Abstract

Using a compact (0.03 mm2) silicon-photonic bias-free thermo-optic cross-bar switch, we demonstrate microsecond-scale switching of twenty wavelength channels of a C-band wavelength-division multiplexed optical ring network, each carrying 10 Gbit/second data concurrently, with 15 mW electrical power consumption (no temperature control required). A convenient pulsed driving scheme is demonstrated and eye patterns and bit-error rate measurements are shown. An algorithm is developed to measure the power-division ratio between the two output ports, the insertion and switching losses, and non-ideal phase deviations.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Vahdat, H. Liu, X. Zhao, C. Johnson, “The emerging optical data center,” in Proc. Optical Fiber Communication Conf. (2011), paper OTuH2.
    [CrossRef]
  2. G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, M. Ryan, “c-Through: Part-time optics in data centers,” in Proc. ACM SIGCOMM ‘10(2010), pp. 327–338.
    [CrossRef]
  3. N. Farrington, G. Porter, P.-C. Sun, A. Forencich, J. Ford, Y. Fainman, G. Papen, A. Vahdat, “A demonstration of ultra-low-latency data center optical circuit switching,” ACM SIGCOMM Computer Commun. Rev. 42, 95–96 (2012).
    [CrossRef]
  4. Y. O. Noh, H. J. Lee, Y. H. Won, M. C Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258, 18–22 (2006).
    [CrossRef]
  5. B. G. Lee, A. Biberman, P. Dong, M. Lipson, K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20, 767–769 (2008).
    [CrossRef]
  6. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Proc. Conf. Lasers and Electro-Optics (2009), paper CPDB10.
    [CrossRef]
  7. R. Aguinaldo, Y. Shen, S. Mookherjea, “Large dispersion of silicon directional couplers obtained via wideband microring parametric characterization,” IEEE Photonics Technol. Lett., 24, 1242–1244 (2012).
    [CrossRef]
  8. Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, H. Ishikawa, “Low-crosstalk 2 × 2 thermo-optic switch with silicon wire waveguides,” Opt. Express 18, 9071–9075 (2010).
    [CrossRef] [PubMed]
  9. C. DeRose, M. Watts, R. Young, D. Trotter, G. Nielson, W. Zortman, R. Kekatpure, “Low power and broadband 2 X 2 silicon thermo-optic switch,” in Proc. Optical Fiber Communication Conf. (2011), paper OThM3.
    [CrossRef]
  10. G. Coppola, L. Sirleto, I. Rendina, M. Iodice, “Advances in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50, 071112 (2011).
    [CrossRef]
  11. M. W. Geis, S. J. Spector, R. C. Williamson, T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16, 2514–2516 (2004).
    [CrossRef]
  12. M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett. 38, 733–735 (2013).
    [CrossRef] [PubMed]
  13. R. L. Espinola, M. C. Tsai, J. Yardley, R. M. Osgood, “Fast and low power thermo-optic switch on thin silicon-on-insulator,” IEEE Photonics Technol. Lett. 15, 1366–1368 (2003).
    [CrossRef]
  14. A. Yariv, P. Yeh, Photonics: Optical Electronics in Modern Communications, 6 (Oxford University, 2007), Chap. 4.
  15. For example, by examining the expression for ‘baroff’ in Eq. (2) in the simple case when δ0= 0, we see that −t2+ |κ|2(for |κ| > 0.5 and t < 0.5) and +t2 − |κ|2 (for |κ| < 0.5 and t > 0.5) give the same numerical value.
  16. J. Van Campenhout, W. M. J. Green, S. Assefa, Y. A. Vlasov, “Low-power, 2×2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17, 24020–24029 (2009).
    [CrossRef]
  17. P. Dong, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, M. Asghari, “Submilliwatt, ultrafast and broadband electro-optic silicon switches,” Opt. Express 18, 25225–25231 (2010).
    [CrossRef] [PubMed]
  18. R. Soref, B. Bennett, “Electrooptilcal effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
    [CrossRef]
  19. P. Ganguly, J. C. Biswas, S. Das, S. K. Lahiri, “A three-waveguide polarization independent power splitter on lithium niobate substrate,” Opt. Commun. 168, 349–354 (1999).
    [CrossRef]
  20. G. Calò, A. D’Orazio, V. Petruzzelli, “Broadband Mach-Zehnder switch for photonic networks on chip,” J. Lightwave Technol. 30, 944–952 (2012).
    [CrossRef]
  21. W. Zortman, A. Lentine, D. Trotter, M. Watts, “Integrated CMOS comaptible low power 10Gbps silicon photonic heater modulator,” in Proc. Optical Fiber Communication Conf. (2012), paper OW4I.5.
    [CrossRef]
  22. M. Harjanne, M. Kapulainen, T. Aalto, P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photonics Technol. Lett. 16, 2039–2041 (2004).
    [CrossRef]
  23. Y. Li, J. Yu, S. Chen, Y. Li, Y. Chen, “Submicrosecond rearrangeable nonblocking silicon-on-insulator thermo-optic 4X4 switch matrix,” Opt. Lett. 32, 603–604 (2007).
    [CrossRef] [PubMed]

