich, “Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network,” Science 317, 1199–1203 (2007).
[CrossRef] [PubMed]

Hla, S.-W.

S.-W. Hla, “Scanning tunneling microscopy single atom/molecule manipulation and its application to nanoscience and technology,” J. Vac. Sci. Technol. B 23, 1351–1360 (2005).
[CrossRef]

S.-W. Hla, K.-F. Braun, V. Iancu, A. Deshpande, “Single-atom extraction by scanning tunneling microscope tip crash and nanoscale surface engineering,” Nano Lett. 4, 1997–2001 (2004).
[CrossRef]

Ho, W.

C. Chen, C. A. Bobisch, W. Ho, “Visualization of Fermi’s golden rule through imaging of light emission from atomic silver chains,” Science 325, 981–985 (2009).
[CrossRef] [PubMed]

G. V. Nazin, X. H. Qiu, W. Ho, “Atomic engineering of photon emission with a scanning tunneling microscope,” Phys. Rev. Lett. 90, 216110 (2003).
[CrossRef] [PubMed]

X. H. Qiu, G. V. Nazin, W. Ho, “Vibrationally resolved fluorescence excited with submolecular precision,” Science 299, 542–546 (2003).
[CrossRef] [PubMed]

Hoffmann, G.

G. Hoffmann, T. Maroutian, R. Berndt, “Color view of atomic highs and lows in tunneling induced light emission,” Phys. Rev. Lett. 93, 076102 (2004).
[CrossRef] [PubMed]

G. Hoffmann, J. Kliewer, R. Berndt, “Luminescence from metallic quantum wells in a scanning tunneling microscope,” Phys. Rev. Lett. 87, 176803 (2001).
[CrossRef] [PubMed]

Hong, Y.

S. Wang, W. Wang, Y. Hong, B. Z. Tang, N. Lin, “Vibronic state assisted resonant transport in molecules strongly anchored at an electrode,” Phys. Rev. B 83, 115431 (2011).
[CrossRef]

Hou, J. G.

F. Geng, Y. Zhang, Y. Yu, Y. Kuang, Y. Liao, Z. C. Dong, J. G. Hou, “Modulation of nanocavity plasmonic emission by local molecular states of C60 on Au(111),” Opt. Express 20, 26725–26735 (2012).
[CrossRef] [PubMed]

X. Tao, Z. C. Dong, J. L. Yang, Y. Luo, J. G. Hou, J. Aizpurua, “Influence of a dielectric layer on photon emission induced by a scanning tunneling microscope,” J. Chem. Phys 130, 084706 (2009).
[CrossRef] [PubMed]

Y. Zhang, X. Tao, H. Y. Gao, Z. C. Dong, J. G. Hou, T. Okamoto, “Modulation of local plasmon mediated emission through molecular manipulation,” Phys. Rev. B 79, 075406 (2009).
[CrossRef]

Iancu, V.

S.-W. Hla, K.-F. Braun, V. Iancu, A. Deshpande, “Single-atom extraction by scanning tunneling microscope tip crash and nanoscale surface engineering,” Nano Lett. 4, 1997–2001 (2004).
[CrossRef]

Johansson, P.

N. L. Schneider, P. Johansson, R. Berndt, “Hot electron cascades in the scanning tunneling microscope,” Phys. Rev. B 87, 045409 (2013).
[CrossRef]

G. Schull, N. Neel, P. Johansson, R. Berndt, “Electron-plasmon and electron-electron interactions at a single atom contact,” Phys. Rev. Lett. 102, 057401 (2009).
[CrossRef] [PubMed]

P. Johansson, “Light emission from a scanning tunneling microscope: fully retarded calculation,” Phys. Rev. B 58, 10823–10834 (1998).
[CrossRef]

R. Berndt, J. K. Gimzewski, P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67, 3796–3799 (1991).
[CrossRef] [PubMed]

P. Johansson, R. Monreal, P. Apell, “Theory for light emission from a scanning tunneling microscope,” Phys. Rev. B 42, 9210–9213 (1990).
[CrossRef]

Jones, B. A.

