Abstract

We experimentally and theoretically explore near-field nanopatterning obtained by irradiation of hexagonal monolayers of micron-sized polystyrene spheres on photosensitive Ge2Sb5Te5 (GST) films. The imprinted patterns are strongly sensitive to the illumination conditions, as well as the size of the spheres and the orientation of the monolayer, which we change to demonstrate control over the resulting structures. We show that the presence of multiple scattering effects cannot be neglected to describe the resulting pattern. The experimental patterns imprinted are shown to be robust to small displacements and structural defects of the monolayer. Our method enables the design and experimental verification of patterns with multiple focii per particle and complex shapes, which can be directly implemented for large scale fabrication on different substrates.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Mcleod, C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nano 3,413 (2008).
    [CrossRef]
  2. X. A. Zhang, J. Elek, C.-H. Chan, “Three-Dimensional Nanolithography Using Light Scattering from Colloidal Particles,” ACS Nano 7 (7),6212–6218 (2013).
    [CrossRef] [PubMed]
  3. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, W. E. Moerner, “Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas,” Nano Lett. 6,355 (2006).
    [CrossRef] [PubMed]
  4. I. Martín-Fabiani, J. Siegel, S. Riedel, J. Boneberg, T. A. Ezquerra, A. Nogales, “Nanostructuring Thin Polymer Films with Optical Near Fields,” ACS Appli. Mater. Interfaces 5 (21),11402–11408 (2013).
    [CrossRef]
  5. O. Watanabe, T. Ikawa, M. Hasegawa, M. Tsuchimori, Y. Kawata, “Nanofabrication induced by near-field exposure from a nanosecond laser pulse,” Appl. Phys. Lett. 79, 1366–1368 (2001).
    [CrossRef]
  6. Z. B. Wang, M. H. Hong, B S. Luk’yanchuk, Y. Lin, Q. F. Wang, T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J Appl. Phys. 96,6845 (2004).
    [CrossRef]
  7. D. Brodoceanu, L. Landström, D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal mono-layers,” Appl. Phys. A 86,313 (2007).
    [CrossRef]
  8. T. Sakai, N. Nedyalkov, M. Obara, “Positive and negative nanohole-fabrication on glass surface by femtosecond laser with template of polystyrene particle array”, J. Phys. (Paris) D: Appl. Phys. 40,2102 (2007).
  9. A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4, 572–576 (2008).
    [CrossRef] [PubMed]
  10. R. Morarescu, L. Englert, B. Kolaric, P. Damman, R. A. L. Vallee, T. Baumert, F. Hubenthal, F. Trager, “Tuning nanopatterns on fused silica substrates: a theoretical and experimental approach,” J. Mater. Chem 21,4076 (2011).
    [CrossRef]
  11. L. Li, W. Guo, Z. B. Wang, Z. Liu, D. J. Whitehead, B. Luk’yankchuk, “Large-area laser nano-texturing with user-defined patterns,” J. Micromech. Microeng. 19,054002 (2009).
    [CrossRef]
  12. Z. B. Wang, W. Guo, B. Luk’yankchuk, D. J. Whitehead, L. Li, Z. Liu, “Optical Near-field Interaction between Neighbouring Micro/Nano-Particles,” J. Laser Micro/Nanoeng. 3 (1),14–18 (2008).
    [CrossRef]
  13. T. Miyanishi, Y. Tsunoi, M. Terakawa, M. Obara, “High-intensity near-field generation for silicon nanoparticle arrays with oblique irradiation for large-area high-throughput nanopatterning,” Appl. Phys. B 107, 323–332 (2012).
    [CrossRef]
  14. P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher., P. Leiderer, C. Afonso, J. Siegel, “Imprinting the Optical Near Field of Microstructures with Nanometer Resolution,” Small 5,1825 (2009).
    [CrossRef] [PubMed]
  15. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69,2849 (1991).
    [CrossRef]
  16. J. Siegel, A. Schropp, J. Solis, C. N. Afonso, M. Wuttig, “Rewritable phase-change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses,” Appl. Phys. Lett. 84,2250 (2004).
    [CrossRef]
  17. J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, C. Wiemer, “Amorphization dynamics of Ge2Sb2Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys. 103,023516 (2008).
    [CrossRef]
  18. P. Kühler, F. J. García de Abajo, P. Leiprecht, A. Kolloch, J. Solis, P. Leiderer, J. Siegel, “Quantitative imaging of the optical near field,” Opt. Express 20,22063–22078 (2012).
  19. B. Lee, J. Abelson, S. Bishop, D. Kang, B. Cheong, K. Kim, “Investigation of the optical and electronic properties of Ge2Sb5Te5,” J. Appl. Phys. 97,18 (2005).
  20. N. Stefanou, V. Yannopapas, A. Medinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Nat. Nano 3,413 (2008).
  21. F. J. García de Abajo, “Multiple scattering of radiation in clusters of dielectrics,” Nat. Nano 3,413 (2008).
  22. N. Stefanou, V. Yannopapas, A. Medinos, “MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Nat. Nano 3,413 (2008).
  23. R. Sainidou, N. Stefanou, I. Psarobas, A. Medinos, “A layer-multiple-scattering method for phononic crystals and heterostructures of such,” Nat. Nano 3,413 (2008).

