Abstract

Optical microfibers and related structures which incorporate large evanescent field and minimal size offer new opportunities for biosensing applications. In this paper we report the development of an immunosensor based on a tapered microfiber coupler embedded in a low refractive index polymer. Biomolecules adsorbed on the microfiber coupler surface modify the surrounding refractive index. By immobilizing antigens on the surface of the sensing area, the microfiber coupler was able to operate as a label-free immunosensor to detect specific antibodies. We experimentally demonstrated for the first time the sensing ability of this sensor using a fibrinogen antigen-antibody pair. By monitoring the spectral shift in the wavelength domain, the sensor was shown to be capable of detecting the specific binding between fibrinogen and anti-fibrinogen. The detected signal was found to be proportional to the anti-fibrinogen present.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Thévenot, K. Toth, R. A. Durst, G. S. Wilson, “Electrochemical biosensors: recommended definitions and classification,” Biosens. Bioelectron. 16(1-2), 121–131 (2001).
    [PubMed]
  2. B. J. Tromberg, M. J. Sepaniak, T. Vo-Dinh, G. D. Griffin, “Fiber-optic chemical sensors for competitive binding fluoroimmunoassay,” Anal. Chem. 59(8), 1226–1230 (1987).
    [CrossRef] [PubMed]
  3. G. P. Anderson, N. L. Nerurkar, “Improved fluoroimmunoassays using the dye Alexa Fluor 647 with the RAPTOR, a fiber optic biosensor,” J. Immunol. Methods 271(1-2), 17–24 (2002).
    [CrossRef] [PubMed]
  4. T. Endo, S. Yamamura, N. Nagatani, Y. Morita, Y. Takamura, E. Tamiya, “Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen–antibody reaction,” Sci. Technol. Adv. Mater. 6(5), 491–500 (2005).
    [CrossRef]
  5. J. M. Corres, J. Bravo, I. R. Matias, F. J. Arregui, “Tapered optical fiber biosensor for the detection of anti-gliadin antibodies,” Sens. Actuat. Biol. Chem. 135, 166–171 (2008).
  6. Y. Tian, W. Wang, N. Wu, X. Zou, X. Wang, “Tapered optical fiber sensor for label-free detection of biomolecules,” Sensors (Basel) 11(12), 3780–3790 (2011).
    [CrossRef] [PubMed]
  7. L. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  8. F. Xu, P. Horak, G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
    [CrossRef] [PubMed]
  9. Y. Jung, G. Brambilla, D. J. Richardson, “Optical microfiber coupler for broadband single-mode operation,” Opt. Express 17(7), 5273–5278 (2009).
    [CrossRef] [PubMed]
  10. P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, G. Farrell, “High temperature performance of an optical microfiber coupler and its potential use as a sensor,” Electron. Lett. 48(5), 283–284 (2012).
    [CrossRef]
  11. L. Bo, P. Wang, Y. Semenova, G. Farrell, “High sensitivity fiber refractometer based on an optical microfiber coupler,” IEEE Photon. Technol. Lett. 25(3), 228–230 (2013).
    [CrossRef]
  12. J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87(1), 553–561 (2004).
    [CrossRef] [PubMed]
  13. H. Tazawa, T. Kanie, M. Katayama, “Fiber-optic coupler sensors for biosensing,” SEI Technical Review 65, 67–70 (2007).
  14. K. Okamoto, Fundamentals of Optical Waveguides (Elsevier Academic Press, 2006).
  15. F. P. Payne, S. D. Hussey, M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
    [CrossRef]
  16. G. Brambilla, V. Finazzi, D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
    [CrossRef] [PubMed]
  17. R. G. Lamont, D. C. Johnson, K. O. Hill, “Power transfer in fused biconical-taper single-mode fiber couplers: dependence on external refractive index,” Appl. Opt. 24(3), 327–332 (1985).
    [CrossRef] [PubMed]
  18. F. Xu, G. Brambilla, “Embedding optical microfiber coil resonators in Teflon,” Opt. Lett. 32(15), 2164–2166 (2007).
    [CrossRef] [PubMed]
  19. G. Vienne, Y. Li, L. Tong, “Effect of host polymer on microfiber resonator,” IEEE Photon. Technol. Lett. 19(18), 1386–1388 (2007).
    [CrossRef]
  20. Y. Semenova, L. Bo, P. Wang, S. Mathews, Q. Wu, M. Teng, C. Yu, G. Farrell, “Experimental study of temperature response of a microfiber coupler sensor with a liquid crystal overlay,” Proc., Fifth European Workshop on Optical Fibre Sensors (2013).
    [CrossRef]

