Abstract

We report on a quasi-planar quantum-dot-based single-photon source that shows an unprecedented high extraction efficiency of 42% without complex photonic resonator geometries or post-growth nanofabrication. This very high efficiency originates from the coupling of the photons emitted by a quantum dot to a Gaussian shaped nanohill defect that naturally arises during epitaxial growth in a self-aligned manner. We investigate the morphology of these defects and characterize the photonic operation mechanism. Our results show that these naturally arising coupled quantum dot-defects provide a new avenue for efficient (up to 42% demonstrated) and pure (g2(0) value of 0.023) single-photon emission.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
    [CrossRef]
  2. S. Strauf, “Quantum optics: Towards efficient quantum sources,” Nat. Photonics 4(3), 132–134 (2010).
    [CrossRef]
  3. E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
    [CrossRef] [PubMed]
  4. M. Bayer, O. Stern, P. Hawrylak, S. Fafard, A. Forchel, “Hidden symmetries in the energy levels of excitonic ‘artificial atoms’,” Nature 405(6789), 923–926 (2000).
    [CrossRef] [PubMed]
  5. N. Gregersen, P. Kaer, J. Mørk, “Modeling and design of high-efficiency single-photon sources,” IEEE J. Sel. Top. Quantum Electron. 19(5), 9000516 (2013).
    [CrossRef]
  6. T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
    [CrossRef]
  7. M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
    [CrossRef] [PubMed]
  8. O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
    [CrossRef] [PubMed]
  9. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
    [CrossRef]
  10. M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
    [CrossRef] [PubMed]
  11. X.-W. Chen, S. Götzinger, V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. Lett. 36(18), 3545–3547 (2011).
    [CrossRef] [PubMed]
  12. D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4(6), 367–370 (2010).
    [CrossRef]
  13. K. De Greve, D. Press, P. L. McMahon, Y. Yamamoto, “Ultrafast optical control of individual quantum dot spin qubits,” Rep. Prog. Phys. 76(9), 092501 (2013).
    [CrossRef] [PubMed]
  14. P. Royo, R. P. Stanley, M. Ilegems, “Planar dielectric microcavity light-emitting diodes: Analytical analysis of the extraction efficiency,” J. Appl. Phys. 90(1), 283–293 (2001).
    [CrossRef]
  15. J. M. García, T. Mankad, P. O. Holtz, P. J. Wellman, P. M. Petroff, “Electronic states tuning of InAs self-assembled quantum dots,” Appl. Phys. Lett. 72(24), 3172–3174 (1998).
    [CrossRef]
  16. J. M. Zajac, W. Langbein, “Structure and zero-dimensional polariton spectrum of natural defects in GaAs/AlAs microcavities,” Phys. Rev. B 86(19), 195401 (2012).
    [CrossRef]
  17. F. Ding, T. Stöferle, L. Mai, A. Knoll, R. F. Mahrt, “Vertical microcavities with high Q and strong lateral mode confinement,” Phys. Rev. B 87(16), 161116 (2013).
    [CrossRef]
  18. L. Mai, F. Ding, T. Stöferle, A. Knoll, B. J. Offrein, R. F. Mahrt, “Integrated vertical microcavity using a nano-scale deformation for strong lateral confinement,” Appl. Phys. Lett. 103(24), 243305 (2013).
    [CrossRef]
  19. O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut, R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett. 88(6), 061105 (2006).
    [CrossRef]
  20. C. Santori, D. Fattal, J. Vucković, G. S. Solomon, Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
    [CrossRef] [PubMed]
  21. P. Gold, A. Thoma, S. Maier, S. Reitzenstein, C. Schneider, S. Höfling, M. Kamp, “Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths,” Phys. Rev. B 89(3), 035313 (2014).
    [CrossRef]
  22. P. Bienstman, R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4–5), 327–341 (2001).
    [CrossRef]

2014 (1)

P. Gold, A. Thoma, S. Maier, S. Reitzenstein, C. Schneider, S. Höfling, M. Kamp, “Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths,” Phys. Rev. B 89(3), 035313 (2014).
[CrossRef]