2013 (2)

X. A. Zhang, J. Elek, C.-H. Chan, “Three-Dimensional Nanolithography Using Light Scattering from Colloidal Particles,” ACS Nano 7 (7),6212–6218 (2013).
[CrossRef] [PubMed]

I. Martín-Fabiani, J. Siegel, S. Riedel, J. Boneberg, T. A. Ezquerra, A. Nogales, “Nanostructuring Thin Polymer Films with Optical Near Fields,” ACS Appli. Mater. Interfaces 5 (21),11402–11408 (2013).
[CrossRef]

2012 (2)

T. Miyanishi, Y. Tsunoi, M. Terakawa, M. Obara, “High-intensity near-field generation for silicon nanoparticle arrays with oblique irradiation for large-area high-throughput nanopatterning,” Appl. Phys. B 107, 323–332 (2012).
[CrossRef]

P. Kühler, F. J. García de Abajo, P. Leiprecht, A. Kolloch, J. Solis, P. Leiderer, J. Siegel, “Quantitative imaging of the optical near field,” Opt. Express 20,22063–22078 (2012).

2011 (1)

R. Morarescu, L. Englert, B. Kolaric, P. Damman, R. A. L. Vallee, T. Baumert, F. Hubenthal, F. Trager, “Tuning nanopatterns on fused silica substrates: a theoretical and experimental approach,” J. Mater. Chem 21,4076 (2011).
[CrossRef]

2009 (2)

L. Li, W. Guo, Z. B. Wang, Z. Liu, D. J. Whitehead, B. Luk’yankchuk, “Large-area laser nano-texturing with user-defined patterns,” J. Micromech. Microeng. 19,054002 (2009).
[CrossRef]

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher., P. Leiderer, C. Afonso, J. Siegel, “Imprinting the Optical Near Field of Microstructures with Nanometer Resolution,” Small 5,1825 (2009).
[CrossRef] [PubMed]

2008 (8)

Z. B. Wang, W. Guo, B. Luk’yankchuk, D. J. Whitehead, L. Li, Z. Liu, “Optical Near-field Interaction between Neighbouring Micro/Nano-Particles,” J. Laser Micro/Nanoeng. 3 (1),14–18 (2008).
[CrossRef]

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4, 572–576 (2008).
[CrossRef] [PubMed]

J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, C. Wiemer, “Amorphization dynamics of Ge2Sb2Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys. 103,023516 (2008).
[CrossRef]

E. Mcleod, C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nano 3,413 (2008).
[CrossRef]

N. Stefanou, V. Yannopapas, A. Medinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Nat. Nano 3,413 (2008).

F. J. García de Abajo, “Multiple scattering of radiation in clusters of dielectrics,” Nat. Nano 3,413 (2008).

N. Stefanou, V. Yannopapas, A. Medinos, “MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Nat. Nano 3,413 (2008).

R. Sainidou, N. Stefanou, I. Psarobas, A. Medinos, “A layer-multiple-scattering method for phononic crystals and heterostructures of such,” Nat. Nano 3,413 (2008).

2007 (2)

D. Brodoceanu, L. Landström, D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal mono-layers,” Appl. Phys. A 86,313 (2007).
[CrossRef]

T. Sakai, N. Nedyalkov, M. Obara, “Positive and negative nanohole-fabrication on glass surface by femtosecond laser with template of polystyrene particle array”, J. Phys. (Paris) D: Appl. Phys. 40,2102 (2007).

2006 (1)

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, W. E. Moerner, “Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas,” Nano Lett. 6,355 (2006).
[CrossRef] [PubMed]

2005 (1)

B. Lee, J. Abelson, S. Bishop, D. Kang, B. Cheong, K. Kim, “Investigation of the optical and electronic properties of Ge2Sb5Te5,” J. Appl. Phys. 97,18 (2005).

2004 (2)

J. Siegel, A. Schropp, J. Solis, C. N. Afonso, M. Wuttig, “Rewritable phase-change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses,” Appl. Phys. Lett. 84,2250 (2004).
[CrossRef]

Z. B. Wang, M. H. Hong, B S. Luk’yanchuk, Y. Lin, Q. F. Wang, T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J Appl. Phys. 96,6845 (2004).
[CrossRef]

2001 (1)

O. Watanabe, T. Ikawa, M. Hasegawa, M. Tsuchimori, Y. Kawata, “Nanofabrication induced by near-field exposure from a nanosecond laser pulse,” Appl. Phys. Lett. 79, 1366–1368 (2001).
[CrossRef]

1991 (1)

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69,2849 (1991).
[CrossRef]

Abelson, J.

B. Lee, J. Abelson, S. Bishop, D. Kang, B. Cheong, K. Kim, “Investigation of the optical and electronic properties of Ge2Sb5Te5,” J. Appl. Phys. 97,18 (2005).

Afonso, C.

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher., P. Leiderer, C. Afonso, J. Siegel, “Imprinting the Optical Near Field of Microstructures with Nanometer Resolution,” Small 5,1825 (2009).
[CrossRef] [PubMed]

Afonso, C. N.