C. F. Hirjibehedin, C.-Y. Lin, A. F. Otte, M. Ternes, C. P. Lutz, B. A. Jones, A. J. Heinrich, “Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network,” Science 317, 1199–1203 (2007).
[CrossRef] [PubMed]

Kabakchiev, C. A.

T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13, 2846–2850 (2013).
[CrossRef] [PubMed]

Kar, A. K.

Z. Q. Zou, Z. C. Dong, A. K. Kar, H. Nejo, “STM-induced photon emission spectra from the Cu(100) surface,” Surf. Sci. 512, L373–L378 (2002).
[CrossRef]

Kern, K.

T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13, 2846–2850 (2013).
[CrossRef] [PubMed]

Kim, J.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Kimura, K.

Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92, 086801 (2004).
[CrossRef] [PubMed]

Kliewer, J.

G. Hoffmann, J. Kliewer, R. Berndt, “Luminescence from metallic quantum wells in a scanning tunneling microscope,” Phys. Rev. Lett. 87, 176803 (2001).
[CrossRef] [PubMed]

Kuang, Y.

Kuhnke, K.

T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13, 2846–2850 (2013).
[CrossRef] [PubMed]

Lambe, J.

J. Lambe, S. L. McCarthy, “Light emission from inelastic electron tunneling,” Phys. Rev. Lett. 37, 923–925 (1976).
[CrossRef]

Leibsle, F. M.

F. M. Leibsle, S. S. Dhesi, S. D. Barrett, A. W. Robinson, “STM observations of Cu(100)-c(2×2)N surfaces: evidence for attractive interactions and an incommensurate c(2 × 2) structure,” Surf. Sci. 317, 309–320 (1994).
[CrossRef]

Li, B.-H.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Liao, Y.

Lin, C.-Y.

C. F. Hirjibehedin, C.-Y. Lin, A. F. Otte, M. Ternes, C. P. Lutz, B. A. Jones, A. J. Heinrich, “Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network,” Science 317, 1199–1203 (2007).
[CrossRef] [PubMed]

Lin, N.

S. Wang, W. Wang, Y. Hong, B. Z. Tang, N. Lin, “Vibronic state assisted resonant transport in molecules strongly anchored at an electrode,” Phys. Rev. B 83, 115431 (2011).
[CrossRef]

Lu, M.-Y.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Lu, Y.-J.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Luo, Y.

X. Tao, Z. C. Dong, J. L. Yang, Y. Luo, J. G. Hou, J. Aizpurua, “Influence of a dielectric layer on photon emission induced by a scanning tunneling microscope,” J. Chem. Phys 130, 084706 (2009).
[CrossRef] [PubMed]

Lutz, C. P.

C. F. Hirjibehedin, C.-Y. Lin, A. F. Otte, M. Ternes, C. P. Lutz, B. A. Jones, A. J. Heinrich, “Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network,” Science 317, 1199–1203 (2007).
[CrossRef] [PubMed]

Lutz, T.

T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13, 2846–2850 (2013).
[CrossRef] [PubMed]

Maroutian, T.

G. Hoffmann, T. Maroutian, R. Berndt, “Color view of atomic highs and lows in tunneling induced light emission,” Phys. Rev. Lett. 93, 076102 (2004).
[CrossRef] [PubMed]

Mashiko, S.

Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92, 086801 (2004).
[CrossRef] [PubMed]

McCarthy, S. L.

J. Lambe, S. L. McCarthy, “Light emission from inelastic electron tunneling,” Phys. Rev. Lett. 37, 923–925 (1976).
[CrossRef]

Meguro, K.

K. Meguro, K. Sakamoto, R. Arafune, M. Satoh, S. Ushioda, “Origin of multiple peaks in the light emission spectra of a Au(111) surface induced by the scanning tunneling microscope,” Phys. Rev. B 65, 165405 (2002).
[CrossRef]

Miki, K.

Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92, 086801 (2004).
[CrossRef] [PubMed]

Monreal, R.

P. Johansson, R. Monreal, P. Apell, “Theory for light emission from a scanning tunneling microscope,” Phys. Rev. B 42, 9210–9213 (1990).
[CrossRef]

Mortensen, N. A.