2013 (1)

2012 (3)

G. Calò, A. D’Orazio, V. Petruzzelli, “Broadband Mach-Zehnder switch for photonic networks on chip,” J. Lightwave Technol. 30, 944–952 (2012).
[CrossRef]

R. Aguinaldo, Y. Shen, S. Mookherjea, “Large dispersion of silicon directional couplers obtained via wideband microring parametric characterization,” IEEE Photonics Technol. Lett., 24, 1242–1244 (2012).
[CrossRef]

N. Farrington, G. Porter, P.-C. Sun, A. Forencich, J. Ford, Y. Fainman, G. Papen, A. Vahdat, “A demonstration of ultra-low-latency data center optical circuit switching,” ACM SIGCOMM Computer Commun. Rev. 42, 95–96 (2012).
[CrossRef]

2011 (1)

G. Coppola, L. Sirleto, I. Rendina, M. Iodice, “Advances in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50, 071112 (2011).
[CrossRef]

2010 (2)

2009 (1)

2008 (1)

B. G. Lee, A. Biberman, P. Dong, M. Lipson, K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20, 767–769 (2008).
[CrossRef]

2007 (1)

2006 (1)

Y. O. Noh, H. J. Lee, Y. H. Won, M. C Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258, 18–22 (2006).
[CrossRef]

2004 (2)

M. W. Geis, S. J. Spector, R. C. Williamson, T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16, 2514–2516 (2004).
[CrossRef]

M. Harjanne, M. Kapulainen, T. Aalto, P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photonics Technol. Lett. 16, 2039–2041 (2004).
[CrossRef]

2003 (1)

R. L. Espinola, M. C. Tsai, J. Yardley, R. M. Osgood, “Fast and low power thermo-optic switch on thin silicon-on-insulator,” IEEE Photonics Technol. Lett. 15, 1366–1368 (2003).
[CrossRef]

1999 (1)

P. Ganguly, J. C. Biswas, S. Das, S. K. Lahiri, “A three-waveguide polarization independent power splitter on lithium niobate substrate,” Opt. Commun. 168, 349–354 (1999).
[CrossRef]

1987 (1)

R. Soref, B. Bennett, “Electrooptilcal effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

Aalto, T.

M. Harjanne, M. Kapulainen, T. Aalto, P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photonics Technol. Lett. 16, 2039–2041 (2004).
[CrossRef]

Aguinaldo, R.

R. Aguinaldo, Y. Shen, S. Mookherjea, “Large dispersion of silicon directional couplers obtained via wideband microring parametric characterization,” IEEE Photonics Technol. Lett., 24, 1242–1244 (2012).
[CrossRef]

Andersen, D. G.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, M. Ryan, “c-Through: Part-time optics in data centers,” in Proc. ACM SIGCOMM ‘10(2010), pp. 327–338.
[CrossRef]

Asghari, M.

Assefa, S.

Bennett, B.

R. Soref, B. Bennett, “Electrooptilcal effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

Bergman, K.

B. G. Lee, A. Biberman, P. Dong, M. Lipson, K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20, 767–769 (2008).
[CrossRef]

Biberman, A.

B. G. Lee, A. Biberman, P. Dong, M. Lipson, K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20, 767–769 (2008).
[CrossRef]

Biswas, J. C.