J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, C. Wiemer, “Amorphization dynamics of Ge2Sb2Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys. 103,023516 (2008).
[CrossRef]

J. Siegel, A. Schropp, J. Solis, C. N. Afonso, M. Wuttig, “Rewritable phase-change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses,” Appl. Phys. Lett. 84,2250 (2004).
[CrossRef]

Akahira, N.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69,2849 (1991).
[CrossRef]

Arnold, C. B.

E. Mcleod, C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nano 3,413 (2008).
[CrossRef]

Bäuerle, D.

D. Brodoceanu, L. Landström, D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal mono-layers,” Appl. Phys. A 86,313 (2007).
[CrossRef]

Baumert, T.

R. Morarescu, L. Englert, B. Kolaric, P. Damman, R. A. L. Vallee, T. Baumert, F. Hubenthal, F. Trager, “Tuning nanopatterns on fused silica substrates: a theoretical and experimental approach,” J. Mater. Chem 21,4076 (2011).
[CrossRef]

Bez, R.

J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, C. Wiemer, “Amorphization dynamics of Ge2Sb2Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys. 103,023516 (2008).
[CrossRef]

Bishop, S.

B. Lee, J. Abelson, S. Bishop, D. Kang, B. Cheong, K. Kim, “Investigation of the optical and electronic properties of Ge2Sb5Te5,” J. Appl. Phys. 97,18 (2005).

Boneberg, J.

I. Martín-Fabiani, J. Siegel, S. Riedel, J. Boneberg, T. A. Ezquerra, A. Nogales, “Nanostructuring Thin Polymer Films with Optical Near Fields,” ACS Appli. Mater. Interfaces 5 (21),11402–11408 (2013).
[CrossRef]

Brodoceanu, D.

D. Brodoceanu, L. Landström, D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal mono-layers,” Appl. Phys. A 86,313 (2007).
[CrossRef]

Chaker, M.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4, 572–576 (2008).
[CrossRef] [PubMed]

Chan, C.-H.

X. A. Zhang, J. Elek, C.-H. Chan, “Three-Dimensional Nanolithography Using Light Scattering from Colloidal Particles,” ACS Nano 7 (7),6212–6218 (2013).
[CrossRef] [PubMed]

Cheong, B.

B. Lee, J. Abelson, S. Bishop, D. Kang, B. Cheong, K. Kim, “Investigation of the optical and electronic properties of Ge2Sb5Te5,” J. Appl. Phys. 97,18 (2005).

Chong, T. C.

Z. B. Wang, M. H. Hong, B S. Luk’yanchuk, Y. Lin, Q. F. Wang, T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J Appl. Phys. 96,6845 (2004).
[CrossRef]

Conley, N. R.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, W. E. Moerner, “Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas,” Nano Lett. 6,355 (2006).
[CrossRef] [PubMed]

Damman, P.

R. Morarescu, L. Englert, B. Kolaric, P. Damman, R. A. L. Vallee, T. Baumert, F. Hubenthal, F. Trager, “Tuning nanopatterns on fused silica substrates: a theoretical and experimental approach,” J. Mater. Chem 21,4076 (2011).
[CrossRef]

de Sande, J. C. G.

J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, C. Wiemer, “Amorphization dynamics of Ge2Sb2Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys. 103,023516 (2008).
[CrossRef]

Delaporte, P.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4, 572–576 (2008).
[CrossRef] [PubMed]

Dorronsoro, C.

J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, C. Wiemer, “Amorphization dynamics of Ge2Sb2Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys. 103,023516 (2008).
[CrossRef]

Elek, J.

X. A. Zhang, J. Elek, C.-H. Chan, “Three-Dimensional Nanolithography Using Light Scattering from Colloidal Particles,” ACS Nano 7 (7),6212–6218 (2013).
[CrossRef] [PubMed]

Englert, L.

R. Morarescu, L. Englert, B. Kolaric, P. Damman, R. A. L. Vallee, T. Baumert, F. Hubenthal, F. Trager, “Tuning nanopatterns on fused silica substrates: a theoretical and experimental approach,” J. Mater. Chem 21,4076 (2011).
[CrossRef]

Ezquerra, T. A.

I. Martín-Fabiani, J. Siegel, S. Riedel, J. Boneberg, T. A. Ezquerra, A. Nogales, “Nanostructuring Thin Polymer Films with Optical Near Fields,” ACS Appli. Mater. Interfaces 5 (21),11402–11408 (2013).
[CrossRef]

Fromm, D. P.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, W. E. Moerner, “Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas,” Nano Lett. 6,355 (2006).
[CrossRef] [PubMed]

García de Abajo, F. J.

P. Kühler, F. J. García de Abajo, P. Leiprecht, A. Kolloch, J. Solis, P. Leiderer, J. Siegel, “Quantitative imaging of the optical near field,” Opt. Express 20,22063–22078 (2012).

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher., P. Leiderer, C. Afonso, J. Siegel, “Imprinting the Optical Near Field of Microstructures with Nanometer Resolution,” Small 5,1825 (2009).
[CrossRef] [PubMed]

F. J. García de Abajo, “Multiple scattering of radiation in clusters of dielectrics,” Nat. Nano 3,413 (2008).

Gawelda, W.