2013 (1)

L. Bo, P. Wang, Y. Semenova, G. Farrell, “High sensitivity fiber refractometer based on an optical microfiber coupler,” IEEE Photon. Technol. Lett. 25(3), 228–230 (2013).
[CrossRef]

2012 (1)

P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, G. Farrell, “High temperature performance of an optical microfiber coupler and its potential use as a sensor,” Electron. Lett. 48(5), 283–284 (2012).
[CrossRef]

2011 (1)

Y. Tian, W. Wang, N. Wu, X. Zou, X. Wang, “Tapered optical fiber sensor for label-free detection of biomolecules,” Sensors (Basel) 11(12), 3780–3790 (2011).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

J. M. Corres, J. Bravo, I. R. Matias, F. J. Arregui, “Tapered optical fiber biosensor for the detection of anti-gliadin antibodies,” Sens. Actuat. Biol. Chem. 135, 166–171 (2008).

2007 (4)

F. Xu, P. Horak, G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
[CrossRef] [PubMed]

H. Tazawa, T. Kanie, M. Katayama, “Fiber-optic coupler sensors for biosensing,” SEI Technical Review 65, 67–70 (2007).

F. Xu, G. Brambilla, “Embedding optical microfiber coil resonators in Teflon,” Opt. Lett. 32(15), 2164–2166 (2007).
[CrossRef] [PubMed]

G. Vienne, Y. Li, L. Tong, “Effect of host polymer on microfiber resonator,” IEEE Photon. Technol. Lett. 19(18), 1386–1388 (2007).
[CrossRef]

2005 (1)

T. Endo, S. Yamamura, N. Nagatani, Y. Morita, Y. Takamura, E. Tamiya, “Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen–antibody reaction,” Sci. Technol. Adv. Mater. 6(5), 491–500 (2005).
[CrossRef]

2004 (2)

G. Brambilla, V. Finazzi, D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
[CrossRef] [PubMed]

J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87(1), 553–561 (2004).
[CrossRef] [PubMed]

2003 (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

2002 (1)

G. P. Anderson, N. L. Nerurkar, “Improved fluoroimmunoassays using the dye Alexa Fluor 647 with the RAPTOR, a fiber optic biosensor,” J. Immunol. Methods 271(1-2), 17–24 (2002).
[CrossRef] [PubMed]

2001 (1)

D. R. Thévenot, K. Toth, R. A. Durst, G. S. Wilson, “Electrochemical biosensors: recommended definitions and classification,” Biosens. Bioelectron. 16(1-2), 121–131 (2001).
[PubMed]

1987 (1)

B. J. Tromberg, M. J. Sepaniak, T. Vo-Dinh, G. D. Griffin, “Fiber-optic chemical sensors for competitive binding fluoroimmunoassay,” Anal. Chem. 59(8), 1226–1230 (1987).
[CrossRef] [PubMed]

1985 (2)

R. G. Lamont, D. C. Johnson, K. O. Hill, “Power transfer in fused biconical-taper single-mode fiber couplers: dependence on external refractive index,” Appl. Opt. 24(3), 327–332 (1985).
[CrossRef] [PubMed]

F. P. Payne, S. D. Hussey, M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[CrossRef]

Anderson, G. P.

G. P. Anderson, N. L. Nerurkar, “Improved fluoroimmunoassays using the dye Alexa Fluor 647 with the RAPTOR, a fiber optic biosensor,” J. Immunol. Methods 271(1-2), 17–24 (2002).
[CrossRef] [PubMed]

Arregui, F. J.

J. M. Corres, J. Bravo, I. R. Matias, F. J. Arregui, “Tapered optical fiber biosensor for the detection of anti-gliadin antibodies,” Sens. Actuat. Biol. Chem. 135, 166–171 (2008).

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Bo, L.