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, S. I. Bozhevolnyi, “Generalized nonlocal optical response in nanoplasmonics,” arXiv: cond-mat/1312.7190

Myrach, P.

H.-M. Benia, P. Myrach, N. Nilius, “Photon emission spectroscopy of thin MgO films with the STM: from a tip-mediated to an intrinsic emission characteristic,” New J. Phys. 10, 013010 (2008).
[CrossRef]

Nazin, G. V.

X. H. Qiu, G. V. Nazin, W. Ho, “Vibrationally resolved fluorescence excited with submolecular precision,” Science 299, 542–546 (2003).
[CrossRef] [PubMed]

G. V. Nazin, X. H. Qiu, W. Ho, “Atomic engineering of photon emission with a scanning tunneling microscope,” Phys. Rev. Lett. 90, 216110 (2003).
[CrossRef] [PubMed]

Neel, N.

G. Schull, N. Neel, P. Johansson, R. Berndt, “Electron-plasmon and electron-electron interactions at a single atom contact,” Phys. Rev. Lett. 102, 057401 (2009).
[CrossRef] [PubMed]

Nejo, H.

Z. Q. Zou, Z. C. Dong, A. K. Kar, H. Nejo, “STM-induced photon emission spectra from the Cu(100) surface,” Surf. Sci. 512, L373–L378 (2002).
[CrossRef]

Nilius, N.

H.-M. Benia, P. Myrach, N. Nilius, “Photon emission spectroscopy of thin MgO films with the STM: from a tip-mediated to an intrinsic emission characteristic,” New J. Phys. 10, 013010 (2008).
[CrossRef]

N. Nilius, N Ernst, H.-J. Freund, “Tip influence on plasmon excitations in single gold particles in an STM,” Phys. Rev. B 65, 115421 (2002).
[CrossRef]

N. Nilius, N. Ernst, H.-J. Freund, “Photon emission spectroscopy of individual oxide-supported silver clusters in a scanning tunneling microscope,” Phys. Rev. Lett. 84, 3994–3997 (2000).
[CrossRef] [PubMed]

Nordlander, P.

R. Esteban, A. G. Borisov, P. Nordlander, J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[CrossRef] [PubMed]

Okamoto, T.

Y. Zhang, X. Tao, H. Y. Gao, Z. C. Dong, J. G. Hou, T. Okamoto, “Modulation of local plasmon mediated emission through molecular manipulation,” Phys. Rev. B 79, 075406 (2009).
[CrossRef]

Otte, A. F.

C. F. Hirjibehedin, C.-Y. Lin, A. F. Otte, M. Ternes, C. P. Lutz, B. A. Jones, A. J. Heinrich, “Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network,” Science 317, 1199–1203 (2007).
[CrossRef] [PubMed]

Perronet, K.

K. Perronet, L. Barbier, F. Charra, “Influence of the Au(111) reconstruction on the light emission induced by a scanning tunneling microscope,” Phys. Rev. B 70, 201405 (2004).
[CrossRef]

Persson, B. N. J.

B. N. J. Persson, A. Baratoff, “Theory of photon emission in electron tunneling to metallic particles,” Phys. Rev. Lett. 68, 3224–3227 (1992).
[CrossRef] [PubMed]

Pivetta, M.

F. Rossel, M. Pivetta, W.-D. Schneider, “Luminescence experiments on supported molecules with the scanning tunneling microscope,” Surf. Sci. Rep. 65, 129–144 (2010).
[CrossRef]

Qiu, X.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Qiu, X. H.

X. H. Qiu, G. V. Nazin, W. Ho, “Vibrationally resolved fluorescence excited with submolecular precision,” Science 299, 542–546 (2003).
[CrossRef] [PubMed]

G. V. Nazin, X. H. Qiu, W. Ho, “Atomic engineering of photon emission with a scanning tunneling microscope,” Phys. Rev. Lett. 90, 216110 (2003).
[CrossRef] [PubMed]

Raza, S.