2013 (5)

N. Gregersen, P. Kaer, J. Mørk, “Modeling and design of high-efficiency single-photon sources,” IEEE J. Sel. Top. Quantum Electron. 19(5), 9000516 (2013).
[CrossRef]

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[CrossRef] [PubMed]

K. De Greve, D. Press, P. L. McMahon, Y. Yamamoto, “Ultrafast optical control of individual quantum dot spin qubits,” Rep. Prog. Phys. 76(9), 092501 (2013).
[CrossRef] [PubMed]

F. Ding, T. Stöferle, L. Mai, A. Knoll, R. F. Mahrt, “Vertical microcavities with high Q and strong lateral mode confinement,” Phys. Rev. B 87(16), 161116 (2013).
[CrossRef]

L. Mai, F. Ding, T. Stöferle, A. Knoll, B. J. Offrein, R. F. Mahrt, “Integrated vertical microcavity using a nano-scale deformation for strong lateral confinement,” Appl. Phys. Lett. 103(24), 243305 (2013).
[CrossRef]

2012 (2)

J. M. Zajac, W. Langbein, “Structure and zero-dimensional polariton spectrum of natural defects in GaAs/AlAs microcavities,” Phys. Rev. B 86(19), 195401 (2012).
[CrossRef]

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[CrossRef] [PubMed]

2011 (1)

2010 (4)

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4(6), 367–370 (2010).
[CrossRef]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

S. Strauf, “Quantum optics: Towards efficient quantum sources,” Nat. Photonics 4(3), 132–134 (2010).
[CrossRef]

2006 (1)

O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut, R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett. 88(6), 061105 (2006).
[CrossRef]

2002 (3)

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

2001 (3)

E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[CrossRef] [PubMed]

P. Royo, R. P. Stanley, M. Ilegems, “Planar dielectric microcavity light-emitting diodes: Analytical analysis of the extraction efficiency,” J. Appl. Phys. 90(1), 283–293 (2001).
[CrossRef]

P. Bienstman, R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4–5), 327–341 (2001).
[CrossRef]

2000 (1)

M. Bayer, O. Stern, P. Hawrylak, S. Fafard, A. Forchel, “Hidden symmetries in the energy levels of excitonic ‘artificial atoms’,” Nature 405(6789), 923–926 (2000).
[CrossRef] [PubMed]

1998 (1)

J. M. García, T. Mankad, P. O. Holtz, P. J. Wellman, P. M. Petroff, “Electronic states tuning of InAs self-assembled quantum dots,” Appl. Phys. Lett. 72(24), 3172–3174 (1998).
[CrossRef]

Akopian, N.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[CrossRef] [PubMed]

Arnold, C.

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[CrossRef] [PubMed]

Baas, A.

O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut, R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett. 88(6), 061105 (2006).
[CrossRef]

Baets, R.

P. Bienstman, R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4–5), 327–341 (2001).
[CrossRef]

Bakkers, E. P. A. M.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[CrossRef] [PubMed]

Bavinck, M. B.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[CrossRef] [PubMed]

Bayer, M.

M. Bayer, O. Stern, P. Hawrylak, S. Fafard, A. Forchel, “Hidden symmetries in the energy levels of excitonic ‘artificial atoms’,” Nature 405(6789), 923–926 (2000).
[CrossRef] [PubMed]

Bazin, M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

Bienstman, P.

P. Bienstman, R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4–5), 327–341 (2001).
[CrossRef]

Bleuse, J.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

Brantut, J.-P.

O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut, R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett. 88(6), 061105 (2006).
[CrossRef]

Braun, T.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

Bulgarini, G.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[CrossRef] [PubMed]

Chen, X.-W.

Claudon, J.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

De Greve, K.

K. De Greve, D. Press, P. L. McMahon, Y. Yamamoto, “Ultrafast optical control of individual quantum dot spin qubits,” Rep. Prog. Phys. 76(9), 092501 (2013).
[CrossRef] [PubMed]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4(6), 367–370 (2010).
[CrossRef]

Deveaud, B.

