Abstract

A system for measuring spectrally-resolved fluorescence cross sections of single bioaerosol particles has been developed and employed in a biological safety level 3 (BSL-3) facility at Edgewood Chemical and Biological Center (ECBC). It is used to aerosolize the slurry or solution of live agents and surrogates into dried micron-size particles, and to measure the fluorescence spectra and sizes of the particles one at a time. Spectrally-resolved fluorescence cross sections were measured for (1) bacterial spores: Bacillus anthracis Ames (BaA), B. atrophaeus var. globigii (BG) (formerly known as Bacillus globigii), B. thuringiensis israelensis (Bti), B. thuringiensis kurstaki (Btk), B. anthracis Sterne (BaS); (2) vegetative bacteria: Escherichia coli (E. coli), Pantoea agglomerans (Eh) (formerly known as Erwinia herbicola), Yersinia rohdei (Yr), Yersinia pestis CO92 (Yp); and (3) virus preparations: Venezuelan equine encephalitis TC83 (VEE) and the bacteriophage MS2. The excitation wavelengths were 266 nm, 273 nm, 280 nm, 365 nm and 405 nm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fernstrom, M. Goldblatt, “Aerobiology and its role in the transmission of infectious disease,” J. Pathogens 2013, 1–13 (2013).
    [CrossRef]
  2. Y. L. Pan, J. D. Eversole, P. Kaye, V. Foote, R. G. Pinnick, S. C. Hill, M. W. Mayo, and R. K. Chang, “Bio-aerosol fluorescence,” in Optics of Biological Particles (NATO Science Series II: Mathematics Physics and Chemistry), A. Hoekstra, V Maltsev, and G Videen, eds., (Springer, 2006), pp. 63–164.
  3. P. P. Hairston, J. Ho, F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28(3), 471–482 (1997).
    [CrossRef] [PubMed]
  4. F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4–5), 240–248 (1999).
    [CrossRef]
  5. M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30(2), 174–185 (1999).
    [CrossRef]
  6. V. Sivaprakasam, H. B. Lin, A. L. Huston, J. D. Eversole, “Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements,” Opt. Express 19(7), 6191–6208 (2011).
    [CrossRef] [PubMed]
  7. P. H. Kaye, W. R. Stanley, E. Hirst, E. V. Foot, K. L. Baxter, S. J. Barrington, “Single particle multichannel bio-aerosol fluorescence sensor,” Opt. Express 13(10), 3583–3593 (2005).
    [CrossRef] [PubMed]
  8. K. L. Schroder, P. J. Hargis, R. L. Schmitt, D. J. Rader, I. R. Shokair, “Development of an unattended ground sensor for ultraviolet laser-induced fluorescence detection of biological agent aerosols,” Proc. SPIE 3855, 82–91 (1999).
    [CrossRef]
  9. J. A. Huffman, B. Treutlein, U. Pöschl, “Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe,” Atmos. Chem. Phys. 10(7), 3215–3233 (2010).
    [CrossRef]
  10. D. Kiselev, L. Bonacina, J.-P. Wolf, “A flash-lamp based device for fluorescence detection and identification of individual pollen grains,” Rev. Sci. Instrum. 84(3), 033302 (2013).
    [CrossRef] [PubMed]
  11. Y. L. Pan, S. Holler, R. K. Chang, S. Hill, R. G. Pinnick, S. Niles, J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser,” Opt. Lett. 24(2), 116–118 (1999).
    [CrossRef] [PubMed]
  12. S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. R. Bottiger, B. T. Chen, C. S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3(4–5), 221–239 (1999).
    [CrossRef]
  13. Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res. 112, D24S19 (2007).
    [CrossRef]
  14. Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results,” Opt. Express 18(12), 12436–12457 (2010).
    [CrossRef] [PubMed]
  15. R. Bhartia, W. F. Hug, E. C. Salas, R. D. Reid, K. K. Sijapati, A. Tsapin, W. Abbey, K. H. Nealson, A. L. Lane, P. G. Conrad, “Classification of organic and biological materials with deep ultraviolet excitation,” Appl. Spectrosc. 62(10), 1070–1077 (2008).
    [CrossRef] [PubMed]
  16. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, 1983), pp. 341–343.
  17. A. Manninen, M. Putkiranta, J. Saarela, A. Rostedt, T. Sorvajärvi, J. Toivonen, M. Marjamäki, J. Keskinen, R. Hernberg, “Fluorescence cross sections of bioaerosols and suspended biological agents,” Appl. Opt. 48(22), 4320–4328 (2009).
    [CrossRef] [PubMed]
  18. C. Pöhlker, J. A. Huffman, U. Pöschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech. 5(1), 37–71 (2012).
    [CrossRef]
  19. D. E. Wilson, and L.C. Chosewood, eds., Biosafety in Microbiological and Biomedical Laboratories (BMBL), 5th ed. (US Dept. Health and Human Services, 2009).
  20. K. Rhodes, “High-containment biosafety laboratories, Preliminary observations on the oversight of the Proliferation of BSL-3 and BSL-4 laboratories in the United States,” GAO-08–108T. Testimony before the Subcomittee on Oversight and Investigations (2007), p. 10.
  21. H. U. Kim, J. M. Goepfert, “A sporulation medium for Bacillus anthracis,” J. Appl. Bacteriol. 37(2), 265–267 (1974).
    [CrossRef] [PubMed]
  22. L. A. Mattieson and J. L. Saunderson, “Optical and electrical properties of polystyrenes,” in Styrene: its Polymers, Copolymers and Derivatives, R. H. Boundy, R. F. Boyer, and S. M. Stoesser, eds. (Reinhold, 1952), p. 524.
  23. T. Inagaki, E. T. Arakawa, R. N. Hamm, M. W. Williams, “Optical properties of polystyrene from the near-infrared to the X-ray region and convergence of optical sum rules,” Phys. Rev. B 15(6), 3243–3253 (1977).
    [CrossRef]
  24. P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).
  25. S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
    [CrossRef] [PubMed]
  26. Y. L. Pan, S. C. Hill, J. P. Wolf, S. Holler, R. K. Chang, J. R. Bottiger, “Backward-enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt. 41(15), 2994–2999 (2002).
    [CrossRef] [PubMed]
  27. J. L. Santarpia, Y. L. Pan, S. C. Hill, N. Baker, B. Cottrell, L. McKee, S. Ratnesar-Shumate, R. G. Pinnick, “Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric aging,” Opt. Express 20(28), 29867–29881 (2012).
    [CrossRef] [PubMed]
  28. G. W. Faris, A. Williams, C. B. Carlisle, and B. V. Bronk, “Spectrally resolved absolute fluorescence cross sections of B. Globigii and B. Cereus,” SRI technical Note, SRI project 2913 (May 1992).
  29. G. W. Faris, R. A. Copeland, K. Mortelmans, B. V. Bronk, “Spectrally resolved absolute fluorescence cross sections for bacillus spores,” Appl. Opt. 36(4), 958–967 (1997).
    [CrossRef] [PubMed]
  30. V. Sivaprakasam, A. Huston, C. Scotto, J. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express 12(19), 4457–4466 (2004).
    [CrossRef] [PubMed]
  31. J. Kunnil, S. Sarasanandarajah, E. Chacko, L. Reinisch, “Fluorescence quantum efficiency of dry Bacillus globigii spores,” Opt. Express 13(22), 8969–8979 (2005).
    [CrossRef] [PubMed]
  32. J. R. Stephens, “Measurements of the ultraviolet fluorescence cross sections and spectra of bacillus anthracis simulants,” Los Alamos National Lab Report, LAUR-98–4173 (May, 1999).
  33. J. Atkins, M. E. Thomas, R. I. Joseph, “Spectrally resolved fluorescence cross sections of BG and BT with a 266-nm pump wavelength,” Proc. SPIE 6554, 65540T1 (2007).
  34. R. Weichert, W. Klemm, K. Legenhausen, C. Pawellek, “Determination of fluorescence cross-sections of biological aerosols,” Part. Part. Syst. Charact. 19(3), 216–222 (2002).
    [CrossRef]
  35. M. Carrera, R. O. Zandomeni, J. Fitzgibbon, J. L. Sagripanti, “Difference between the spore sizes of Bacillus anthracis and other Bacillus species,” J. Appl. Microbiol. 102(2), 303–312 (2007).
    [CrossRef] [PubMed]
  36. C. Laflamme, J.-R. Simard, S. Buteau, P. Lahaie, D. Nadeau, B. Déry, O. Houle, P. Mathieu, G. Roy, J. Ho, C. Duchaine, “Effect of growth media and washing on the spectral signatures of aerosolized biological simulants,” Appl. Opt. 50(6), 788–796 (2011).
    [CrossRef] [PubMed]
  37. J.-R. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, J. Ho, “Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence,” IEEE Trans. Geosci. Remote Sens. 42(4), 865–874 (2004).
    [CrossRef]
  38. B. Dery, S. Buteau, J.-R. Simard, J.-P. Bouchard, R. Vallee, “Spectroscopic calibration correlation of field and lab-sized fluorescence lidar systems,” IEEE Trans. Geosci. Remote Sens. 48(9), 3580–3586 (2010).
    [CrossRef]
  39. G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, J.-P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
    [CrossRef]
  40. A. Rondi, D. Kiselev, S. Machado, J. Extermann, S. Weber, L. Bonacina, J. P. Wolf, J. Roslund, M. Roth, H. Rabitz, “Discriminating biomolecules with coherent control strategies,” Chimia (Aarau) 65(5), 346–349 (2011).
    [CrossRef] [PubMed]