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, S. I. Bozhevolnyi, “Generalized nonlocal optical response in nanoplasmonics,” arXiv: cond-mat/1312.7190

Reinhardt, M.

M. Reinhardt, G. Schull, P. Ebert, R. Berndt, “Atomic resolution in tunneling induced light emission from GaAs(100),” Appl. Phys. Lett. 96, 152107 (2010).
[CrossRef]

Robinson, A. W.

F. M. Leibsle, S. S. Dhesi, S. D. Barrett, A. W. Robinson, “STM observations of Cu(100)-c(2×2)N surfaces: evidence for attractive interactions and an incommensurate c(2 × 2) structure,” Surf. Sci. 317, 309–320 (1994).
[CrossRef]

Rossel, F.

F. Rossel, M. Pivetta, W.-D. Schneider, “Luminescence experiments on supported molecules with the scanning tunneling microscope,” Surf. Sci. Rep. 65, 129–144 (2010).
[CrossRef]

Ruben, M.

T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13, 2846–2850 (2013).
[CrossRef] [PubMed]

Ruggiero, C. D.

C. D. Ruggiero, T. Choi, J. A. Gupta, “Tunneling spectroscopy of ultrathin insulating films: CuN on Cu(100),” Appl. Phys. Lett. 91, 253106 (2007).
[CrossRef]

Sakamoto, K.

K. Meguro, K. Sakamoto, R. Arafune, M. Satoh, S. Ushioda, “Origin of multiple peaks in the light emission spectra of a Au(111) surface induced by the scanning tunneling microscope,” Phys. Rev. B 65, 165405 (2002).
[CrossRef]

Sakurai, M.

M. Sakurai, C. Thirstrup, M. Aono, “New aspects of light emission from STM,” Appl. Phys. A 80, 1153–1160 (2005).
[CrossRef]

Sanders, C. E.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Sass, J. K.

J. K. Gimzewski, J. K. Sass, R. R. Schlitter, J. Schott, “Enhanced photon emission in scanning tunnelling microscopy,” Europhys. Lett. 8, 435–440 (1989).
[CrossRef]

Satoh, M.

K. Meguro, K. Sakamoto, R. Arafune, M. Satoh, S. Ushioda, “Origin of multiple peaks in the light emission spectra of a Au(111) surface induced by the scanning tunneling microscope,” Phys. Rev. B 65, 165405 (2002).
[CrossRef]

Savage, K. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[CrossRef] [PubMed]

Schlickum, U.

T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13, 2846–2850 (2013).
[CrossRef] [PubMed]

Schlitter, R. R.

J. K. Gimzewski, J. K. Sass, R. R. Schlitter, J. Schott, “Enhanced photon emission in scanning tunnelling microscopy,” Europhys. Lett. 8, 435–440 (1989).
[CrossRef]

Schneider, N. L.

N. L. Schneider, P. Johansson, R. Berndt, “Hot electron cascades in the scanning tunneling microscope,” Phys. Rev. B 87, 045409 (2013).
[CrossRef]

Schneider, W.-D.

F. Rossel, M. Pivetta, W.-D. Schneider, “Luminescence experiments on supported molecules with the scanning tunneling microscope,” Surf. Sci. Rep. 65, 129–144 (2010).
[CrossRef]

Schott, J.

J. K. Gimzewski, J. K. Sass, R. R. Schlitter, J. Schott, “Enhanced photon emission in scanning tunnelling microscopy,” Europhys. Lett. 8, 435–440 (1989).
[CrossRef]

Schramm, F.

T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13, 2846–2850 (2013).
[CrossRef] [PubMed]

Schull, G.

M. Reinhardt, G. Schull, P. Ebert, R. Berndt, “Atomic resolution in tunneling induced light emission from GaAs(100),” Appl. Phys. Lett. 96, 152107 (2010).
[CrossRef]

G. Schull, N. Neel, P. Johansson, R. Berndt, “Electron-plasmon and electron-electron interactions at a single atom contact,” Phys. Rev. Lett. 102, 057401 (2009).
[CrossRef] [PubMed]

G. Schull, M. Becker, R. Berndt, “Imaging confined electrons with plasmonic light,” Phys. Rev. Lett. 101, 136801 (2008).
[CrossRef] [PubMed]

Shih, C.-K.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Shvets, G.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Søndergaard, T.