J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, C. Wiemer, “Amorphization dynamics of Ge2Sb2Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys. 103,023516 (2008).
[CrossRef]

Grojo, D.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4, 572–576 (2008).
[CrossRef] [PubMed]

Guay, D.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4, 572–576 (2008).
[CrossRef] [PubMed]

Guo, W.

L. Li, W. Guo, Z. B. Wang, Z. Liu, D. J. Whitehead, B. Luk’yankchuk, “Large-area laser nano-texturing with user-defined patterns,” J. Micromech. Microeng. 19,054002 (2009).
[CrossRef]

Z. B. Wang, W. Guo, B. Luk’yankchuk, D. J. Whitehead, L. Li, Z. Liu, “Optical Near-field Interaction between Neighbouring Micro/Nano-Particles,” J. Laser Micro/Nanoeng. 3 (1),14–18 (2008).
[CrossRef]

Hasegawa, M.

O. Watanabe, T. Ikawa, M. Hasegawa, M. Tsuchimori, Y. Kawata, “Nanofabrication induced by near-field exposure from a nanosecond laser pulse,” Appl. Phys. Lett. 79, 1366–1368 (2001).
[CrossRef]

Hong, M. H.

Z. B. Wang, M. H. Hong, B S. Luk’yanchuk, Y. Lin, Q. F. Wang, T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J Appl. Phys. 96,6845 (2004).
[CrossRef]

Hubenthal, F.

R. Morarescu, L. Englert, B. Kolaric, P. Damman, R. A. L. Vallee, T. Baumert, F. Hubenthal, F. Trager, “Tuning nanopatterns on fused silica substrates: a theoretical and experimental approach,” J. Mater. Chem 21,4076 (2011).
[CrossRef]

Ikawa, T.

O. Watanabe, T. Ikawa, M. Hasegawa, M. Tsuchimori, Y. Kawata, “Nanofabrication induced by near-field exposure from a nanosecond laser pulse,” Appl. Phys. Lett. 79, 1366–1368 (2001).
[CrossRef]

Kang, D.

B. Lee, J. Abelson, S. Bishop, D. Kang, B. Cheong, K. Kim, “Investigation of the optical and electronic properties of Ge2Sb5Te5,” J. Appl. Phys. 97,18 (2005).

Kawata, Y.

O. Watanabe, T. Ikawa, M. Hasegawa, M. Tsuchimori, Y. Kawata, “Nanofabrication induced by near-field exposure from a nanosecond laser pulse,” Appl. Phys. Lett. 79, 1366–1368 (2001).
[CrossRef]

Kim, K.

B. Lee, J. Abelson, S. Bishop, D. Kang, B. Cheong, K. Kim, “Investigation of the optical and electronic properties of Ge2Sb5Te5,” J. Appl. Phys. 97,18 (2005).

Kino, G. S.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, W. E. Moerner, “Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas,” Nano Lett. 6,355 (2006).
[CrossRef] [PubMed]

Kolaric, B.

R. Morarescu, L. Englert, B. Kolaric, P. Damman, R. A. L. Vallee, T. Baumert, F. Hubenthal, F. Trager, “Tuning nanopatterns on fused silica substrates: a theoretical and experimental approach,” J. Mater. Chem 21,4076 (2011).
[CrossRef]

Kolloch, A.

Kühler, P.

P. Kühler, F. J. García de Abajo, P. Leiprecht, A. Kolloch, J. Solis, P. Leiderer, J. Siegel, “Quantitative imaging of the optical near field,” Opt. Express 20,22063–22078 (2012).

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher., P. Leiderer, C. Afonso, J. Siegel, “Imprinting the Optical Near Field of Microstructures with Nanometer Resolution,” Small 5,1825 (2009).
[CrossRef] [PubMed]

Landström, L.

D. Brodoceanu, L. Landström, D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal mono-layers,” Appl. Phys. A 86,313 (2007).
[CrossRef]

Lee, B.

B. Lee, J. Abelson, S. Bishop, D. Kang, B. Cheong, K. Kim, “Investigation of the optical and electronic properties of Ge2Sb5Te5,” J. Appl. Phys. 97,18 (2005).

Leiderer, P.

P. Kühler, F. J. García de Abajo, P. Leiprecht, A. Kolloch, J. Solis, P. Leiderer, J. Siegel, “Quantitative imaging of the optical near field,” Opt. Express 20,22063–22078 (2012).

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher., P. Leiderer, C. Afonso, J. Siegel, “Imprinting the Optical Near Field of Microstructures with Nanometer Resolution,” Small 5,1825 (2009).
[CrossRef] [PubMed]

Leiprecht, P.

Li, L.

L. Li, W. Guo, Z. B. Wang, Z. Liu, D. J. Whitehead, B. Luk’yankchuk, “Large-area laser nano-texturing with user-defined patterns,” J. Micromech. Microeng. 19,054002 (2009).
[CrossRef]

Z. B. Wang, W. Guo, B. Luk’yankchuk, D. J. Whitehead, L. Li, Z. Liu, “Optical Near-field Interaction between Neighbouring Micro/Nano-Particles,” J. Laser Micro/Nanoeng. 3 (1),14–18 (2008).
[CrossRef]

Lin, Y.