2013 (2)

A. Fernstrom, M. Goldblatt, “Aerobiology and its role in the transmission of infectious disease,” J. Pathogens 2013, 1–13 (2013).
[CrossRef]

D. Kiselev, L. Bonacina, J.-P. Wolf, “A flash-lamp based device for fluorescence detection and identification of individual pollen grains,” Rev. Sci. Instrum. 84(3), 033302 (2013).
[CrossRef] [PubMed]

2012 (2)

2011 (3)

2010 (3)

B. Dery, S. Buteau, J.-R. Simard, J.-P. Bouchard, R. Vallee, “Spectroscopic calibration correlation of field and lab-sized fluorescence lidar systems,” IEEE Trans. Geosci. Remote Sens. 48(9), 3580–3586 (2010).
[CrossRef]

Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results,” Opt. Express 18(12), 12436–12457 (2010).
[CrossRef] [PubMed]

J. A. Huffman, B. Treutlein, U. Pöschl, “Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe,” Atmos. Chem. Phys. 10(7), 3215–3233 (2010).
[CrossRef]

2009 (1)

2008 (1)

2007 (3)

Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res. 112, D24S19 (2007).
[CrossRef]

J. Atkins, M. E. Thomas, R. I. Joseph, “Spectrally resolved fluorescence cross sections of BG and BT with a 266-nm pump wavelength,” Proc. SPIE 6554, 65540T1 (2007).

M. Carrera, R. O. Zandomeni, J. Fitzgibbon, J. L. Sagripanti, “Difference between the spore sizes of Bacillus anthracis and other Bacillus species,” J. Appl. Microbiol. 102(2), 303–312 (2007).
[CrossRef] [PubMed]

2005 (2)

2004 (3)

V. Sivaprakasam, A. Huston, C. Scotto, J. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express 12(19), 4457–4466 (2004).
[CrossRef] [PubMed]

G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, J.-P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
[CrossRef]

J.-R. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, J. Ho, “Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence,” IEEE Trans. Geosci. Remote Sens. 42(4), 865–874 (2004).
[CrossRef]

2002 (2)

R. Weichert, W. Klemm, K. Legenhausen, C. Pawellek, “Determination of fluorescence cross-sections of biological aerosols,” Part. Part. Syst. Charact. 19(3), 216–222 (2002).
[CrossRef]

Y. L. Pan, S. C. Hill, J. P. Wolf, S. Holler, R. K. Chang, J. R. Bottiger, “Backward-enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt. 41(15), 2994–2999 (2002).
[CrossRef] [PubMed]

2000 (1)

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[CrossRef] [PubMed]

1999 (5)

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. R. Bottiger, B. T. Chen, C. S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3(4–5), 221–239 (1999).
[CrossRef]

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4–5), 240–248 (1999).
[CrossRef]

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30(2), 174–185 (1999).
[CrossRef]

K. L. Schroder, P. J. Hargis, R. L. Schmitt, D. J. Rader, I. R. Shokair, “Development of an unattended ground sensor for ultraviolet laser-induced fluorescence detection of biological agent aerosols,” Proc. SPIE 3855, 82–91 (1999).
[CrossRef]

Y. L. Pan, S. Holler, R. K. Chang, S. Hill, R. G. Pinnick, S. Niles, J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser,” Opt. Lett. 24(2), 116–118 (1999).
[CrossRef] [PubMed]