L. Bo, P. Wang, Y. Semenova, G. Farrell, “High sensitivity fiber refractometer based on an optical microfiber coupler,” IEEE Photon. Technol. Lett. 25(3), 228–230 (2013).
[CrossRef]

Y. Semenova, L. Bo, P. Wang, S. Mathews, Q. Wu, M. Teng, C. Yu, G. Farrell, “Experimental study of temperature response of a microfiber coupler sensor with a liquid crystal overlay,” Proc., Fifth European Workshop on Optical Fibre Sensors (2013).
[CrossRef]

Brambilla, G.

Bravo, J.

J. M. Corres, J. Bravo, I. R. Matias, F. J. Arregui, “Tapered optical fiber biosensor for the detection of anti-gliadin antibodies,” Sens. Actuat. Biol. Chem. 135, 166–171 (2008).

Corres, J. M.

J. M. Corres, J. Bravo, I. R. Matias, F. J. Arregui, “Tapered optical fiber biosensor for the detection of anti-gliadin antibodies,” Sens. Actuat. Biol. Chem. 135, 166–171 (2008).

Ding, M.

P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, G. Farrell, “High temperature performance of an optical microfiber coupler and its potential use as a sensor,” Electron. Lett. 48(5), 283–284 (2012).
[CrossRef]

Durst, R. A.

D. R. Thévenot, K. Toth, R. A. Durst, G. S. Wilson, “Electrochemical biosensors: recommended definitions and classification,” Biosens. Bioelectron. 16(1-2), 121–131 (2001).
[PubMed]

Endo, T.

T. Endo, S. Yamamura, N. Nagatani, Y. Morita, Y. Takamura, E. Tamiya, “Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen–antibody reaction,” Sci. Technol. Adv. Mater. 6(5), 491–500 (2005).
[CrossRef]

Farrell, G.

L. Bo, P. Wang, Y. Semenova, G. Farrell, “High sensitivity fiber refractometer based on an optical microfiber coupler,” IEEE Photon. Technol. Lett. 25(3), 228–230 (2013).
[CrossRef]

P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, G. Farrell, “High temperature performance of an optical microfiber coupler and its potential use as a sensor,” Electron. Lett. 48(5), 283–284 (2012).
[CrossRef]

Y. Semenova, L. Bo, P. Wang, S. Mathews, Q. Wu, M. Teng, C. Yu, G. Farrell, “Experimental study of temperature response of a microfiber coupler sensor with a liquid crystal overlay,” Proc., Fifth European Workshop on Optical Fibre Sensors (2013).
[CrossRef]

Finazzi, V.

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Griffin, G. D.

B. J. Tromberg, M. J. Sepaniak, T. Vo-Dinh, G. D. Griffin, “Fiber-optic chemical sensors for competitive binding fluoroimmunoassay,” Anal. Chem. 59(8), 1226–1230 (1987).
[CrossRef] [PubMed]

He, S. L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Hill, K. O.

Horak, P.

Hussey, S. D.

F. P. Payne, S. D. Hussey, M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[CrossRef]

Johnson, D. C.

Jung, Y.

Kanie, T.

H. Tazawa, T. Kanie, M. Katayama, “Fiber-optic coupler sensors for biosensing,” SEI Technical Review 65, 67–70 (2007).

Katayama, M.

H. Tazawa, T. Kanie, M. Katayama, “Fiber-optic coupler sensors for biosensing,” SEI Technical Review 65, 67–70 (2007).

Lamont, R. G.

Li, Y.

G. Vienne, Y. Li, L. Tong, “Effect of host polymer on microfiber resonator,” IEEE Photon. Technol. Lett. 19(18), 1386–1388 (2007).
[CrossRef]

Lou, J. Y.

L. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mathews, S.

Y. Semenova, L. Bo, P. Wang, S. Mathews, Q. Wu, M. Teng, C. Yu, G. Farrell, “Experimental study of temperature response of a microfiber coupler sensor with a liquid crystal overlay,” Proc., Fifth European Workshop on Optical Fibre Sensors (2013).
[CrossRef]

Matias, I. R.

J. M. Corres, J. Bravo, I. R. Matias, F. J. Arregui, “Tapered optical fiber biosensor for the detection of anti-gliadin antibodies,” Sens. Actuat. Biol. Chem. 135, 166–171 (2008).