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, S. I. Bozhevolnyi, “Generalized nonlocal optical response in nanoplasmonics,” arXiv: cond-mat/1312.7190

Tang, B. Z.

S. Wang, W. Wang, Y. Hong, B. Z. Tang, N. Lin, “Vibronic state assisted resonant transport in molecules strongly anchored at an electrode,” Phys. Rev. B 83, 115431 (2011).
[CrossRef]

Tao, X.

X. Tao, Z. C. Dong, J. L. Yang, Y. Luo, J. G. Hou, J. Aizpurua, “Influence of a dielectric layer on photon emission induced by a scanning tunneling microscope,” J. Chem. Phys 130, 084706 (2009).
[CrossRef] [PubMed]

Y. Zhang, X. Tao, H. Y. Gao, Z. C. Dong, J. G. Hou, T. Okamoto, “Modulation of local plasmon mediated emission through molecular manipulation,” Phys. Rev. B 79, 075406 (2009).
[CrossRef]

Ternes, M.

C. F. Hirjibehedin, C.-Y. Lin, A. F. Otte, M. Ternes, C. P. Lutz, B. A. Jones, A. J. Heinrich, “Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network,” Science 317, 1199–1203 (2007).
[CrossRef] [PubMed]

Thirstrup, C.

M. Sakurai, C. Thirstrup, M. Aono, “New aspects of light emission from STM,” Appl. Phys. A 80, 1153–1160 (2005).
[CrossRef]

Trifonov, A. S.

Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92, 086801 (2004).
[CrossRef] [PubMed]

Ushioda, S.

K. Meguro, K. Sakamoto, R. Arafune, M. Satoh, S. Ushioda, “Origin of multiple peaks in the light emission spectra of a Au(111) surface induced by the scanning tunneling microscope,” Phys. Rev. B 65, 165405 (2002).
[CrossRef]

S. Ushioda, “Scanning tunneling microscope (STM) light emission spectroscopy of surface nanostructures,” J. Electron. Spectrosc. Rel. Phenom 109, 169–181 (2000).
[CrossRef]

Wang, C.-Y.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Wang, S.

S. Wang, W. Wang, Y. Hong, B. Z. Tang, N. Lin, “Vibronic state assisted resonant transport in molecules strongly anchored at an electrode,” Phys. Rev. B 83, 115431 (2011).
[CrossRef]

Wang, W.

S. Wang, W. Wang, Y. Hong, B. Z. Tang, N. Lin, “Vibronic state assisted resonant transport in molecules strongly anchored at an electrode,” Phys. Rev. B 83, 115431 (2011).
[CrossRef]

Wu, C.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

Wubs, M.

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, S. I. Bozhevolnyi, “Generalized nonlocal optical response in nanoplasmonics,” arXiv: cond-mat/1312.7190

Yang, J. L.

X. Tao, Z. C. Dong, J. L. Yang, Y. Luo, J. G. Hou, J. Aizpurua, “Influence of a dielectric layer on photon emission induced by a scanning tunneling microscope,” J. Chem. Phys 130, 084706 (2009).
[CrossRef] [PubMed]

Yokoyama, S.

Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92, 086801 (2004).
[CrossRef] [PubMed]

Yu, Y.

Zhang, Y.

F. Geng, Y. Zhang, Y. Yu, Y. Kuang, Y. Liao, Z. C. Dong, J. G. Hou, “Modulation of nanocavity plasmonic emission by local molecular states of C60 on Au(111),” Opt. Express 20, 26725–26735 (2012).
[CrossRef] [PubMed]

Y. Zhang, X. Tao, H. Y. Gao, Z. C. Dong, J. G. Hou, T. Okamoto, “Modulation of local plasmon mediated emission through molecular manipulation,” Phys. Rev. B 79, 075406 (2009).
[CrossRef]

Zou, Z. Q.