1997 (2)

G. W. Faris, R. A. Copeland, K. Mortelmans, B. V. Bronk, “Spectrally resolved absolute fluorescence cross sections for bacillus spores,” Appl. Opt. 36(4), 958–967 (1997).
[CrossRef] [PubMed]

P. P. Hairston, J. Ho, F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28(3), 471–482 (1997).
[CrossRef] [PubMed]

1977 (1)

T. Inagaki, E. T. Arakawa, R. N. Hamm, M. W. Williams, “Optical properties of polystyrene from the near-infrared to the X-ray region and convergence of optical sum rules,” Phys. Rev. B 15(6), 3243–3253 (1977).
[CrossRef]

1974 (1)

H. U. Kim, J. M. Goepfert, “A sporulation medium for Bacillus anthracis,” J. Appl. Bacteriol. 37(2), 265–267 (1974).
[CrossRef] [PubMed]

Abbey, W.

Arakawa, E. T.

T. Inagaki, E. T. Arakawa, R. N. Hamm, M. W. Williams, “Optical properties of polystyrene from the near-infrared to the X-ray region and convergence of optical sum rules,” Phys. Rev. B 15(6), 3243–3253 (1977).
[CrossRef]

Atkins, J.

J. Atkins, M. E. Thomas, R. I. Joseph, “Spectrally resolved fluorescence cross sections of BG and BT with a 266-nm pump wavelength,” Proc. SPIE 6554, 65540T1 (2007).

Baker, N.

Barrington, S. J.

Baxter, K. L.

Bhartia, R.

Bonacina, L.

D. Kiselev, L. Bonacina, J.-P. Wolf, “A flash-lamp based device for fluorescence detection and identification of individual pollen grains,” Rev. Sci. Instrum. 84(3), 033302 (2013).
[CrossRef] [PubMed]

A. Rondi, D. Kiselev, S. Machado, J. Extermann, S. Weber, L. Bonacina, J. P. Wolf, J. Roslund, M. Roth, H. Rabitz, “Discriminating biomolecules with coherent control strategies,” Chimia (Aarau) 65(5), 346–349 (2011).
[CrossRef] [PubMed]

Bottiger, J. R.

Bouchard, J.-P.

B. Dery, S. Buteau, J.-R. Simard, J.-P. Bouchard, R. Vallee, “Spectroscopic calibration correlation of field and lab-sized fluorescence lidar systems,” IEEE Trans. Geosci. Remote Sens. 48(9), 3580–3586 (2010).
[CrossRef]

Boutou, V.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[CrossRef] [PubMed]

Bronk, B. V.

Buteau, S.

C. Laflamme, J.-R. Simard, S. Buteau, P. Lahaie, D. Nadeau, B. Déry, O. Houle, P. Mathieu, G. Roy, J. Ho, C. Duchaine, “Effect of growth media and washing on the spectral signatures of aerosolized biological simulants,” Appl. Opt. 50(6), 788–796 (2011).
[CrossRef] [PubMed]

B. Dery, S. Buteau, J.-R. Simard, J.-P. Bouchard, R. Vallee, “Spectroscopic calibration correlation of field and lab-sized fluorescence lidar systems,” IEEE Trans. Geosci. Remote Sens. 48(9), 3580–3586 (2010).
[CrossRef]

Carrera, M.

M. Carrera, R. O. Zandomeni, J. Fitzgibbon, J. L. Sagripanti, “Difference between the spore sizes of Bacillus anthracis and other Bacillus species,” J. Appl. Microbiol. 102(2), 303–312 (2007).
[CrossRef] [PubMed]

Cary, W. K.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30(2), 174–185 (1999).
[CrossRef]

Chacko, E.

Chang, R. K.

Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results,” Opt. Express 18(12), 12436–12457 (2010).
[CrossRef] [PubMed]

Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res. 112, D24S19 (2007).
[CrossRef]

Y. L. Pan, S. C. Hill, J. P. Wolf, S. Holler, R. K. Chang, J. R. Bottiger, “Backward-enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt. 41(15), 2994–2999 (2002).
[CrossRef] [PubMed]

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[CrossRef] [PubMed]

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. R. Bottiger, B. T. Chen, C. S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3(4–5), 221–239 (1999).
[CrossRef]

Y. L. Pan, S. Holler, R. K. Chang, S. Hill, R. G. Pinnick, S. Niles, J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser,” Opt. Lett. 24(2), 116–118 (1999).
[CrossRef] [PubMed]

Chen, B. T.

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. R. Bottiger, B. T. Chen, C. S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3(4–5), 221–239 (1999).
[CrossRef]

Conrad, P. G.

Copeland, R. A.

Cottrell, B.

Dery, B.

B. Dery, S. Buteau, J.-R. Simard, J.-P. Bouchard, R. Vallee, “Spectroscopic calibration correlation of field and lab-sized fluorescence lidar systems,” IEEE Trans. Geosci. Remote Sens. 48(9), 3580–3586 (2010).
[CrossRef]

Déry, B.

Duchaine, C.

Eversole, J.

Eversole, J. D.

V. Sivaprakasam, H. B. Lin, A. L. Huston, J. D. Eversole, “Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements,” Opt. Express 19(7), 6191–6208 (2011).
[CrossRef] [PubMed]

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30(2), 174–185 (1999).
[CrossRef]

Extermann, J.

A. Rondi, D. Kiselev, S. Machado, J. Extermann, S. Weber, L. Bonacina, J. P. Wolf, J. Roslund, M. Roth, H. Rabitz, “Discriminating biomolecules with coherent control strategies,” Chimia (Aarau) 65(5), 346–349 (2011).
[CrossRef] [PubMed]

Faris, G. W.

Feather, G.

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. R. Bottiger, B. T. Chen, C. S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3(4–5), 221–239 (1999).
[CrossRef]

Fernstrom, A.

A. Fernstrom, M. Goldblatt, “Aerobiology and its role in the transmission of infectious disease,” J. Pathogens 2013, 1–13 (2013).
[CrossRef]

Fitzgibbon, J.

M. Carrera, R. O. Zandomeni, J. Fitzgibbon, J. L. Sagripanti, “Difference between the spore sizes of Bacillus anthracis and other Bacillus species,” J. Appl. Microbiol. 102(2), 303–312 (2007).
[CrossRef] [PubMed]

Foot, E. V.

Frey, S.

G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, J.-P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
[CrossRef]

Goepfert, J. M.