Z. B. Wang, M. H. Hong, B S. Luk’yanchuk, Y. Lin, Q. F. Wang, T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J Appl. Phys. 96,6845 (2004).
[CrossRef]

Liu, Z.

L. Li, W. Guo, Z. B. Wang, Z. Liu, D. J. Whitehead, B. Luk’yankchuk, “Large-area laser nano-texturing with user-defined patterns,” J. Micromech. Microeng. 19,054002 (2009).
[CrossRef]

Z. B. Wang, W. Guo, B. Luk’yankchuk, D. J. Whitehead, L. Li, Z. Liu, “Optical Near-field Interaction between Neighbouring Micro/Nano-Particles,” J. Laser Micro/Nanoeng. 3 (1),14–18 (2008).
[CrossRef]

Luk’yanchuk, B S.

Z. B. Wang, M. H. Hong, B S. Luk’yanchuk, Y. Lin, Q. F. Wang, T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J Appl. Phys. 96,6845 (2004).
[CrossRef]

Luk’yankchuk, B.

L. Li, W. Guo, Z. B. Wang, Z. Liu, D. J. Whitehead, B. Luk’yankchuk, “Large-area laser nano-texturing with user-defined patterns,” J. Micromech. Microeng. 19,054002 (2009).
[CrossRef]

Z. B. Wang, W. Guo, B. Luk’yankchuk, D. J. Whitehead, L. Li, Z. Liu, “Optical Near-field Interaction between Neighbouring Micro/Nano-Particles,” J. Laser Micro/Nanoeng. 3 (1),14–18 (2008).
[CrossRef]

Martín-Fabiani, I.

I. Martín-Fabiani, J. Siegel, S. Riedel, J. Boneberg, T. A. Ezquerra, A. Nogales, “Nanostructuring Thin Polymer Films with Optical Near Fields,” ACS Appli. Mater. Interfaces 5 (21),11402–11408 (2013).
[CrossRef]

Mcleod, E.

E. Mcleod, C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nano 3,413 (2008).
[CrossRef]

Medinos, A.

N. Stefanou, V. Yannopapas, A. Medinos, “MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Nat. Nano 3,413 (2008).

N. Stefanou, V. Yannopapas, A. Medinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Nat. Nano 3,413 (2008).

R. Sainidou, N. Stefanou, I. Psarobas, A. Medinos, “A layer-multiple-scattering method for phononic crystals and heterostructures of such,” Nat. Nano 3,413 (2008).

Miyanishi, T.

T. Miyanishi, Y. Tsunoi, M. Terakawa, M. Obara, “High-intensity near-field generation for silicon nanoparticle arrays with oblique irradiation for large-area high-throughput nanopatterning,” Appl. Phys. B 107, 323–332 (2012).
[CrossRef]

Moerner, W. E.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, W. E. Moerner, “Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas,” Nano Lett. 6,355 (2006).
[CrossRef] [PubMed]

Morarescu, R.

R. Morarescu, L. Englert, B. Kolaric, P. Damman, R. A. L. Vallee, T. Baumert, F. Hubenthal, F. Trager, “Tuning nanopatterns on fused silica substrates: a theoretical and experimental approach,” J. Mater. Chem 21,4076 (2011).
[CrossRef]

Mosbacher., M.

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher., P. Leiderer, C. Afonso, J. Siegel, “Imprinting the Optical Near Field of Microstructures with Nanometer Resolution,” Small 5,1825 (2009).
[CrossRef] [PubMed]

Nedyalkov, N.

T. Sakai, N. Nedyalkov, M. Obara, “Positive and negative nanohole-fabrication on glass surface by femtosecond laser with template of polystyrene particle array”, J. Phys. (Paris) D: Appl. Phys. 40,2102 (2007).

Nishiuchi, K.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69,2849 (1991).
[CrossRef]

Nogales, A.

I. Martín-Fabiani, J. Siegel, S. Riedel, J. Boneberg, T. A. Ezquerra, A. Nogales, “Nanostructuring Thin Polymer Films with Optical Near Fields,” ACS Appli. Mater. Interfaces 5 (21),11402–11408 (2013).
[CrossRef]

Obara, M.

T. Miyanishi, Y. Tsunoi, M. Terakawa, M. Obara, “High-intensity near-field generation for silicon nanoparticle arrays with oblique irradiation for large-area high-throughput nanopatterning,” Appl. Phys. B 107, 323–332 (2012).
[CrossRef]

T. Sakai, N. Nedyalkov, M. Obara, “Positive and negative nanohole-fabrication on glass surface by femtosecond laser with template of polystyrene particle array”, J. Phys. (Paris) D: Appl. Phys. 40,2102 (2007).

Ohno, E.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69,2849 (1991).
[CrossRef]

Pereira, A.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4, 572–576 (2008).
[CrossRef] [PubMed]

Pirovano, A.

J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, C. Wiemer, “Amorphization dynamics of Ge2Sb2Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys. 103,023516 (2008).
[CrossRef]

Psarobas, I.

R. Sainidou, N. Stefanou, I. Psarobas, A. Medinos, “A layer-multiple-scattering method for phononic crystals and heterostructures of such,” Nat. Nano 3,413 (2008).

Puerto, D.