O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut, R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett. 88(6), 061105 (2006).
[CrossRef]

Ding, F.

F. Ding, T. Stöferle, L. Mai, A. Knoll, R. F. Mahrt, “Vertical microcavities with high Q and strong lateral mode confinement,” Phys. Rev. B 87(16), 161116 (2013).
[CrossRef]

L. Mai, F. Ding, T. Stöferle, A. Knoll, B. J. Offrein, R. F. Mahrt, “Integrated vertical microcavity using a nano-scale deformation for strong lateral confinement,” Appl. Phys. Lett. 103(24), 243305 (2013).
[CrossRef]

El Daïf, O.

O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut, R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett. 88(6), 061105 (2006).
[CrossRef]

Fafard, S.

M. Bayer, O. Stern, P. Hawrylak, S. Fafard, A. Forchel, “Hidden symmetries in the energy levels of excitonic ‘artificial atoms’,” Nature 405(6789), 923–926 (2000).
[CrossRef] [PubMed]

Fattal, D.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

Forchel, A.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4(6), 367–370 (2010).
[CrossRef]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

M. Bayer, O. Stern, P. Hawrylak, S. Fafard, A. Forchel, “Hidden symmetries in the energy levels of excitonic ‘artificial atoms’,” Nature 405(6789), 923–926 (2000).
[CrossRef] [PubMed]

Friess, B.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4(6), 367–370 (2010).
[CrossRef]

Galopin, E.

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[CrossRef] [PubMed]

García, J. M.

J. M. García, T. Mankad, P. O. Holtz, P. J. Wellman, P. M. Petroff, “Electronic states tuning of InAs self-assembled quantum dots,” Appl. Phys. Lett. 72(24), 3172–3174 (1998).
[CrossRef]

Gazzano, O.

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[CrossRef] [PubMed]

Gérard, J.-M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Gold, P.

P. Gold, A. Thoma, S. Maier, S. Reitzenstein, C. Schneider, S. Höfling, M. Kamp, “Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths,” Phys. Rev. B 89(3), 035313 (2014).
[CrossRef]

Götzinger, S.

Gregersen, N.

N. Gregersen, P. Kaer, J. Mørk, “Modeling and design of high-efficiency single-photon sources,” IEEE J. Sel. Top. Quantum Electron. 19(5), 9000516 (2013).
[CrossRef]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

Guillet, T.

O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut, R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett. 88(6), 061105 (2006).
[CrossRef]

Hawrylak, P.

M. Bayer, O. Stern, P. Hawrylak, S. Fafard, A. Forchel, “Hidden symmetries in the energy levels of excitonic ‘artificial atoms’,” Nature 405(6789), 923–926 (2000).
[CrossRef] [PubMed]

Heindel, T.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

Hocevar, M.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[CrossRef] [PubMed]

Höfling, S.

P. Gold, A. Thoma, S. Maier, S. Reitzenstein, C. Schneider, S. Höfling, M. Kamp, “Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths,” Phys. Rev. B 89(3), 035313 (2014).
[CrossRef]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4(6), 367–370 (2010).
[CrossRef]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

Holtz, P. O.

J. M. García, T. Mankad, P. O. Holtz, P. J. Wellman, P. M. Petroff, “Electronic states tuning of InAs self-assembled quantum dots,” Appl. Phys. Lett. 72(24), 3172–3174 (1998).
[CrossRef]

Idrissi Kaitouni, R.

O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut, R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett. 88(6), 061105 (2006).
[CrossRef]

Ilegems, M.

P. Royo, R. P. Stanley, M. Ilegems, “Planar dielectric microcavity light-emitting diodes: Analytical analysis of the extraction efficiency,” J. Appl. Phys. 90(1), 283–293 (2001).
[CrossRef]

Jaffrennou, P.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

Kaer, P.