H. U. Kim, J. M. Goepfert, “A sporulation medium for Bacillus anthracis,” J. Appl. Bacteriol. 37(2), 265–267 (1974).
[CrossRef] [PubMed]

Goldblatt, M.

A. Fernstrom, M. Goldblatt, “Aerobiology and its role in the transmission of infectious disease,” J. Pathogens 2013, 1–13 (2013).
[CrossRef]

Hairston, P. P.

P. P. Hairston, J. Ho, F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28(3), 471–482 (1997).
[CrossRef] [PubMed]

Hamm, R. N.

T. Inagaki, E. T. Arakawa, R. N. Hamm, M. W. Williams, “Optical properties of polystyrene from the near-infrared to the X-ray region and convergence of optical sum rules,” Phys. Rev. B 15(6), 3243–3253 (1977).
[CrossRef]

Hardgrove, J. J.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30(2), 174–185 (1999).
[CrossRef]

Hargis, P. J.

K. L. Schroder, P. J. Hargis, R. L. Schmitt, D. J. Rader, I. R. Shokair, “Development of an unattended ground sensor for ultraviolet laser-induced fluorescence detection of biological agent aerosols,” Proc. SPIE 3855, 82–91 (1999).
[CrossRef]

Hernberg, R.

Hill, S.

Hill, S. C.

J. L. Santarpia, Y. L. Pan, S. C. Hill, N. Baker, B. Cottrell, L. McKee, S. Ratnesar-Shumate, R. G. Pinnick, “Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric aging,” Opt. Express 20(28), 29867–29881 (2012).
[CrossRef] [PubMed]

Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results,” Opt. Express 18(12), 12436–12457 (2010).
[CrossRef] [PubMed]

Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res. 112, D24S19 (2007).
[CrossRef]

Y. L. Pan, S. C. Hill, J. P. Wolf, S. Holler, R. K. Chang, J. R. Bottiger, “Backward-enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt. 41(15), 2994–2999 (2002).
[CrossRef] [PubMed]

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[CrossRef] [PubMed]

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. R. Bottiger, B. T. Chen, C. S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3(4–5), 221–239 (1999).
[CrossRef]

Hirst, E.

Ho, J.

C. Laflamme, J.-R. Simard, S. Buteau, P. Lahaie, D. Nadeau, B. Déry, O. Houle, P. Mathieu, G. Roy, J. Ho, C. Duchaine, “Effect of growth media and washing on the spectral signatures of aerosolized biological simulants,” Appl. Opt. 50(6), 788–796 (2011).
[CrossRef] [PubMed]

J.-R. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, J. Ho, “Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence,” IEEE Trans. Geosci. Remote Sens. 42(4), 865–874 (2004).
[CrossRef]

P. P. Hairston, J. Ho, F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28(3), 471–482 (1997).
[CrossRef] [PubMed]

Holler, S.

Y. L. Pan, S. C. Hill, J. P. Wolf, S. Holler, R. K. Chang, J. R. Bottiger, “Backward-enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt. 41(15), 2994–2999 (2002).
[CrossRef] [PubMed]

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[CrossRef] [PubMed]

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. R. Bottiger, B. T. Chen, C. S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3(4–5), 221–239 (1999).
[CrossRef]

Y. L. Pan, S. Holler, R. K. Chang, S. Hill, R. G. Pinnick, S. Niles, J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser,” Opt. Lett. 24(2), 116–118 (1999).
[CrossRef] [PubMed]

Houle, O.

Huang, H.

Huffman, J. A.

C. Pöhlker, J. A. Huffman, U. Pöschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech. 5(1), 37–71 (2012).
[CrossRef]

J. A. Huffman, B. Treutlein, U. Pöschl, “Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe,” Atmos. Chem. Phys. 10(7), 3215–3233 (2010).
[CrossRef]

Hug, W. F.

Huston, A.

Huston, A. L.

Inagaki, T.

T. Inagaki, E. T. Arakawa, R. N. Hamm, M. W. Williams, “Optical properties of polystyrene from the near-infrared to the X-ray region and convergence of optical sum rules,” Phys. Rev. B 15(6), 3243–3253 (1977).
[CrossRef]

Jeys, T. H.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4–5), 240–248 (1999).
[CrossRef]

Joseph, R. I.

J. Atkins, M. E. Thomas, R. I. Joseph, “Spectrally resolved fluorescence cross sections of BG and BT with a 266-nm pump wavelength,” Proc. SPIE 6554, 65540T1 (2007).

Kasparian, J.

G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, J.-P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
[CrossRef]

Kaye, P. H.

Keskinen, J.

Kim, H. U.

H. U. Kim, J. M. Goepfert, “A sporulation medium for Bacillus anthracis,” J. Appl. Bacteriol. 37(2), 265–267 (1974).
[CrossRef] [PubMed]

Kiselev, D.

D. Kiselev, L. Bonacina, J.-P. Wolf, “A flash-lamp based device for fluorescence detection and identification of individual pollen grains,” Rev. Sci. Instrum. 84(3), 033302 (2013).
[CrossRef] [PubMed]

A. Rondi, D. Kiselev, S. Machado, J. Extermann, S. Weber, L. Bonacina, J. P. Wolf, J. Roslund, M. Roth, H. Rabitz, “Discriminating biomolecules with coherent control strategies,” Chimia (Aarau) 65(5), 346–349 (2011).
[CrossRef] [PubMed]

Klemm, W.

R. Weichert, W. Klemm, K. Legenhausen, C. Pawellek, “Determination of fluorescence cross-sections of biological aerosols,” Part. Part. Syst. Charact. 19(3), 216–222 (2002).
[CrossRef]

Kunnil, J.

Laflamme, C.

Lahaie, P.

Lane, A. L.

Larochelle, V.

J.-R. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, J. Ho, “Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence,” IEEE Trans. Geosci. Remote Sens. 42(4), 865–874 (2004).
[CrossRef]

Legenhausen, K.

R. Weichert, W. Klemm, K. Legenhausen, C. Pawellek, “Determination of fluorescence cross-sections of biological aerosols,” Part. Part. Syst. Charact. 19(3), 216–222 (2002).
[CrossRef]

Lin, H. B.

Machado, S.

A. Rondi, D. Kiselev, S. Machado, J. Extermann, S. Weber, L. Bonacina, J. P. Wolf, J. Roslund, M. Roth, H. Rabitz, “Discriminating biomolecules with coherent control strategies,” Chimia (Aarau) 65(5), 346–349 (2011).
[CrossRef] [PubMed]

Manninen, A.