P. Ganguly, J. C. Biswas, S. Das, S. K. Lahiri, “A three-waveguide polarization independent power splitter on lithium niobate substrate,” Opt. Commun. 168, 349–354 (1999).
[CrossRef]

Calò, G.

Chen, S.

Chen, Y.

Coppola, G.

G. Coppola, L. Sirleto, I. Rendina, M. Iodice, “Advances in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50, 071112 (2011).
[CrossRef]

D’Orazio, A.

Das, S.

P. Ganguly, J. C. Biswas, S. Das, S. K. Lahiri, “A three-waveguide polarization independent power splitter on lithium niobate substrate,” Opt. Commun. 168, 349–354 (1999).
[CrossRef]

DeRose, C.

M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett. 38, 733–735 (2013).
[CrossRef] [PubMed]

C. DeRose, M. Watts, R. Young, D. Trotter, G. Nielson, W. Zortman, R. Kekatpure, “Low power and broadband 2 X 2 silicon thermo-optic switch,” in Proc. Optical Fiber Communication Conf. (2011), paper OThM3.
[CrossRef]

Dong, P.

P. Dong, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, M. Asghari, “Submilliwatt, ultrafast and broadband electro-optic silicon switches,” Opt. Express 18, 25225–25231 (2010).
[CrossRef] [PubMed]

B. G. Lee, A. Biberman, P. Dong, M. Lipson, K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20, 767–769 (2008).
[CrossRef]

Espinola, R. L.

R. L. Espinola, M. C. Tsai, J. Yardley, R. M. Osgood, “Fast and low power thermo-optic switch on thin silicon-on-insulator,” IEEE Photonics Technol. Lett. 15, 1366–1368 (2003).
[CrossRef]

Fainman, Y.

N. Farrington, G. Porter, P.-C. Sun, A. Forencich, J. Ford, Y. Fainman, G. Papen, A. Vahdat, “A demonstration of ultra-low-latency data center optical circuit switching,” ACM SIGCOMM Computer Commun. Rev. 42, 95–96 (2012).
[CrossRef]

Farrington, N.

N. Farrington, G. Porter, P.-C. Sun, A. Forencich, J. Ford, Y. Fainman, G. Papen, A. Vahdat, “A demonstration of ultra-low-latency data center optical circuit switching,” ACM SIGCOMM Computer Commun. Rev. 42, 95–96 (2012).
[CrossRef]

Feng, D.

Ford, J.

N. Farrington, G. Porter, P.-C. Sun, A. Forencich, J. Ford, Y. Fainman, G. Papen, A. Vahdat, “A demonstration of ultra-low-latency data center optical circuit switching,” ACM SIGCOMM Computer Commun. Rev. 42, 95–96 (2012).
[CrossRef]

Forencich, A.

N. Farrington, G. Porter, P.-C. Sun, A. Forencich, J. Ford, Y. Fainman, G. Papen, A. Vahdat, “A demonstration of ultra-low-latency data center optical circuit switching,” ACM SIGCOMM Computer Commun. Rev. 42, 95–96 (2012).
[CrossRef]

Ganguly, P.

P. Ganguly, J. C. Biswas, S. Das, S. K. Lahiri, “A three-waveguide polarization independent power splitter on lithium niobate substrate,” Opt. Commun. 168, 349–354 (1999).
[CrossRef]

Geis, M. W.

M. W. Geis, S. J. Spector, R. C. Williamson, T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16, 2514–2516 (2004).
[CrossRef]

Green, W. M. J.

Harjanne, M.

M. Harjanne, M. Kapulainen, T. Aalto, P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photonics Technol. Lett. 16, 2039–2041 (2004).
[CrossRef]

Hasama, T.

Heimala, P.

M. Harjanne, M. Kapulainen, T. Aalto, P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photonics Technol. Lett. 16, 2039–2041 (2004).
[CrossRef]

Iodice, M.

G. Coppola, L. Sirleto, I. Rendina, M. Iodice, “Advances in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50, 071112 (2011).
[CrossRef]

Ishikawa, H.

Johnson, C.

A. Vahdat, H. Liu, X. Zhao, C. Johnson, “The emerging optical data center,” in Proc. Optical Fiber Communication Conf. (2011), paper OTuH2.
[CrossRef]

Kaminsky, M.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, M. Ryan, “c-Through: Part-time optics in data centers,” in Proc. ACM SIGCOMM ‘10(2010), pp. 327–338.
[CrossRef]

Kapulainen, M.