N. Gregersen, P. Kaer, J. Mørk, “Modeling and design of high-efficiency single-photon sources,” IEEE J. Sel. Top. Quantum Electron. 19(5), 9000516 (2013).
[CrossRef]

Kamp, M.

P. Gold, A. Thoma, S. Maier, S. Reitzenstein, C. Schneider, S. Höfling, M. Kamp, “Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths,” Phys. Rev. B 89(3), 035313 (2014).
[CrossRef]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4(6), 367–370 (2010).
[CrossRef]

Knill, E.

E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[CrossRef] [PubMed]

Knoll, A.

L. Mai, F. Ding, T. Stöferle, A. Knoll, B. J. Offrein, R. F. Mahrt, “Integrated vertical microcavity using a nano-scale deformation for strong lateral confinement,” Appl. Phys. Lett. 103(24), 243305 (2013).
[CrossRef]

F. Ding, T. Stöferle, L. Mai, A. Knoll, R. F. Mahrt, “Vertical microcavities with high Q and strong lateral mode confinement,” Phys. Rev. B 87(16), 161116 (2013).
[CrossRef]

Kouwenhoven, L. P.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[CrossRef] [PubMed]

Kwon, S. H.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

Ladd, T. D.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4(6), 367–370 (2010).
[CrossRef]

Laflamme, R.

E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[CrossRef] [PubMed]

Lalanne, P.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

Lanco, L.

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[CrossRef] [PubMed]

Langbein, W.

J. M. Zajac, W. Langbein, “Structure and zero-dimensional polariton spectrum of natural defects in GaAs/AlAs microcavities,” Phys. Rev. B 86(19), 195401 (2012).
[CrossRef]

Lemaître, A.

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[CrossRef] [PubMed]

Lermer, M.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

Mahrt, R. F.

F. Ding, T. Stöferle, L. Mai, A. Knoll, R. F. Mahrt, “Vertical microcavities with high Q and strong lateral mode confinement,” Phys. Rev. B 87(16), 161116 (2013).
[CrossRef]

L. Mai, F. Ding, T. Stöferle, A. Knoll, B. J. Offrein, R. F. Mahrt, “Integrated vertical microcavity using a nano-scale deformation for strong lateral confinement,” Appl. Phys. Lett. 103(24), 243305 (2013).
[CrossRef]

Mai, L.

F. Ding, T. Stöferle, L. Mai, A. Knoll, R. F. Mahrt, “Vertical microcavities with high Q and strong lateral mode confinement,” Phys. Rev. B 87(16), 161116 (2013).
[CrossRef]

L. Mai, F. Ding, T. Stöferle, A. Knoll, B. J. Offrein, R. F. Mahrt, “Integrated vertical microcavity using a nano-scale deformation for strong lateral confinement,” Appl. Phys. Lett. 103(24), 243305 (2013).
[CrossRef]

Maier, S.

P. Gold, A. Thoma, S. Maier, S. Reitzenstein, C. Schneider, S. Höfling, M. Kamp, “Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths,” Phys. Rev. B 89(3), 035313 (2014).
[CrossRef]

Malik, N. S.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

Mankad, T.

J. M. García, T. Mankad, P. O. Holtz, P. J. Wellman, P. M. Petroff, “Electronic states tuning of InAs self-assembled quantum dots,” Appl. Phys. Lett. 72(24), 3172–3174 (1998).
[CrossRef]

McMahon, P. L.

K. De Greve, D. Press, P. L. McMahon, Y. Yamamoto, “Ultrafast optical control of individual quantum dot spin qubits,” Rep. Prog. Phys. 76(9), 092501 (2013).
[CrossRef] [PubMed]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4(6), 367–370 (2010).
[CrossRef]

Michaelis de Vasconcellos, S.

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[CrossRef] [PubMed]

Milburn, G. J.

E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[CrossRef] [PubMed]

Morier-Genoud, F.

O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut, R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett. 88(6), 061105 (2006).
[CrossRef]

Mørk, J.