Marjamäki, M.

Mathieu, P.

C. Laflamme, J.-R. Simard, S. Buteau, P. Lahaie, D. Nadeau, B. Déry, O. Houle, P. Mathieu, G. Roy, J. Ho, C. Duchaine, “Effect of growth media and washing on the spectral signatures of aerosolized biological simulants,” Appl. Opt. 50(6), 788–796 (2011).
[CrossRef] [PubMed]

J.-R. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, J. Ho, “Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence,” IEEE Trans. Geosci. Remote Sens. 42(4), 865–874 (2004).
[CrossRef]

McFee, J.

J.-R. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, J. Ho, “Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence,” IEEE Trans. Geosci. Remote Sens. 42(4), 865–874 (2004).
[CrossRef]

McKee, L.

Mejean, G.

G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, J.-P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
[CrossRef]

Mortelmans, K.

Nadeau, D.

Nealson, K. H.

Newbury, N. R.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4–5), 240–248 (1999).
[CrossRef]

Niles, S.

Y. L. Pan, S. Holler, R. K. Chang, S. Hill, R. G. Pinnick, S. Niles, J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser,” Opt. Lett. 24(2), 116–118 (1999).
[CrossRef] [PubMed]

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. R. Bottiger, B. T. Chen, C. S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3(4–5), 221–239 (1999).
[CrossRef]

Orr, C. S.

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. R. Bottiger, B. T. Chen, C. S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3(4–5), 221–239 (1999).
[CrossRef]

Pan, Y.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[CrossRef] [PubMed]

Pan, Y. L.

J. L. Santarpia, Y. L. Pan, S. C. Hill, N. Baker, B. Cottrell, L. McKee, S. Ratnesar-Shumate, R. G. Pinnick, “Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric aging,” Opt. Express 20(28), 29867–29881 (2012).
[CrossRef] [PubMed]

Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results,” Opt. Express 18(12), 12436–12457 (2010).
[CrossRef] [PubMed]

Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res. 112, D24S19 (2007).
[CrossRef]

Y. L. Pan, S. C. Hill, J. P. Wolf, S. Holler, R. K. Chang, J. R. Bottiger, “Backward-enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt. 41(15), 2994–2999 (2002).
[CrossRef] [PubMed]

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. R. Bottiger, B. T. Chen, C. S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3(4–5), 221–239 (1999).
[CrossRef]

Y. L. Pan, S. Holler, R. K. Chang, S. Hill, R. G. Pinnick, S. Niles, J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser,” Opt. Lett. 24(2), 116–118 (1999).
[CrossRef] [PubMed]

Pawellek, C.

R. Weichert, W. Klemm, K. Legenhausen, C. Pawellek, “Determination of fluorescence cross-sections of biological aerosols,” Part. Part. Syst. Charact. 19(3), 216–222 (2002).
[CrossRef]

Pinnick, R. G.

J. L. Santarpia, Y. L. Pan, S. C. Hill, N. Baker, B. Cottrell, L. McKee, S. Ratnesar-Shumate, R. G. Pinnick, “Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric aging,” Opt. Express 20(28), 29867–29881 (2012).
[CrossRef] [PubMed]

Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results,” Opt. Express 18(12), 12436–12457 (2010).
[CrossRef] [PubMed]

Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res. 112, D24S19 (2007).
[CrossRef]

Y. L. Pan, S. Holler, R. K. Chang, S. Hill, R. G. Pinnick, S. Niles, J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser,” Opt. Lett. 24(2), 116–118 (1999).
[CrossRef] [PubMed]

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. R. Bottiger, B. T. Chen, C. S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3(4–5), 221–239 (1999).
[CrossRef]

Pöhlker, C.

C. Pöhlker, J. A. Huffman, U. Pöschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech. 5(1), 37–71 (2012).
[CrossRef]

Pöschl, U.

C. Pöhlker, J. A. Huffman, U. Pöschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech. 5(1), 37–71 (2012).
[CrossRef]

J. A. Huffman, B. Treutlein, U. Pöschl, “Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe,” Atmos. Chem. Phys. 10(7), 3215–3233 (2010).
[CrossRef]

Primmerman, C. A.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4–5), 240–248 (1999).
[CrossRef]

Putkiranta, M.

Quant, F. R.

P. P. Hairston, J. Ho, F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28(3), 471–482 (1997).
[CrossRef] [PubMed]

Rabitz, H.

A. Rondi, D. Kiselev, S. Machado, J. Extermann, S. Weber, L. Bonacina, J. P. Wolf, J. Roslund, M. Roth, H. Rabitz, “Discriminating biomolecules with coherent control strategies,” Chimia (Aarau) 65(5), 346–349 (2011).
[CrossRef] [PubMed]

Rader, D. J.

K. L. Schroder, P. J. Hargis, R. L. Schmitt, D. J. Rader, I. R. Shokair, “Development of an unattended ground sensor for ultraviolet laser-induced fluorescence detection of biological agent aerosols,” Proc. SPIE 3855, 82–91 (1999).
[CrossRef]

Ramstein, S.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[CrossRef] [PubMed]

Ratnesar-Shumate, S.

Reid, R. D.

Reinisch, L.

Reyes, F. L.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4–5), 240–248 (1999).
[CrossRef]

Rondi, A.

A. Rondi, D. Kiselev, S. Machado, J. Extermann, S. Weber, L. Bonacina, J. P. Wolf, J. Roslund, M. Roth, H. Rabitz, “Discriminating biomolecules with coherent control strategies,” Chimia (Aarau) 65(5), 346–349 (2011).
[CrossRef] [PubMed]

Roselle, D. C.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30(2), 174–185 (1999).
[CrossRef]

Rosen, J. M.

Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res. 112, D24S19 (2007).
[CrossRef]

Roslund, J.

A. Rondi, D. Kiselev, S. Machado, J. Extermann, S. Weber, L. Bonacina, J. P. Wolf, J. Roslund, M. Roth, H. Rabitz, “Discriminating biomolecules with coherent control strategies,” Chimia (Aarau) 65(5), 346–349 (2011).
[CrossRef] [PubMed]

Rostedt, A.

Roth, M.

A. Rondi, D. Kiselev, S. Machado, J. Extermann, S. Weber, L. Bonacina, J. P. Wolf, J. Roslund, M. Roth, H. Rabitz, “Discriminating biomolecules with coherent control strategies,” Chimia (Aarau) 65(5), 346–349 (2011).
[CrossRef] [PubMed]

Rowe, G. S.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4–5), 240–248 (1999).
[CrossRef]

Roy, G.