Z. Q. Zou, Z. C. Dong, A. K. Kar, H. Nejo, “STM-induced photon emission spectra from the Cu(100) surface,” Surf. Sci. 512, L373–L378 (2002).
[CrossRef]

Appl. Phys. A (1)

M. Sakurai, C. Thirstrup, M. Aono, “New aspects of light emission from STM,” Appl. Phys. A 80, 1153–1160 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

C. D. Ruggiero, T. Choi, J. A. Gupta, “Tunneling spectroscopy of ultrathin insulating films: CuN on Cu(100),” Appl. Phys. Lett. 91, 253106 (2007).
[CrossRef]

M. Reinhardt, G. Schull, P. Ebert, R. Berndt, “Atomic resolution in tunneling induced light emission from GaAs(100),” Appl. Phys. Lett. 96, 152107 (2010).
[CrossRef]

Europhys. Lett. (1)

J. K. Gimzewski, J. K. Sass, R. R. Schlitter, J. Schott, “Enhanced photon emission in scanning tunnelling microscopy,” Europhys. Lett. 8, 435–440 (1989).
[CrossRef]

J. Chem. Phys (1)

X. Tao, Z. C. Dong, J. L. Yang, Y. Luo, J. G. Hou, J. Aizpurua, “Influence of a dielectric layer on photon emission induced by a scanning tunneling microscope,” J. Chem. Phys 130, 084706 (2009).
[CrossRef] [PubMed]

J. Electron. Spectrosc. Rel. Phenom (1)

S. Ushioda, “Scanning tunneling microscope (STM) light emission spectroscopy of surface nanostructures,” J. Electron. Spectrosc. Rel. Phenom 109, 169–181 (2000).
[CrossRef]

J. Phys. D Appl. Phys. (1)

L. Douillard, F. Charra, “High-resolution mapping of plasmonic modes: photoemission and scanning tunnelling luminescence microscopies,” J. Phys. D Appl. Phys. 44, 464002 (2011).
[CrossRef]

J. Vac. Sci. Technol. B (1)

S.-W. Hla, “Scanning tunneling microscopy single atom/molecule manipulation and its application to nanoscience and technology,” J. Vac. Sci. Technol. B 23, 1351–1360 (2005).
[CrossRef]

Nano Lett. (2)

S.-W. Hla, K.-F. Braun, V. Iancu, A. Deshpande, “Single-atom extraction by scanning tunneling microscope tip crash and nanoscale surface engineering,” Nano Lett. 4, 1997–2001 (2004).
[CrossRef]

T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13, 2846–2850 (2013).
[CrossRef] [PubMed]

Nat. Commun. (1)

R. Esteban, A. G. Borisov, P. Nordlander, J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[CrossRef] [PubMed]

Nature (1)

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
[CrossRef] [PubMed]

New J. Phys. (1)

H.-M. Benia, P. Myrach, N. Nilius, “Photon emission spectroscopy of thin MgO films with the STM: from a tip-mediated to an intrinsic emission characteristic,” New J. Phys. 10, 013010 (2008).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (10)

Y. Zhang, X. Tao, H. Y. Gao, Z. C. Dong, J. G. Hou, T. Okamoto, “Modulation of local plasmon mediated emission through molecular manipulation,” Phys. Rev. B 79, 075406 (2009).
[CrossRef]

N. L. Schneider, P. Johansson, R. Berndt, “Hot electron cascades in the scanning tunneling microscope,” Phys. Rev. B 87, 045409 (2013).
[CrossRef]

P. Johansson, R. Monreal, P. Apell, “Theory for light emission from a scanning tunneling microscope,” Phys. Rev. B 42, 9210–9213 (1990).
[CrossRef]

R. Berndt, J. K. Gimzewski, “Photon emission in scanning tunneling microscopy: interpretation of photon maps of metallic systems,” Phys. Rev. B 48, 4746–4754. (1993).
[CrossRef]

K. Perronet, L. Barbier, F. Charra, “Influence of the Au(111) reconstruction on the light emission induced by a scanning tunneling microscope,” Phys. Rev. B 70, 201405 (2004).
[CrossRef]