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Morita, Y.

T. Endo, S. Yamamura, N. Nagatani, Y. Morita, Y. Takamura, E. Tamiya, “Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen–antibody reaction,” Sci. Technol. Adv. Mater. 6(5), 491–500 (2005).
[CrossRef]

Nagatani, N.

T. Endo, S. Yamamura, N. Nagatani, Y. Morita, Y. Takamura, E. Tamiya, “Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen–antibody reaction,” Sci. Technol. Adv. Mater. 6(5), 491–500 (2005).
[CrossRef]

Nerurkar, N. L.

G. P. Anderson, N. L. Nerurkar, “Improved fluoroimmunoassays using the dye Alexa Fluor 647 with the RAPTOR, a fiber optic biosensor,” J. Immunol. Methods 271(1-2), 17–24 (2002).
[CrossRef] [PubMed]

Payne, F. P.

F. P. Payne, S. D. Hussey, M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[CrossRef]

Richardson, D.

Richardson, D. J.

Semenova, Y.

L. Bo, P. Wang, Y. Semenova, G. Farrell, “High sensitivity fiber refractometer based on an optical microfiber coupler,” IEEE Photon. Technol. Lett. 25(3), 228–230 (2013).
[CrossRef]

P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, G. Farrell, “High temperature performance of an optical microfiber coupler and its potential use as a sensor,” Electron. Lett. 48(5), 283–284 (2012).
[CrossRef]

Y. Semenova, L. Bo, P. Wang, S. Mathews, Q. Wu, M. Teng, C. Yu, G. Farrell, “Experimental study of temperature response of a microfiber coupler sensor with a liquid crystal overlay,” Proc., Fifth European Workshop on Optical Fibre Sensors (2013).
[CrossRef]

Sepaniak, M. J.

B. J. Tromberg, M. J. Sepaniak, T. Vo-Dinh, G. D. Griffin, “Fiber-optic chemical sensors for competitive binding fluoroimmunoassay,” Anal. Chem. 59(8), 1226–1230 (1987).
[CrossRef] [PubMed]

Shen, M. Y.

L. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Takamura, Y.

T. Endo, S. Yamamura, N. Nagatani, Y. Morita, Y. Takamura, E. Tamiya, “Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen–antibody reaction,” Sci. Technol. Adv. Mater. 6(5), 491–500 (2005).
[CrossRef]

Tamiya, E.

T. Endo, S. Yamamura, N. Nagatani, Y. Morita, Y. Takamura, E. Tamiya, “Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen–antibody reaction,” Sci. Technol. Adv. Mater. 6(5), 491–500 (2005).
[CrossRef]

Tazawa, H.

H. Tazawa, T. Kanie, M. Katayama, “Fiber-optic coupler sensors for biosensing,” SEI Technical Review 65, 67–70 (2007).

Teng, M.

Y. Semenova, L. Bo, P. Wang, S. Mathews, Q. Wu, M. Teng, C. Yu, G. Farrell, “Experimental study of temperature response of a microfiber coupler sensor with a liquid crystal overlay,” Proc., Fifth European Workshop on Optical Fibre Sensors (2013).
[CrossRef]

Thévenot, D. R.

D. R. Thévenot, K. Toth, R. A. Durst, G. S. Wilson, “Electrochemical biosensors: recommended definitions and classification,” Biosens. Bioelectron. 16(1-2), 121–131 (2001).
[PubMed]

Tian, Y.

Y. Tian, W. Wang, N. Wu, X. Zou, X. Wang, “Tapered optical fiber sensor for label-free detection of biomolecules,” Sensors (Basel) 11(12), 3780–3790 (2011).
[CrossRef] [PubMed]

Tong, L.

G. Vienne, Y. Li, L. Tong, “Effect of host polymer on microfiber resonator,” IEEE Photon. Technol. Lett. 19(18), 1386–1388 (2007).
[CrossRef]

L. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Toth, K.

D. R. Thévenot, K. Toth, R. A. Durst, G. S. Wilson, “Electrochemical biosensors: recommended definitions and classification,” Biosens. Bioelectron. 16(1-2), 121–131 (2001).
[PubMed]

Tromberg, B. J.