C. Laflamme, J.-R. Simard, S. Buteau, P. Lahaie, D. Nadeau, B. Déry, O. Houle, P. Mathieu, G. Roy, J. Ho, C. Duchaine, “Effect of growth media and washing on the spectral signatures of aerosolized biological simulants,” Appl. Opt. 50(6), 788–796 (2011).
[CrossRef] [PubMed]

J.-R. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, J. Ho, “Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence,” IEEE Trans. Geosci. Remote Sens. 42(4), 865–874 (2004).
[CrossRef]

Saarela, J.

Sagripanti, J. L.

M. Carrera, R. O. Zandomeni, J. Fitzgibbon, J. L. Sagripanti, “Difference between the spore sizes of Bacillus anthracis and other Bacillus species,” J. Appl. Microbiol. 102(2), 303–312 (2007).
[CrossRef] [PubMed]

Salas, E. C.

Salmon, E.

G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, J.-P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
[CrossRef]

Sanchez, A.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4–5), 240–248 (1999).
[CrossRef]

Santarpia, J. L.

Sarasanandarajah, S.

Schmitt, R. L.

K. L. Schroder, P. J. Hargis, R. L. Schmitt, D. J. Rader, I. R. Shokair, “Development of an unattended ground sensor for ultraviolet laser-induced fluorescence detection of biological agent aerosols,” Proc. SPIE 3855, 82–91 (1999).
[CrossRef]

Schroder, K. L.

K. L. Schroder, P. J. Hargis, R. L. Schmitt, D. J. Rader, I. R. Shokair, “Development of an unattended ground sensor for ultraviolet laser-induced fluorescence detection of biological agent aerosols,” Proc. SPIE 3855, 82–91 (1999).
[CrossRef]

Scotto, C.

Seaver, M.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30(2), 174–185 (1999).
[CrossRef]

Shokair, I. R.

K. L. Schroder, P. J. Hargis, R. L. Schmitt, D. J. Rader, I. R. Shokair, “Development of an unattended ground sensor for ultraviolet laser-induced fluorescence detection of biological agent aerosols,” Proc. SPIE 3855, 82–91 (1999).
[CrossRef]

Sijapati, K. K.

Simard, J.-R.

C. Laflamme, J.-R. Simard, S. Buteau, P. Lahaie, D. Nadeau, B. Déry, O. Houle, P. Mathieu, G. Roy, J. Ho, C. Duchaine, “Effect of growth media and washing on the spectral signatures of aerosolized biological simulants,” Appl. Opt. 50(6), 788–796 (2011).
[CrossRef] [PubMed]

B. Dery, S. Buteau, J.-R. Simard, J.-P. Bouchard, R. Vallee, “Spectroscopic calibration correlation of field and lab-sized fluorescence lidar systems,” IEEE Trans. Geosci. Remote Sens. 48(9), 3580–3586 (2010).
[CrossRef]

J.-R. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, J. Ho, “Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence,” IEEE Trans. Geosci. Remote Sens. 42(4), 865–874 (2004).
[CrossRef]

Sivaprakasam, V.

Sorvajärvi, T.

Stanley, W. R.

Thomas, M. E.

J. Atkins, M. E. Thomas, R. I. Joseph, “Spectrally resolved fluorescence cross sections of BG and BT with a 266-nm pump wavelength,” Proc. SPIE 6554, 65540T1 (2007).

Toivonen, J.

Treutlein, B.

J. A. Huffman, B. Treutlein, U. Pöschl, “Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe,” Atmos. Chem. Phys. 10(7), 3215–3233 (2010).
[CrossRef]

Tsapin, A.

Vallee, R.

B. Dery, S. Buteau, J.-R. Simard, J.-P. Bouchard, R. Vallee, “Spectroscopic calibration correlation of field and lab-sized fluorescence lidar systems,” IEEE Trans. Geosci. Remote Sens. 48(9), 3580–3586 (2010).
[CrossRef]

Weber, S.

A. Rondi, D. Kiselev, S. Machado, J. Extermann, S. Weber, L. Bonacina, J. P. Wolf, J. Roslund, M. Roth, H. Rabitz, “Discriminating biomolecules with coherent control strategies,” Chimia (Aarau) 65(5), 346–349 (2011).
[CrossRef] [PubMed]

Weichert, R.

R. Weichert, W. Klemm, K. Legenhausen, C. Pawellek, “Determination of fluorescence cross-sections of biological aerosols,” Part. Part. Syst. Charact. 19(3), 216–222 (2002).
[CrossRef]

Williams, M. W.

T. Inagaki, E. T. Arakawa, R. N. Hamm, M. W. Williams, “Optical properties of polystyrene from the near-infrared to the X-ray region and convergence of optical sum rules,” Phys. Rev. B 15(6), 3243–3253 (1977).
[CrossRef]

Wolf, J. P.

A. Rondi, D. Kiselev, S. Machado, J. Extermann, S. Weber, L. Bonacina, J. P. Wolf, J. Roslund, M. Roth, H. Rabitz, “Discriminating biomolecules with coherent control strategies,” Chimia (Aarau) 65(5), 346–349 (2011).
[CrossRef] [PubMed]

Y. L. Pan, S. C. Hill, J. P. Wolf, S. Holler, R. K. Chang, J. R. Bottiger, “Backward-enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt. 41(15), 2994–2999 (2002).
[CrossRef] [PubMed]

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[CrossRef] [PubMed]

Wolf, J.-P.

D. Kiselev, L. Bonacina, J.-P. Wolf, “A flash-lamp based device for fluorescence detection and identification of individual pollen grains,” Rev. Sci. Instrum. 84(3), 033302 (2013).
[CrossRef] [PubMed]

G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, J.-P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
[CrossRef]

Yu, J.

G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, J.-P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
[CrossRef]

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[CrossRef] [PubMed]

Zandomeni, R. O.