J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, C. Wiemer, “Amorphization dynamics of Ge2Sb2Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys. 103,023516 (2008).
[CrossRef]

Riedel, S.

I. Martín-Fabiani, J. Siegel, S. Riedel, J. Boneberg, T. A. Ezquerra, A. Nogales, “Nanostructuring Thin Polymer Films with Optical Near Fields,” ACS Appli. Mater. Interfaces 5 (21),11402–11408 (2013).
[CrossRef]

Sainidou, R.

R. Sainidou, N. Stefanou, I. Psarobas, A. Medinos, “A layer-multiple-scattering method for phononic crystals and heterostructures of such,” Nat. Nano 3,413 (2008).

Sakai, T.

T. Sakai, N. Nedyalkov, M. Obara, “Positive and negative nanohole-fabrication on glass surface by femtosecond laser with template of polystyrene particle array”, J. Phys. (Paris) D: Appl. Phys. 40,2102 (2007).

Schropp, A.

J. Siegel, A. Schropp, J. Solis, C. N. Afonso, M. Wuttig, “Rewritable phase-change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses,” Appl. Phys. Lett. 84,2250 (2004).
[CrossRef]

Schuck, P. J.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, W. E. Moerner, “Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas,” Nano Lett. 6,355 (2006).
[CrossRef] [PubMed]

Sentis, M.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4, 572–576 (2008).
[CrossRef] [PubMed]

Siegel, J.

I. Martín-Fabiani, J. Siegel, S. Riedel, J. Boneberg, T. A. Ezquerra, A. Nogales, “Nanostructuring Thin Polymer Films with Optical Near Fields,” ACS Appli. Mater. Interfaces 5 (21),11402–11408 (2013).
[CrossRef]

P. Kühler, F. J. García de Abajo, P. Leiprecht, A. Kolloch, J. Solis, P. Leiderer, J. Siegel, “Quantitative imaging of the optical near field,” Opt. Express 20,22063–22078 (2012).

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher., P. Leiderer, C. Afonso, J. Siegel, “Imprinting the Optical Near Field of Microstructures with Nanometer Resolution,” Small 5,1825 (2009).
[CrossRef] [PubMed]

J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, C. Wiemer, “Amorphization dynamics of Ge2Sb2Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys. 103,023516 (2008).
[CrossRef]

J. Siegel, A. Schropp, J. Solis, C. N. Afonso, M. Wuttig, “Rewritable phase-change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses,” Appl. Phys. Lett. 84,2250 (2004).
[CrossRef]

Solis, J.

P. Kühler, F. J. García de Abajo, P. Leiprecht, A. Kolloch, J. Solis, P. Leiderer, J. Siegel, “Quantitative imaging of the optical near field,” Opt. Express 20,22063–22078 (2012).

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher., P. Leiderer, C. Afonso, J. Siegel, “Imprinting the Optical Near Field of Microstructures with Nanometer Resolution,” Small 5,1825 (2009).
[CrossRef] [PubMed]

J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, C. Wiemer, “Amorphization dynamics of Ge2Sb2Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys. 103,023516 (2008).
[CrossRef]

J. Siegel, A. Schropp, J. Solis, C. N. Afonso, M. Wuttig, “Rewritable phase-change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses,” Appl. Phys. Lett. 84,2250 (2004).
[CrossRef]

Stefanou, N.

R. Sainidou, N. Stefanou, I. Psarobas, A. Medinos, “A layer-multiple-scattering method for phononic crystals and heterostructures of such,” Nat. Nano 3,413 (2008).

N. Stefanou, V. Yannopapas, A. Medinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Nat. Nano 3,413 (2008).

N. Stefanou, V. Yannopapas, A. Medinos, “MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Nat. Nano 3,413 (2008).

Sundaramurthy, A.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, W. E. Moerner, “Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas,” Nano Lett. 6,355 (2006).
[CrossRef] [PubMed]

Takao, M.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69,2849 (1991).
[CrossRef]

Terakawa, M.

T. Miyanishi, Y. Tsunoi, M. Terakawa, M. Obara, “High-intensity near-field generation for silicon nanoparticle arrays with oblique irradiation for large-area high-throughput nanopatterning,” Appl. Phys. B 107, 323–332 (2012).
[CrossRef]

Trager, F.

R. Morarescu, L. Englert, B. Kolaric, P. Damman, R. A. L. Vallee, T. Baumert, F. Hubenthal, F. Trager, “Tuning nanopatterns on fused silica substrates: a theoretical and experimental approach,” J. Mater. Chem 21,4076 (2011).
[CrossRef]

Tsuchimori, M.

O. Watanabe, T. Ikawa, M. Hasegawa, M. Tsuchimori, Y. Kawata, “Nanofabrication induced by near-field exposure from a nanosecond laser pulse,” Appl. Phys. Lett. 79, 1366–1368 (2001).
[CrossRef]

Tsunoi, Y.

T. Miyanishi, Y. Tsunoi, M. Terakawa, M. Obara, “High-intensity near-field generation for silicon nanoparticle arrays with oblique irradiation for large-area high-throughput nanopatterning,” Appl. Phys. B 107, 323–332 (2012).
[CrossRef]

Vallee, R. A. L.