B. J. Tromberg, M. J. Sepaniak, T. Vo-Dinh, G. D. Griffin, “Fiber-optic chemical sensors for competitive binding fluoroimmunoassay,” Anal. Chem. 59(8), 1226–1230 (1987).
[CrossRef] [PubMed]

Vienne, G.

G. Vienne, Y. Li, L. Tong, “Effect of host polymer on microfiber resonator,” IEEE Photon. Technol. Lett. 19(18), 1386–1388 (2007).
[CrossRef]

Vo-Dinh, T.

B. J. Tromberg, M. J. Sepaniak, T. Vo-Dinh, G. D. Griffin, “Fiber-optic chemical sensors for competitive binding fluoroimmunoassay,” Anal. Chem. 59(8), 1226–1230 (1987).
[CrossRef] [PubMed]

Vörös, J.

J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87(1), 553–561 (2004).
[CrossRef] [PubMed]

Wang, P.

L. Bo, P. Wang, Y. Semenova, G. Farrell, “High sensitivity fiber refractometer based on an optical microfiber coupler,” IEEE Photon. Technol. Lett. 25(3), 228–230 (2013).
[CrossRef]

P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, G. Farrell, “High temperature performance of an optical microfiber coupler and its potential use as a sensor,” Electron. Lett. 48(5), 283–284 (2012).
[CrossRef]

Y. Semenova, L. Bo, P. Wang, S. Mathews, Q. Wu, M. Teng, C. Yu, G. Farrell, “Experimental study of temperature response of a microfiber coupler sensor with a liquid crystal overlay,” Proc., Fifth European Workshop on Optical Fibre Sensors (2013).
[CrossRef]

Wang, W.

Y. Tian, W. Wang, N. Wu, X. Zou, X. Wang, “Tapered optical fiber sensor for label-free detection of biomolecules,” Sensors (Basel) 11(12), 3780–3790 (2011).
[CrossRef] [PubMed]

Wang, X.

Y. Tian, W. Wang, N. Wu, X. Zou, X. Wang, “Tapered optical fiber sensor for label-free detection of biomolecules,” Sensors (Basel) 11(12), 3780–3790 (2011).
[CrossRef] [PubMed]

Wilson, G. S.

D. R. Thévenot, K. Toth, R. A. Durst, G. S. Wilson, “Electrochemical biosensors: recommended definitions and classification,” Biosens. Bioelectron. 16(1-2), 121–131 (2001).
[PubMed]

Wu, N.

Y. Tian, W. Wang, N. Wu, X. Zou, X. Wang, “Tapered optical fiber sensor for label-free detection of biomolecules,” Sensors (Basel) 11(12), 3780–3790 (2011).
[CrossRef] [PubMed]

Wu, Q.

P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, G. Farrell, “High temperature performance of an optical microfiber coupler and its potential use as a sensor,” Electron. Lett. 48(5), 283–284 (2012).
[CrossRef]

Y. Semenova, L. Bo, P. Wang, S. Mathews, Q. Wu, M. Teng, C. Yu, G. Farrell, “Experimental study of temperature response of a microfiber coupler sensor with a liquid crystal overlay,” Proc., Fifth European Workshop on Optical Fibre Sensors (2013).
[CrossRef]

Xu, F.

Yamamura, S.

T. Endo, S. Yamamura, N. Nagatani, Y. Morita, Y. Takamura, E. Tamiya, “Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen–antibody reaction,” Sci. Technol. Adv. Mater. 6(5), 491–500 (2005).
[CrossRef]

Yataki, M. S.

F. P. Payne, S. D. Hussey, M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[CrossRef]

Yu, C.

Y. Semenova, L. Bo, P. Wang, S. Mathews, Q. Wu, M. Teng, C. Yu, G. Farrell, “Experimental study of temperature response of a microfiber coupler sensor with a liquid crystal overlay,” Proc., Fifth European Workshop on Optical Fibre Sensors (2013).
[CrossRef]

Zou, X.