M. Carrera, R. O. Zandomeni, J. Fitzgibbon, J. L. Sagripanti, “Difference between the spore sizes of Bacillus anthracis and other Bacillus species,” J. Appl. Microbiol. 102(2), 303–312 (2007).
[CrossRef] [PubMed]

Aerosol Sci. Technol. (1)

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30(2), 174–185 (1999).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (1)

G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, J.-P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
[CrossRef]

Appl. Spectrosc. (1)

Atmos. Chem. Phys. (1)

J. A. Huffman, B. Treutlein, U. Pöschl, “Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe,” Atmos. Chem. Phys. 10(7), 3215–3233 (2010).
[CrossRef]

Atmos. Meas. Tech. (1)

C. Pöhlker, J. A. Huffman, U. Pöschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech. 5(1), 37–71 (2012).
[CrossRef]

Chimia (Aarau) (1)

A. Rondi, D. Kiselev, S. Machado, J. Extermann, S. Weber, L. Bonacina, J. P. Wolf, J. Roslund, M. Roth, H. Rabitz, “Discriminating biomolecules with coherent control strategies,” Chimia (Aarau) 65(5), 346–349 (2011).
[CrossRef] [PubMed]

Field Anal. Chem. Technol. (2)

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. R. Bottiger, B. T. Chen, C. S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3(4–5), 221–239 (1999).
[CrossRef]

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4–5), 240–248 (1999).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (2)

J.-R. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, J. Ho, “Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence,” IEEE Trans. Geosci. Remote Sens. 42(4), 865–874 (2004).
[CrossRef]

B. Dery, S. Buteau, J.-R. Simard, J.-P. Bouchard, R. Vallee, “Spectroscopic calibration correlation of field and lab-sized fluorescence lidar systems,” IEEE Trans. Geosci. Remote Sens. 48(9), 3580–3586 (2010).
[CrossRef]

J. Aerosol Sci. (1)

P. P. Hairston, J. Ho, F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28(3), 471–482 (1997).
[CrossRef] [PubMed]

J. Appl. Bacteriol. (1)

H. U. Kim, J. M. Goepfert, “A sporulation medium for Bacillus anthracis,” J. Appl. Bacteriol. 37(2), 265–267 (1974).
[CrossRef] [PubMed]

J. Appl. Microbiol. (1)

M. Carrera, R. O. Zandomeni, J. Fitzgibbon, J. L. Sagripanti, “Difference between the spore sizes of Bacillus anthracis and other Bacillus species,” J. Appl. Microbiol. 102(2), 303–312 (2007).
[CrossRef] [PubMed]

J. Geophys. Res. (1)

Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res. 112, D24S19 (2007).
[CrossRef]

J. Pathogens (1)

A. Fernstrom, M. Goldblatt, “Aerobiology and its role in the transmission of infectious disease,” J. Pathogens 2013, 1–13 (2013).
[CrossRef]

Opt. Express (6)

V. Sivaprakasam, A. Huston, C. Scotto, J. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express 12(19), 4457–4466 (2004).
[CrossRef] [PubMed]

P. H. Kaye, W. R. Stanley, E. Hirst, E. V. Foot, K. L. Baxter, S. J. Barrington, “Single particle multichannel bio-aerosol fluorescence sensor,” Opt. Express 13(10), 3583–3593 (2005).
[CrossRef] [PubMed]

J. Kunnil, S. Sarasanandarajah, E. Chacko, L. Reinisch, “Fluorescence quantum efficiency of dry Bacillus globigii spores,” Opt. Express 13(22), 8969–8979 (2005).
[CrossRef] [PubMed]

V. Sivaprakasam, H. B. Lin, A. L. Huston, J. D. Eversole, “Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements,” Opt. Express 19(7), 6191–6208 (2011).
[CrossRef] [PubMed]

J. L. Santarpia, Y. L. Pan, S. C. Hill, N. Baker, B. Cottrell, L. McKee, S. Ratnesar-Shumate, R. G. Pinnick, “Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric aging,” Opt. Express 20(28), 29867–29881 (2012).
[CrossRef] [PubMed]

Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results,” Opt. Express 18(12), 12436–12457 (2010).
[CrossRef] [PubMed]

Opt. Lett. (1)

Part. Part. Syst. Charact. (1)

R. Weichert, W. Klemm, K. Legenhausen, C. Pawellek, “Determination of fluorescence cross-sections of biological aerosols,” Part. Part. Syst. Charact. 19(3), 216–222 (2002).
[CrossRef]

Phys. Rev. B (1)

T. Inagaki, E. T. Arakawa, R. N. Hamm, M. W. Williams, “Optical properties of polystyrene from the near-infrared to the X-ray region and convergence of optical sum rules,” Phys. Rev. B 15(6), 3243–3253 (1977).
[CrossRef]

Phys. Rev. Lett. (1)

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J. P. Wolf, Y. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85(1), 54–57 (2000).
[CrossRef] [PubMed]

Proc. SPIE (2)

J. Atkins, M. E. Thomas, R. I. Joseph, “Spectrally resolved fluorescence cross sections of BG and BT with a 266-nm pump wavelength,” Proc. SPIE 6554, 65540T1 (2007).

K. L. Schroder, P. J. Hargis, R. L. Schmitt, D. J. Rader, I. R. Shokair, “Development of an unattended ground sensor for ultraviolet laser-induced fluorescence detection of biological agent aerosols,” Proc. SPIE 3855, 82–91 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

D. Kiselev, L. Bonacina, J.-P. Wolf, “A flash-lamp based device for fluorescence detection and identification of individual pollen grains,” Rev. Sci. Instrum. 84(3), 033302 (2013).
[CrossRef] [PubMed]

Other (8)

Y. L. Pan, J. D. Eversole, P. Kaye, V. Foote, R. G. Pinnick, S. C. Hill, M. W. Mayo, and R. K. Chang, “Bio-aerosol fluorescence,” in Optics of Biological Particles (NATO Science Series II: Mathematics Physics and Chemistry), A. Hoekstra, V Maltsev, and G Videen, eds., (Springer, 2006), pp. 63–164.

G. W. Faris, A. Williams, C. B. Carlisle, and B. V. Bronk, “Spectrally resolved absolute fluorescence cross sections of B. Globigii and B. Cereus,” SRI technical Note, SRI project 2913 (May 1992).

J. R. Stephens, “Measurements of the ultraviolet fluorescence cross sections and spectra of bacillus anthracis simulants,” Los Alamos National Lab Report, LAUR-98–4173 (May, 1999).

L. A. Mattieson and J. L. Saunderson, “Optical and electrical properties of polystyrenes,” in Styrene: its Polymers, Copolymers and Derivatives, R. H. Boundy, R. F. Boyer, and S. M. Stoesser, eds. (Reinhold, 1952), p. 524.