N. Nilius, N Ernst, H.-J. Freund, “Tip influence on plasmon excitations in single gold particles in an STM,” Phys. Rev. B 65, 115421 (2002).
[CrossRef]

S. Wang, W. Wang, Y. Hong, B. Z. Tang, N. Lin, “Vibronic state assisted resonant transport in molecules strongly anchored at an electrode,” Phys. Rev. B 83, 115431 (2011).
[CrossRef]

K. Meguro, K. Sakamoto, R. Arafune, M. Satoh, S. Ushioda, “Origin of multiple peaks in the light emission spectra of a Au(111) surface induced by the scanning tunneling microscope,” Phys. Rev. B 65, 165405 (2002).
[CrossRef]

P. Johansson, “Light emission from a scanning tunneling microscope: fully retarded calculation,” Phys. Rev. B 58, 10823–10834 (1998).
[CrossRef]

J. Aizpurua, S. P. Apell, R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B 62, 2065–2073 (2000).
[CrossRef]

Phys. Rev. Lett. (10)

G. Hoffmann, T. Maroutian, R. Berndt, “Color view of atomic highs and lows in tunneling induced light emission,” Phys. Rev. Lett. 93, 076102 (2004).
[CrossRef] [PubMed]

G. V. Nazin, X. H. Qiu, W. Ho, “Atomic engineering of photon emission with a scanning tunneling microscope,” Phys. Rev. Lett. 90, 216110 (2003).
[CrossRef] [PubMed]

G. Schull, M. Becker, R. Berndt, “Imaging confined electrons with plasmonic light,” Phys. Rev. Lett. 101, 136801 (2008).
[CrossRef] [PubMed]

J. Lambe, S. L. McCarthy, “Light emission from inelastic electron tunneling,” Phys. Rev. Lett. 37, 923–925 (1976).
[CrossRef]

B. N. J. Persson, A. Baratoff, “Theory of photon emission in electron tunneling to metallic particles,” Phys. Rev. Lett. 68, 3224–3227 (1992).
[CrossRef] [PubMed]

G. Schull, N. Neel, P. Johansson, R. Berndt, “Electron-plasmon and electron-electron interactions at a single atom contact,” Phys. Rev. Lett. 102, 057401 (2009).
[CrossRef] [PubMed]

Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92, 086801 (2004).
[CrossRef] [PubMed]

N. Nilius, N. Ernst, H.-J. Freund, “Photon emission spectroscopy of individual oxide-supported silver clusters in a scanning tunneling microscope,” Phys. Rev. Lett. 84, 3994–3997 (2000).
[CrossRef] [PubMed]

G. Hoffmann, J. Kliewer, R. Berndt, “Luminescence from metallic quantum wells in a scanning tunneling microscope,” Phys. Rev. Lett. 87, 176803 (2001).
[CrossRef] [PubMed]

R. Berndt, J. K. Gimzewski, P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67, 3796–3799 (1991).
[CrossRef] [PubMed]

Science (4)

X. H. Qiu, G. V. Nazin, W. Ho, “Vibrationally resolved fluorescence excited with submolecular precision,” Science 299, 542–546 (2003).
[CrossRef] [PubMed]

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef] [PubMed]

C. Chen, C. A. Bobisch, W. Ho, “Visualization of Fermi’s golden rule through imaging of light emission from atomic silver chains,” Science 325, 981–985 (2009).
[CrossRef] [PubMed]

C. F. Hirjibehedin, C.-Y. Lin, A. F. Otte, M. Ternes, C. P. Lutz, B. A. Jones, A. J. Heinrich, “Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network,” Science 317, 1199–1203 (2007).
[CrossRef] [PubMed]

Surf. Sci. (2)

Z. Q. Zou, Z. C. Dong, A. K. Kar, H. Nejo, “STM-induced photon emission spectra from the Cu(100) surface,” Surf. Sci. 512, L373–L378 (2002).
[CrossRef]