Y. Tian, W. Wang, N. Wu, X. Zou, X. Wang, “Tapered optical fiber sensor for label-free detection of biomolecules,” Sensors (Basel) 11(12), 3780–3790 (2011).
[CrossRef] [PubMed]

Anal. Chem. (1)

B. J. Tromberg, M. J. Sepaniak, T. Vo-Dinh, G. D. Griffin, “Fiber-optic chemical sensors for competitive binding fluoroimmunoassay,” Anal. Chem. 59(8), 1226–1230 (1987).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biophys. J. (1)

J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87(1), 553–561 (2004).
[CrossRef] [PubMed]

Biosens. Bioelectron. (1)

D. R. Thévenot, K. Toth, R. A. Durst, G. S. Wilson, “Electrochemical biosensors: recommended definitions and classification,” Biosens. Bioelectron. 16(1-2), 121–131 (2001).
[PubMed]

Electron. Lett. (2)

F. P. Payne, S. D. Hussey, M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[CrossRef]

P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, G. Farrell, “High temperature performance of an optical microfiber coupler and its potential use as a sensor,” Electron. Lett. 48(5), 283–284 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

L. Bo, P. Wang, Y. Semenova, G. Farrell, “High sensitivity fiber refractometer based on an optical microfiber coupler,” IEEE Photon. Technol. Lett. 25(3), 228–230 (2013).
[CrossRef]

G. Vienne, Y. Li, L. Tong, “Effect of host polymer on microfiber resonator,” IEEE Photon. Technol. Lett. 19(18), 1386–1388 (2007).
[CrossRef]

J. Immunol. Methods (1)

G. P. Anderson, N. L. Nerurkar, “Improved fluoroimmunoassays using the dye Alexa Fluor 647 with the RAPTOR, a fiber optic biosensor,” J. Immunol. Methods 271(1-2), 17–24 (2002).
[CrossRef] [PubMed]

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Sci. Technol. Adv. Mater. (1)

T. Endo, S. Yamamura, N. Nagatani, Y. Morita, Y. Takamura, E. Tamiya, “Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen–antibody reaction,” Sci. Technol. Adv. Mater. 6(5), 491–500 (2005).
[CrossRef]

SEI Technical Review (1)

H. Tazawa, T. Kanie, M. Katayama, “Fiber-optic coupler sensors for biosensing,” SEI Technical Review 65, 67–70 (2007).

Sens. Actuat. Biol. Chem. (1)

J. M. Corres, J. Bravo, I. R. Matias, F. J. Arregui, “Tapered optical fiber biosensor for the detection of anti-gliadin antibodies,” Sens. Actuat. Biol. Chem. 135, 166–171 (2008).

Sensors (Basel) (1)

Y. Tian, W. Wang, N. Wu, X. Zou, X. Wang, “Tapered optical fiber sensor for label-free detection of biomolecules,” Sensors (Basel) 11(12), 3780–3790 (2011).
[CrossRef] [PubMed]

Other (2)

K. Okamoto, Fundamentals of Optical Waveguides (Elsevier Academic Press, 2006).

Y. Semenova, L. Bo, P. Wang, S. Mathews, Q. Wu, M. Teng, C. Yu, G. Farrell, “Experimental study of temperature response of a microfiber coupler sensor with a liquid crystal overlay,” Proc., Fifth European Workshop on Optical Fibre Sensors (2013).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the embedded MFC and the experimental setup.

Fig. 2
Fig. 2

(a). Spectral response during the first 5 min of the fibrinogen immobilization on the MFC surface; (b) Time-dependent profile of the fibrinogen immobilization.

Fig. 3
Fig. 3

Signal changes caused by the fibrinogen immobilization for the 15 studied MFC samples.

Fig. 4
Fig. 4

Comparison of the sensor behavior for the anti-fibrinogen detection and for the anti-IgG control. The experiments were carried out on two individual sensors. A 10.35 nm blueshift was observed for the anti-fibrinogen detection while a 0.45 nm redshift was observed for the anti-IgG control.

Fig. 5
Fig. 5

Variations in the spectral shift caused by anti-fibrinogen with the fibrinogen solution concentrations (25 μg/ml, 50 μg/ml, 75 μg/ml and 100 μg/ml). The experiment was repeated 3 times for each concentration. All the repetitions were performed individually on newly fabricated sensors. The solid line is the polynomial fitting of the mean of the measurements.

Metrics