R. Morarescu, L. Englert, B. Kolaric, P. Damman, R. A. L. Vallee, T. Baumert, F. Hubenthal, F. Trager, “Tuning nanopatterns on fused silica substrates: a theoretical and experimental approach,” J. Mater. Chem 21,4076 (2011).
[CrossRef]

Wang, Q. F.

Z. B. Wang, M. H. Hong, B S. Luk’yanchuk, Y. Lin, Q. F. Wang, T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J Appl. Phys. 96,6845 (2004).
[CrossRef]

Wang, Z. B.

L. Li, W. Guo, Z. B. Wang, Z. Liu, D. J. Whitehead, B. Luk’yankchuk, “Large-area laser nano-texturing with user-defined patterns,” J. Micromech. Microeng. 19,054002 (2009).
[CrossRef]

Z. B. Wang, W. Guo, B. Luk’yankchuk, D. J. Whitehead, L. Li, Z. Liu, “Optical Near-field Interaction between Neighbouring Micro/Nano-Particles,” J. Laser Micro/Nanoeng. 3 (1),14–18 (2008).
[CrossRef]

Z. B. Wang, M. H. Hong, B S. Luk’yanchuk, Y. Lin, Q. F. Wang, T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J Appl. Phys. 96,6845 (2004).
[CrossRef]

Watanabe, O.

O. Watanabe, T. Ikawa, M. Hasegawa, M. Tsuchimori, Y. Kawata, “Nanofabrication induced by near-field exposure from a nanosecond laser pulse,” Appl. Phys. Lett. 79, 1366–1368 (2001).
[CrossRef]

Whitehead, D. J.

L. Li, W. Guo, Z. B. Wang, Z. Liu, D. J. Whitehead, B. Luk’yankchuk, “Large-area laser nano-texturing with user-defined patterns,” J. Micromech. Microeng. 19,054002 (2009).
[CrossRef]

Z. B. Wang, W. Guo, B. Luk’yankchuk, D. J. Whitehead, L. Li, Z. Liu, “Optical Near-field Interaction between Neighbouring Micro/Nano-Particles,” J. Laser Micro/Nanoeng. 3 (1),14–18 (2008).
[CrossRef]

Wiemer, C.

J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, C. Wiemer, “Amorphization dynamics of Ge2Sb2Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys. 103,023516 (2008).
[CrossRef]

Wuttig, M.

J. Siegel, A. Schropp, J. Solis, C. N. Afonso, M. Wuttig, “Rewritable phase-change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses,” Appl. Phys. Lett. 84,2250 (2004).
[CrossRef]

Yamada, N.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69,2849 (1991).
[CrossRef]

Yannopapas, V.

N. Stefanou, V. Yannopapas, A. Medinos, “MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Nat. Nano 3,413 (2008).

N. Stefanou, V. Yannopapas, A. Medinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Nat. Nano 3,413 (2008).

Zhang, X. A.

X. A. Zhang, J. Elek, C.-H. Chan, “Three-Dimensional Nanolithography Using Light Scattering from Colloidal Particles,” ACS Nano 7 (7),6212–6218 (2013).
[CrossRef] [PubMed]

ACS Appli. Mater. Interfaces (1)

I. Martín-Fabiani, J. Siegel, S. Riedel, J. Boneberg, T. A. Ezquerra, A. Nogales, “Nanostructuring Thin Polymer Films with Optical Near Fields,” ACS Appli. Mater. Interfaces 5 (21),11402–11408 (2013).
[CrossRef]

ACS Nano (1)

X. A. Zhang, J. Elek, C.-H. Chan, “Three-Dimensional Nanolithography Using Light Scattering from Colloidal Particles,” ACS Nano 7 (7),6212–6218 (2013).
[CrossRef] [PubMed]

Appl. Phys. A (1)

D. Brodoceanu, L. Landström, D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal mono-layers,” Appl. Phys. A 86,313 (2007).
[CrossRef]

Appl. Phys. B (1)

T. Miyanishi, Y. Tsunoi, M. Terakawa, M. Obara, “High-intensity near-field generation for silicon nanoparticle arrays with oblique irradiation for large-area high-throughput nanopatterning,” Appl. Phys. B 107, 323–332 (2012).
[CrossRef]

Appl. Phys. Lett. (2)

O. Watanabe, T. Ikawa, M. Hasegawa, M. Tsuchimori, Y. Kawata, “Nanofabrication induced by near-field exposure from a nanosecond laser pulse,” Appl. Phys. Lett. 79, 1366–1368 (2001).
[CrossRef]

J. Siegel, A. Schropp, J. Solis, C. N. Afonso, M. Wuttig, “Rewritable phase-change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses,” Appl. Phys. Lett. 84,2250 (2004).
[CrossRef]

J Appl. Phys. (1)

Z. B. Wang, M. H. Hong, B S. Luk’yanchuk, Y. Lin, Q. F. Wang, T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J Appl. Phys. 96,6845 (2004).
[CrossRef]

J. Appl. Phys. (3)

J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, C. Wiemer, “Amorphization dynamics of Ge2Sb2Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys. 103,023516 (2008).
[CrossRef]

B. Lee, J. Abelson, S. Bishop, D. Kang, B. Cheong, K. Kim, “Investigation of the optical and electronic properties of Ge2Sb5Te5,” J. Appl. Phys. 97,18 (2005).