M. Harjanne, M. Kapulainen, T. Aalto, P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photonics Technol. Lett. 16, 2039–2041 (2004).
[CrossRef]

Kawashima, H.

Kekatpure, R.

C. DeRose, M. Watts, R. Young, D. Trotter, G. Nielson, W. Zortman, R. Kekatpure, “Low power and broadband 2 X 2 silicon thermo-optic switch,” in Proc. Optical Fiber Communication Conf. (2011), paper OThM3.
[CrossRef]

Kintaka, K.

Kozuch, M.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, M. Ryan, “c-Through: Part-time optics in data centers,” in Proc. ACM SIGCOMM ‘10(2010), pp. 327–338.
[CrossRef]

Krishnamoorthy, A. V.

Lahiri, S. K.

P. Ganguly, J. C. Biswas, S. Das, S. K. Lahiri, “A three-waveguide polarization independent power splitter on lithium niobate substrate,” Opt. Commun. 168, 349–354 (1999).
[CrossRef]

Lee, B. G.

B. G. Lee, A. Biberman, P. Dong, M. Lipson, K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20, 767–769 (2008).
[CrossRef]

Lee, H. J.

Y. O. Noh, H. J. Lee, Y. H. Won, M. C Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258, 18–22 (2006).
[CrossRef]

Lentine, A.

W. Zortman, A. Lentine, D. Trotter, M. Watts, “Integrated CMOS comaptible low power 10Gbps silicon photonic heater modulator,” in Proc. Optical Fiber Communication Conf. (2012), paper OW4I.5.
[CrossRef]

Li, G.

Li, Y.

Liang, H.

Liao, S.

Lipson, M.

B. G. Lee, A. Biberman, P. Dong, M. Lipson, K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20, 767–769 (2008).
[CrossRef]

Liu, H.

A. Vahdat, H. Liu, X. Zhao, C. Johnson, “The emerging optical data center,” in Proc. Optical Fiber Communication Conf. (2011), paper OTuH2.
[CrossRef]

Luck, D. L.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Proc. Conf. Lasers and Electro-Optics (2009), paper CPDB10.
[CrossRef]

Lyszczarz, T. M.

M. W. Geis, S. J. Spector, R. C. Williamson, T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16, 2514–2516 (2004).
[CrossRef]

Mookherjea, S.

R. Aguinaldo, Y. Shen, S. Mookherjea, “Large dispersion of silicon directional couplers obtained via wideband microring parametric characterization,” IEEE Photonics Technol. Lett., 24, 1242–1244 (2012).
[CrossRef]

Ng, T. S. E.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, M. Ryan, “c-Through: Part-time optics in data centers,” in Proc. ACM SIGCOMM ‘10(2010), pp. 327–338.
[CrossRef]

Nielson, G.

C. DeRose, M. Watts, R. Young, D. Trotter, G. Nielson, W. Zortman, R. Kekatpure, “Low power and broadband 2 X 2 silicon thermo-optic switch,” in Proc. Optical Fiber Communication Conf. (2011), paper OThM3.
[CrossRef]

Nielson, G. N.

M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett. 38, 733–735 (2013).
[CrossRef] [PubMed]

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Proc. Conf. Lasers and Electro-Optics (2009), paper CPDB10.
[CrossRef]

Noh, Y. O.

Y. O. Noh, H. J. Lee, Y. H. Won, M. C Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258, 18–22 (2006).
[CrossRef]

Oh, M. C

Y. O. Noh, H. J. Lee, Y. H. Won, M. C Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258, 18–22 (2006).
[CrossRef]

Osgood, R. M.

R. L. Espinola, M. C. Tsai, J. Yardley, R. M. Osgood, “Fast and low power thermo-optic switch on thin silicon-on-insulator,” IEEE Photonics Technol. Lett. 15, 1366–1368 (2003).
[CrossRef]

Papagiannaki, K.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, M. Ryan, “c-Through: Part-time optics in data centers,” in Proc. ACM SIGCOMM ‘10(2010), pp. 327–338.
[CrossRef]

Papen, G.