D. E. Wilson, and L.C. Chosewood, eds., Biosafety in Microbiological and Biomedical Laboratories (BMBL), 5th ed. (US Dept. Health and Human Services, 2009).

K. Rhodes, “High-containment biosafety laboratories, Preliminary observations on the oversight of the Proliferation of BSL-3 and BSL-4 laboratories in the United States,” GAO-08–108T. Testimony before the Subcomittee on Oversight and Investigations (2007), p. 10.

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, 1983), pp. 341–343.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

(a) Schematic of the system at the ECBC BSL-3 facility for measuring spectrally resolved fluorescence cross sections of aerosolized live agents and surrogates; (b) Photograph of the BSL-3 chamber (i.e., the glovebox) within the BSL-3 room. Also visible on the far left is the enclosure for the laser beam as it enters the room and the mirror that directs the beam.

Fig. 2
Fig. 2

(a) Diagram of the excitation laser (Photonics Industries, TU-L 10-291 laser with DS20-527 pump laser); (b) Photograph of the enclosure for the laser. The laser power supply and controller, as well as the cooling system are under the optical table. (c) The laser on the optical table in the hallway, with protective enclosure removed. On the right, closest to the observer, is the laser head of the Ti:Sapphire laser with its SHG, THG, & 4thHG. Behind it on the right is the head for the DS20-527 pump laser, and behind that is another frequency quadrupled Nd:YLF laser which was used for reference alignment. On the left of the optical table is some electronics for controlling the laser and for processing the signals from the photomultipliers (PMTs) which are used to determine when a particle is about to enter the sample volume of the SPFS. The window that allows the laser beam to pass from the hallway into the BSL-3 room is visible in a blue Roxtex material.

Fig. 3
Fig. 3

(a) Schematic of the optical arrangement that provides for alignment of different wavelength laser beams so that they can interrogate individual particles in the aerosol jet at the right position in the sample volume within the SPFS inside of the BSL-3 chamber. (b) Photograph of the mount for deep ultra-violet (DUV) mirror 3 and the protective enclosure. (c) Photograph of the interlock shutter and DUV mirror 3 with its mount for steering the laser beam into the BSL-3 chamber.

Fig. 4
Fig. 4

Photographs of some of the (a) controllers, data acquisition, processing and recording electronics in the hallway; (b) electronic feedthroughs on the front panel of the BSL-3 chamber; and (c) electronic feedthroughs on the wall of the BSL-3 room; note the 2-in diameter fused silicon window at the top of the photo is for the laser beam.

Fig. 5
Fig. 5

(a) Schematic flow diagram of the aerosol generation and control system and the flow through the whole system within the BSL-3 chamber; (b) Photograph of the aerosol generation system within the BSL-3 chamber before the front panel is closed.

Fig. 6
Fig. 6

(a) Schematic diagram of the part of the SPFS that is in the BSL-3 chamber. The diagram emphasizes the optics and optical equipment. Particles flow into the plane of the page through a nozzle at the intersection of the pulsed laser beam (propagating upward in the diagram) with several diode laser beams. Where, BD: beam dump; FS Wd: fused silicon window; IF: interference filter; LD: laser diode; M: mirror; and PMT: photomultiple tube. Photographs of (b) part of the SPFS system within the BSL-3 chamber before the front panel is closed; and (c) part of the SPFS system within the negative airtight box (left part in (a)).

Fig. 7
Fig. 7

Recorded elastic scattering from 100 particles of 1.5 μm polystyrene spheres illuminated with a 273-nm laser. The inset shows some examples. The elastic signals are all from 273 nm illumination but were focused to different pixels of the ICCD. These signals appear to be at different wavelengths because the elastically scattered light was focused into the slit of the spectrometer at different angles because the particles were at different positions with respect to the collection optics when they were illuminated.

Fig. 8
Fig. 8

Calculated average differential scattering cross section (µm2/sr) for polystyrene spheres, averaged over the collection angles (NA = 0.4, between 12 and 23.6 degrees from the axis of the objective) for the Schwarzschild reflecting objective, when the axis of the reflecting objective is centered at the scattering angle of 90 degrees to the laser beam. These average cross sections have been averaged over the particle diameter.

Fig. 9
Fig. 9

Calibration factors determined using PSL particles of different sizes. The average values of the cross sections at each wavelength are 0.51 ± 0.17 at 266 nm, 0.62 ± 0.32 at 273 nm, 1.27 ± 0.63 at 280 nm, 0.33 ± 0.10 at 365 nm and 0.19 at 405 nm.

Fig. 10
Fig. 10

Typical size distributions of the aerosolized bioaerosol particles in the measurements. (a) Measured by the UV-APS. (b) Measured by the SPFS.

Fig. 11
Fig. 11

Typical single particle UV-LIF spectra from different size aerosol particles of BaA, Yp, and MS2 excited by 273 nm, 280 nm, and 365 nm respectively.

Fig. 12
Fig. 12

Measured fluorescence vs elastic scattering for MS2 excited at 405-nm. The best fit line is given by: ln(integrated fluorescence intensity) = 0.518 × ln(elastic scattering intensity) + 1.477.

Fig. 13
Fig. 13

Averaged UV-LIF spectra of 1000 single aerosol particles from various live agents and surrogates excited at 266 nm, 273 nm, 280 nm, 365 nm, and 405 nm. The peaks around the excitation wavelengths are the leakages of the elastic scattering. The spectra excited by 266 nm, 273 nm, and 280 nm are normalized to the same peak intensities at about 330 nm for easy comparisons of spectral profiles. The spectra excited at 365 nm and 405 nm have not been normalized.

Tables (2)

Tables Icon

Table 1 Averaged total and peak fluorescence cross sections from about 2000 (range 980 to 3000) particles of various aerosolized live agents and surrogates excited at 5 different wavelengths.

Tables Icon

Table 2 Fluorescence cross sections measured by several groups. In some cases the numbers shown were estimated from Figs or from other reported numbers.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

m r =a + b/ λ 2 + c/ λ 4
S s ( λ s ) = S p,d, λ e ( λ i ) ,
S s ( λ i=s ) = KT a c s ( λ i=s ) ΔΩ G s
S f ( λ i ) = KT a c f ( λ i ) ΔΩ YG f
c f ( λ i ) = [ S f ( λ i )/Y G f ][ c s ( λ i=s ) G s / S s ( λ i=s ) ]
c nm f ( θ c =90, λ i ) = C S f ( λ i )
C = c s ( λ i=s ) G s / ( S s ( λ i=s ) 5Y G f )

Metrics