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69,2849 (1991).
[CrossRef]

J. Laser Micro/Nanoeng. (1)

Z. B. Wang, W. Guo, B. Luk’yankchuk, D. J. Whitehead, L. Li, Z. Liu, “Optical Near-field Interaction between Neighbouring Micro/Nano-Particles,” J. Laser Micro/Nanoeng. 3 (1),14–18 (2008).
[CrossRef]

J. Mater. Chem (1)

R. Morarescu, L. Englert, B. Kolaric, P. Damman, R. A. L. Vallee, T. Baumert, F. Hubenthal, F. Trager, “Tuning nanopatterns on fused silica substrates: a theoretical and experimental approach,” J. Mater. Chem 21,4076 (2011).
[CrossRef]

J. Micromech. Microeng. (1)

L. Li, W. Guo, Z. B. Wang, Z. Liu, D. J. Whitehead, B. Luk’yankchuk, “Large-area laser nano-texturing with user-defined patterns,” J. Micromech. Microeng. 19,054002 (2009).
[CrossRef]

J. Phys. (Paris) D: Appl. Phys. (1)

T. Sakai, N. Nedyalkov, M. Obara, “Positive and negative nanohole-fabrication on glass surface by femtosecond laser with template of polystyrene particle array”, J. Phys. (Paris) D: Appl. Phys. 40,2102 (2007).

Nano Lett. (1)

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, W. E. Moerner, “Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas,” Nano Lett. 6,355 (2006).
[CrossRef] [PubMed]

Nat. Nano (5)

N. Stefanou, V. Yannopapas, A. Medinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Nat. Nano 3,413 (2008).

F. J. García de Abajo, “Multiple scattering of radiation in clusters of dielectrics,” Nat. Nano 3,413 (2008).

N. Stefanou, V. Yannopapas, A. Medinos, “MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Nat. Nano 3,413 (2008).

R. Sainidou, N. Stefanou, I. Psarobas, A. Medinos, “A layer-multiple-scattering method for phononic crystals and heterostructures of such,” Nat. Nano 3,413 (2008).

E. Mcleod, C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nano 3,413 (2008).
[CrossRef]

Opt. Express (1)

Small (2)

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4, 572–576 (2008).
[CrossRef] [PubMed]

P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher., P. Leiderer, C. Afonso, J. Siegel, “Imprinting the Optical Near Field of Microstructures with Nanometer Resolution,” Small 5,1825 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Hexagonal lattice of polystyrene spheres with an underlying calculated near-field pattern, which is imprinted into a GST substrate. The calculation details are as in (d) (see below). The incident light is p-polarized and has wave vector along a nearest-neighbors bond direction (ϕ = 0°). (b) Dispersion diagram showing the reflection coefficient |r| of a closed-packed monolayer of polystyrene spheres on an fcc GST planar substrate. (c)–(e) Near-field associated with specific points in the dispersion diagram for a = 817 nm (see corresponding symbols in (b)). Wavelengths and angles of incidence used: (c) λ = 409 nm, θ = 40.8°; (d) λ = 799 nm, θ = 52.2°; (e) λ = 925 nm, θ = 30.0°.

Fig. 2
Fig. 2

Imprinted near-field intensity calculated for increasing angles of incidence with fixed azimuthal sample lattice rotation ϕ = 21°, particle size a = 1730 nm, and p-polarized light of wavelength λ = 900 nm. Gray circles signal particle positions. The maximum of intensity beneath the GST-air interface is given in each figure, while the color scale is normalized as indicated in the lower color bar. The imprinted intensity drops for increasing inclination.

Fig. 3
Fig. 3

Influence of incident light polarization on the imprinted near-field for λ = 799 nm, a = 1704 nm, and θ = 52.2°. Gray circles in the calculated graphs indicate the sphere-substrate contact points. Measured SEM images (a,b) are compared with theory (c,d) for the following parameters: (a),(c) s-polarization, and lattice rotation ϕ = 22.3° (see inset to (c)); (b),(d) p-polarization, ϕ = 20.6°.

Fig. 4
Fig. 4

Influence of lattice rotation ϕ on the imprinted near-field for a = 817 nm and p-polarized light incident with λ = 799 nm and θ = 52.2°. Gray circles signal contact points in the calculated images. Measured SEM images (a,b) (acquired with a sideways detector that is insensitive to the contact-point surface modifications) are compared with theory (c,d) for ϕ = 41° in (a,c) and ϕ = 23° in (b,d).

Fig. 5
Fig. 5

(a) Observation of an imprinted pattern imaged with a SEM inlens mode detector. The sample and illumination parameters are λ = 799 nm, a = 1730 nm, θ = 52.2°, p-polarization, and ϕ = 26.4°. The single lattice defect is marked by an arrow. No perturbation in the imprinted near-field pattern is observed. (b) Optical microscopy image of a different, larger region of the same monolayer before irradiation, showing the presence of single defects (vacancies). (c) Multiple- scattering calculation of the corresponding full lattice (no defect). (d) Simple superposition model.

Metrics