N. Farrington, G. Porter, P.-C. Sun, A. Forencich, J. Ford, Y. Fainman, G. Papen, A. Vahdat, “A demonstration of ultra-low-latency data center optical circuit switching,” ACM SIGCOMM Computer Commun. Rev. 42, 95–96 (2012).
[CrossRef]

Petruzzelli, V.

Porter, G.

N. Farrington, G. Porter, P.-C. Sun, A. Forencich, J. Ford, Y. Fainman, G. Papen, A. Vahdat, “A demonstration of ultra-low-latency data center optical circuit switching,” ACM SIGCOMM Computer Commun. Rev. 42, 95–96 (2012).
[CrossRef]

Rendina, I.

G. Coppola, L. Sirleto, I. Rendina, M. Iodice, “Advances in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50, 071112 (2011).
[CrossRef]

Ryan, M.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, M. Ryan, “c-Through: Part-time optics in data centers,” in Proc. ACM SIGCOMM ‘10(2010), pp. 327–338.
[CrossRef]

Shafiiha, R.

Shen, Y.

R. Aguinaldo, Y. Shen, S. Mookherjea, “Large dispersion of silicon directional couplers obtained via wideband microring parametric characterization,” IEEE Photonics Technol. Lett., 24, 1242–1244 (2012).
[CrossRef]

Shoji, Y.

Sirleto, L.

G. Coppola, L. Sirleto, I. Rendina, M. Iodice, “Advances in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50, 071112 (2011).
[CrossRef]

Soref, R.

R. Soref, B. Bennett, “Electrooptilcal effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

Spector, S. J.

M. W. Geis, S. J. Spector, R. C. Williamson, T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16, 2514–2516 (2004).
[CrossRef]

Suda, S.

Sun, J.

Sun, P.-C.

N. Farrington, G. Porter, P.-C. Sun, A. Forencich, J. Ford, Y. Fainman, G. Papen, A. Vahdat, “A demonstration of ultra-low-latency data center optical circuit switching,” ACM SIGCOMM Computer Commun. Rev. 42, 95–96 (2012).
[CrossRef]

Trotter, D.

W. Zortman, A. Lentine, D. Trotter, M. Watts, “Integrated CMOS comaptible low power 10Gbps silicon photonic heater modulator,” in Proc. Optical Fiber Communication Conf. (2012), paper OW4I.5.
[CrossRef]

C. DeRose, M. Watts, R. Young, D. Trotter, G. Nielson, W. Zortman, R. Kekatpure, “Low power and broadband 2 X 2 silicon thermo-optic switch,” in Proc. Optical Fiber Communication Conf. (2011), paper OThM3.
[CrossRef]

Trotter, D. C.

M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett. 38, 733–735 (2013).
[CrossRef] [PubMed]

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Proc. Conf. Lasers and Electro-Optics (2009), paper CPDB10.
[CrossRef]

Tsai, M. C.

R. L. Espinola, M. C. Tsai, J. Yardley, R. M. Osgood, “Fast and low power thermo-optic switch on thin silicon-on-insulator,” IEEE Photonics Technol. Lett. 15, 1366–1368 (2003).
[CrossRef]

Vahdat, A.

N. Farrington, G. Porter, P.-C. Sun, A. Forencich, J. Ford, Y. Fainman, G. Papen, A. Vahdat, “A demonstration of ultra-low-latency data center optical circuit switching,” ACM SIGCOMM Computer Commun. Rev. 42, 95–96 (2012).
[CrossRef]

A. Vahdat, H. Liu, X. Zhao, C. Johnson, “The emerging optical data center,” in Proc. Optical Fiber Communication Conf. (2011), paper OTuH2.
[CrossRef]

Van Campenhout, J.

Vlasov, Y. A.

Wang, G.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, M. Ryan, “c-Through: Part-time optics in data centers,” in Proc. ACM SIGCOMM ‘10(2010), pp. 327–338.
[CrossRef]

Watts, M.

W. Zortman, A. Lentine, D. Trotter, M. Watts, “Integrated CMOS comaptible low power 10Gbps silicon photonic heater modulator,” in Proc. Optical Fiber Communication Conf. (2012), paper OW4I.5.
[CrossRef]

C. DeRose, M. Watts, R. Young, D. Trotter, G. Nielson, W. Zortman, R. Kekatpure, “Low power and broadband 2 X 2 silicon thermo-optic switch,” in Proc. Optical Fiber Communication Conf. (2011), paper OThM3.
[CrossRef]

Watts, M. R.