F. M. Leibsle, S. S. Dhesi, S. D. Barrett, A. W. Robinson, “STM observations of Cu(100)-c(2×2)N surfaces: evidence for attractive interactions and an incommensurate c(2 × 2) structure,” Surf. Sci. 317, 309–320 (1994).
[CrossRef]

Surf. Sci. Rep. (1)

F. Rossel, M. Pivetta, W.-D. Schneider, “Luminescence experiments on supported molecules with the scanning tunneling microscope,” Surf. Sci. Rep. 65, 129–144 (2010).
[CrossRef]

Other (1)

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, S. I. Bozhevolnyi, “Generalized nonlocal optical response in nanoplasmonics,” arXiv: cond-mat/1312.7190

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Electrons tunnel between the STM tip and the metal sample surface with an applied bias voltage Vb. The local electronic state density is denoted by black curves. (a) Vb > 0: The IET process and related photon emission are enhanced due to the local states close to the sample Fermi level. (b) Vb > 0: The ET process is enhanced due to the local states close to the Fermi level of the tip, which suppresses the inelastic tunneling process and photon emission. (c) and (d): Under a negative bias voltage (Vb < 0), both ET and IET channels are not affected by local states of the sample.

Fig. 2
Fig. 2

(a) Site-dependent scanning tunneling spectroscopy (STS, dI/dVb spectra) measured over Cu, CuN and defect. Lower inset: STM topograph of CuN nanoislands on a Cu(100) surface, with a defect marked by the white circle (16 × 16 nm2, 1.0 V and 0.5 nA). Upper inset: Side view of the atomic structure of Cu, CuN and a missing-N defect. (b) Photon counts as functions of bias voltages Vb. The experimental data are measured over 5 times, drawn by symbols with error bars. The solid curves are calculated from the dI/dVb spectra following Eqs. (5) and (6). (c) and (d): Photon spectra measured at Cu, CuN and defect in the case of negative bias or positive bias voltages (∓3.0 V, 20 nA, 450 s). The spectra are shifted vertically for clarity.

Fig. 3
Fig. 3

Manipulating photon emission efficiency with local electronic states from an artificial cluster. (a) STM topographs of a cluster (marked by the arrow) before (upper panel) and after (lower panel) manipulation (12 × 8 nm2, 1.0 V and 0.5 nA). (b) dI/dVb spectra (upper panel) and photon counts (lower panel) with different bias voltages measured at the arrow-marked cluster before and after manipulation. In the lower panel, the experimental data are measured over 3 times, drawn by symbols with error bars; the simulation are drawn by solid curves. (c) Photon spectra measured over Cu and the cluster (3.0 V, 20 nA, 450 s).

Fig. 4
Fig. 4

Reconstructing local DOS from the photon emission data. (a) An arbitrary DOS, photon emission rate R and its derivative dR/dVb. (b) The calculated dR/dVb (down-shifted by 1.9 V) from the photon emission data as compared with the STS spectra of the cluster (dR/dVb) before and after manipulation (the marked cluster in Fig. 3(a)). (c) The calculated dR/dVb as compared with STS spectrum of CuN (dI/dVb).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

w e ( V b ) = 2 π h ¯ E F E F + e V b ρ t ( ε ) ρ s ( ε ) | M e | 2 d ε ,
w in ( V b ) = 2 π h ¯ E F E F + e V b h ν ρ t ( ε + h ν ) ρ s ( ε ) | M in | 2 d ε ,
w in ( V b ) | M in | 2 | M e | 2 w e ( V b h ν / e ) .
P ( V b ) = w in w e + w in w in w e | M in | 2 | M e | 2 w e ( V b h ν / e ) w e ( V b ) .
R h ν ( V b ) w e ( V b h ν / e ) w e ( V b ) = 0 V b h ν / e d I d V d V 0 V b d I d V d V .
R h ν ( V b ) w e ( V b + h ν / e ) w e ( V b ) = 0 V b + h ν / e d I d V d V 0 V b d I d V d V .
d R h ν d V b 1 w e ( V b ) [ η I 0 ρ s ( e V b h ν ) R h ν ρ s ( e V b ) ] .

Metrics