M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett. 38, 733–735 (2013).
[CrossRef] [PubMed]

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Proc. Conf. Lasers and Electro-Optics (2009), paper CPDB10.
[CrossRef]

Williamson, R. C.

M. W. Geis, S. J. Spector, R. C. Williamson, T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16, 2514–2516 (2004).
[CrossRef]

Won, Y. H.

Y. O. Noh, H. J. Lee, Y. H. Won, M. C Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258, 18–22 (2006).
[CrossRef]

Yardley, J.

R. L. Espinola, M. C. Tsai, J. Yardley, R. M. Osgood, “Fast and low power thermo-optic switch on thin silicon-on-insulator,” IEEE Photonics Technol. Lett. 15, 1366–1368 (2003).
[CrossRef]

Yariv, A.

A. Yariv, P. Yeh, Photonics: Optical Electronics in Modern Communications, 6 (Oxford University, 2007), Chap. 4.

Yeh, P.

A. Yariv, P. Yeh, Photonics: Optical Electronics in Modern Communications, 6 (Oxford University, 2007), Chap. 4.

Young, R.

C. DeRose, M. Watts, R. Young, D. Trotter, G. Nielson, W. Zortman, R. Kekatpure, “Low power and broadband 2 X 2 silicon thermo-optic switch,” in Proc. Optical Fiber Communication Conf. (2011), paper OThM3.
[CrossRef]

Young, R. W.

M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett. 38, 733–735 (2013).
[CrossRef] [PubMed]

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Proc. Conf. Lasers and Electro-Optics (2009), paper CPDB10.
[CrossRef]

Yu, J.

Zhao, X.

A. Vahdat, H. Liu, X. Zhao, C. Johnson, “The emerging optical data center,” in Proc. Optical Fiber Communication Conf. (2011), paper OTuH2.
[CrossRef]

Zheng, X.

Zortman, W.

C. DeRose, M. Watts, R. Young, D. Trotter, G. Nielson, W. Zortman, R. Kekatpure, “Low power and broadband 2 X 2 silicon thermo-optic switch,” in Proc. Optical Fiber Communication Conf. (2011), paper OThM3.
[CrossRef]

W. Zortman, A. Lentine, D. Trotter, M. Watts, “Integrated CMOS comaptible low power 10Gbps silicon photonic heater modulator,” in Proc. Optical Fiber Communication Conf. (2012), paper OW4I.5.
[CrossRef]

Zortman, W. A.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Proc. Conf. Lasers and Electro-Optics (2009), paper CPDB10.
[CrossRef]

ACM SIGCOMM Computer Commun. Rev. (1)

N. Farrington, G. Porter, P.-C. Sun, A. Forencich, J. Ford, Y. Fainman, G. Papen, A. Vahdat, “A demonstration of ultra-low-latency data center optical circuit switching,” ACM SIGCOMM Computer Commun. Rev. 42, 95–96 (2012).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Soref, B. Bennett, “Electrooptilcal effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

IEEE Photonics Technol. Lett. (5)

M. Harjanne, M. Kapulainen, T. Aalto, P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photonics Technol. Lett. 16, 2039–2041 (2004).
[CrossRef]

M. W. Geis, S. J. Spector, R. C. Williamson, T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16, 2514–2516 (2004).
[CrossRef]

R. L. Espinola, M. C. Tsai, J. Yardley, R. M. Osgood, “Fast and low power thermo-optic switch on thin silicon-on-insulator,” IEEE Photonics Technol. Lett. 15, 1366–1368 (2003).
[CrossRef]

B. G. Lee, A. Biberman, P. Dong, M. Lipson, K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20, 767–769 (2008).
[CrossRef]

R. Aguinaldo, Y. Shen, S. Mookherjea, “Large dispersion of silicon directional couplers obtained via wideband microring parametric characterization,” IEEE Photonics Technol. Lett., 24, 1242–1244 (2012).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (2)

Y. O. Noh, H. J. Lee, Y. H. Won, M. C Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258, 18–22 (2006).
[CrossRef]

P. Ganguly, J. C. Biswas, S. Das, S. K. Lahiri, “A three-waveguide polarization independent power splitter on lithium niobate substrate,” Opt. Commun. 168, 349–354 (1999).
[CrossRef]

Opt. Eng. (1)

G. Coppola, L. Sirleto, I. Rendina, M. Iodice, “Advances in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50, 071112 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Other (7)

W. Zortman, A. Lentine, D. Trotter, M. Watts, “Integrated CMOS comaptible low power 10Gbps silicon photonic heater modulator,” in Proc. Optical Fiber Communication Conf. (2012), paper OW4I.5.
[CrossRef]

A. Yariv, P. Yeh, Photonics: Optical Electronics in Modern Communications, 6 (Oxford University, 2007), Chap. 4.

For example, by examining the expression for ‘baroff’ in Eq. (2) in the simple case when δ0= 0, we see that −t2+ |κ|2(for |κ| > 0.5 and t < 0.5) and +t2 − |κ|2 (for |κ| < 0.5 and t > 0.5) give the same numerical value.

A. Vahdat, H. Liu, X. Zhao, C. Johnson, “The emerging optical data center,” in Proc. Optical Fiber Communication Conf. (2011), paper OTuH2.
[CrossRef]

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, M. Ryan, “c-Through: Part-time optics in data centers,” in Proc. ACM SIGCOMM ‘10(2010), pp. 327–338.
[CrossRef]

C. DeRose, M. Watts, R. Young, D. Trotter, G. Nielson, W. Zortman, R. Kekatpure, “Low power and broadband 2 X 2 silicon thermo-optic switch,” in Proc. Optical Fiber Communication Conf. (2011), paper OThM3.
[CrossRef]

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Proc. Conf. Lasers and Electro-Optics (2009), paper CPDB10.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

A) Hardware for the optical circuit-switched multi-wavelength MORDIA ring network at UC San Diego, including data servers, optical amplifiers (EDFAs), optical spectrum analyzer (OSA) for power monitoring, and hardware for wideband wavelength-selective switching (WSS). There are six nodes and four host stations per node. B) Schematic of the ring network topology, in which any of the nodes can access the full bandwidth of the ring (about 30-nm wavelength span). C) Optical spectrum of 20 data channels, each carrying 10-Gbit/s data, used in the switching demonstration (some extraneous channels, not carrying data, or at long wavelengths that lie outside the range of the tunable filters used to measure the individual eye patterns, also propagate through the chip but were not measured here).

Fig. 2
Fig. 2

A) Mach-Zehnder interferometer thermo-optic silicon-photonic cross-bar switch with bias voltage (Vbias, unused) and switching voltage (Vmod = 0 V or Vmod = 4.25 V) indicated. The region highlighted in yellow contains a bank of five phase shifters, as shown schematically in B. The optical field experiences a thermo-optic phase-shift in each of the widened arcs, the inside of which is doped to create a resistor. These resistive heaters are electrically wired in parallel, so as to reduce the switching voltage compared to a single heater. (The axial co-ordinate x is referred to in Section 3.1.)

Fig. 3
Fig. 3

A) Transmission in the cross and bar output ports, at 0 V (crossoff and baroff), and Vπ = 4.25 V (crosson and baron) applied to the switching arm. Using the algorithm described in Section 2.1, the wavelength variation of the main device parameters were measured. There are two mathematical solutions, shown in black and green, and the physically meaningful ones are plotted in black. B) The coupling coefficient for the adiabatic 3-dB couplers (nominally 0.5). C) The loss induced in the “hot” state by the cascade of five phase shifters (a = 0.5 dB for five heaters implies 0.1 dB loss per heater section). D) The wavelength variations of the phase parameters which describe the phase slip from 0 or π phase. As shown by the flat lines for δ0, there is no wavelength variation of the phase slip when no voltage is applied; however, there is significant variation with wavelength in δV. Note that both branches of the |κ|2 solution result in the similar phase estimations for |δV|.

Fig. 4
Fig. 4

A) Similar spectral variations were extracted for the coupling coefficient under the three separate assumptions: no coupler loss (|κ|2 + |t|2 = 1, shown in black), or increasing amounts of loss, (|κ|2 + |t|2 = 0.95, shown in blue, and |κ|2 + |t|2 = 0.90, shown in red). B) For these three assumptions, the differences in the loss induced in the “hot” state were not significant. C) The three assumptions also gave essentially the same estimate regarding the variation of the phase slip with wavelength in the “hot” state, |δV|. There is not much significance to the numerical value of the phase slip in the “cold state” |δ0| since a spectrally-flat phase slip can be easily compensated for by heating the bias arm; however, the wavelength-dependent variations in |δV| cannot be compensated by a bias voltage simultaneously at all wavelengths and pose a fundamental limitation to the extinction ratio of the switch.

Fig. 5
Fig. 5

Comparison of transmission spectra, intensity coupling coefficients |κ|2, on-state losss a, and phase slips δ0 and δV for three different devices. First column: data for the present device. Middle column: transmission data from Ref. [16]. Last column: transmission data from Ref. [17]. The parameters in each column; |κ|2, a, δ0, and δV; were extracted from the respective transmission spectra in the first row. For the sake of device-to-device comparison, each set of transmission spectra is normalized to the maximum of its respective crossoff response. Note that the abscissas are different column-to-column since the devices are optimized for different spectral regions.

Fig. 6
Fig. 6

Pulse-width modulation of a digital heater drive (10 V amplitude), with different duty cycles as indicated by the percentages. A) Using a slow (10 kHz) drive, the rise and fall time constants were measured to be 11.1 μs and 11.3 μs, respectively, at 50% duty cycle. B, C) Here, both the drive frequencies were greater than the inverse of the time constants. The vertical axis shows the cross-state transmission when a heating voltage was applied, i.e., the desirable transmission was as close to 0 as possible with minimum ripple. The results show that at the lower frequency (B, 5 MHz), the residual ripple at the frequency of the drive signal was greater than at a higher frequency (C, 15 MHz), in accordance with the discussion in Section 3.1.

Fig. 7
Fig. 7

A) 10 Gbit/s eye patterns of cross and bar states (analog and digital drives) for a selected channel at 1558 nm. B) Bit-error-rate (BER) power sensitivity curves, showing no penalty between analog and digital voltages for switching. The optical power labeled on the horizontal axis was measured at the detector.

Fig. 8
Fig. 8

10 Gbit eye patterns (labeled by ITU-T G.694.1 DWDM channel number) in the bar (A) and cross (B) states for server-driven data. Channel-to-channel differences correspond to normal variations in the ring (see Fig. 1(c)). C) For a single channel at 1558 nm, Q-factor versus received power curves for the cross and bar states are nearly identical. Horizontal red dashed lines ‘A’ and ‘B’ refer to estimated packet loss rate of 10−4 and estimated BER of 10−12. D) The histogram of Q-factors, with all channels above the A threshold.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

( bar cross ) = ( t κ * κ t * ) ( a e i ϕ 0 0 1 ) ( t κ * κ t * ) ( 1 0 ) = ( a t 2 e i ϕ + | κ | 2 a κ t e i ϕ t * κ )
bar on = 20 log 10 | a t 2 e i δ V + | κ | 2 | ; cross off = 20 log 10 | κ t e i δ 0 t * κ | ; bar off = 20 log 10 | t 2 e i δ 0 + | κ | 2 | ; cross on = 20 log 10 | a κ t e i δ V t * κ | .
bar on | ( bar heat ) = 20 log 10 | a t 2 e i δ V + | κ | 2 | bar on | ( cross heat ) = 20 log 10 | t 2 + a | κ | 2 e i δ V | .
L = 2 ( log 2 ( N 1 ) + log 2 ( log 2 N ) ) a .
u t = k 2 u x 2 , with u ( 0 , t ) = g ( t ) , u ( x , 0 ) = 0 .
g ( t ) = n A n e i Ω n t ,
d u ˜ n d t + k ω 2 u ˜ n = 2 π k ω A n e i Ω n t .
u ˜ n ( ω , t ) = [ u ˜ n ( ω , 0 ) + i 2 π k ω A n π Ω n i k ω 2 ] e k ω 2 t + 2 π ω A n ω 2 + i Ω n / k e i Ω n t .
u n ( x , t ) A n exp ( Ω n 2 k x ) cos ( Ω n t Ω n 2 k x ) .

Metrics