N. Gregersen, P. Kaer, J. Mørk, “Modeling and design of high-efficiency single-photon sources,” IEEE J. Sel. Top. Quantum Electron. 19(5), 9000516 (2013).
[CrossRef]

Nowak, A.

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[CrossRef] [PubMed]

Offrein, B. J.

L. Mai, F. Ding, T. Stöferle, A. Knoll, B. J. Offrein, R. F. Mahrt, “Integrated vertical microcavity using a nano-scale deformation for strong lateral confinement,” Appl. Phys. Lett. 103(24), 243305 (2013).
[CrossRef]

Pelton, M.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Petroff, P. M.

J. M. García, T. Mankad, P. O. Holtz, P. J. Wellman, P. M. Petroff, “Electronic states tuning of InAs self-assembled quantum dots,” Appl. Phys. Lett. 72(24), 3172–3174 (1998).
[CrossRef]

Plant, J.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Press, D.

K. De Greve, D. Press, P. L. McMahon, Y. Yamamoto, “Ultrafast optical control of individual quantum dot spin qubits,” Rep. Prog. Phys. 76(9), 092501 (2013).
[CrossRef] [PubMed]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4(6), 367–370 (2010).
[CrossRef]

Reimer, M. E.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[CrossRef] [PubMed]

Reitzenstein, S.

P. Gold, A. Thoma, S. Maier, S. Reitzenstein, C. Schneider, S. Höfling, M. Kamp, “Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths,” Phys. Rev. B 89(3), 035313 (2014).
[CrossRef]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Royo, P.

P. Royo, R. P. Stanley, M. Ilegems, “Planar dielectric microcavity light-emitting diodes: Analytical analysis of the extraction efficiency,” J. Appl. Phys. 90(1), 283–293 (2001).
[CrossRef]

Sagnes, I.

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[CrossRef] [PubMed]

Sandoghdar, V.

Santori, C.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

Sauvan, C.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

Schneider, C.

P. Gold, A. Thoma, S. Maier, S. Reitzenstein, C. Schneider, S. Höfling, M. Kamp, “Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths,” Phys. Rev. B 89(3), 035313 (2014).
[CrossRef]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4(6), 367–370 (2010).
[CrossRef]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

Senellart, P.

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[CrossRef] [PubMed]

Solomon, G. S.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

Staehli, J. L.

O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut, R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett. 88(6), 061105 (2006).
[CrossRef]

Stanley, R. P.

P. Royo, R. P. Stanley, M. Ilegems, “Planar dielectric microcavity light-emitting diodes: Analytical analysis of the extraction efficiency,” J. Appl. Phys. 90(1), 283–293 (2001).
[CrossRef]

Stern, O.

M. Bayer, O. Stern, P. Hawrylak, S. Fafard, A. Forchel, “Hidden symmetries in the energy levels of excitonic ‘artificial atoms’,” Nature 405(6789), 923–926 (2000).
[CrossRef] [PubMed]

Stöferle, T.

L. Mai, F. Ding, T. Stöferle, A. Knoll, B. J. Offrein, R. F. Mahrt, “Integrated vertical microcavity using a nano-scale deformation for strong lateral confinement,” Appl. Phys. Lett. 103(24), 243305 (2013).
[CrossRef]

F. Ding, T. Stöferle, L. Mai, A. Knoll, R. F. Mahrt, “Vertical microcavities with high Q and strong lateral mode confinement,” Phys. Rev. B 87(16), 161116 (2013).
[CrossRef]

Strauf, S.

S. Strauf, “Quantum optics: Towards efficient quantum sources,” Nat. Photonics 4(3), 132–134 (2010).
[CrossRef]

Thoma, A.

P. Gold, A. Thoma, S. Maier, S. Reitzenstein, C. Schneider, S. Höfling, M. Kamp, “Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths,” Phys. Rev. B 89(3), 035313 (2014).
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Verheijen, M. A.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[CrossRef] [PubMed]

Vuckovic, J.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

Wellman, P. J.

J. M. García, T. Mankad, P. O. Holtz, P. J. Wellman, P. M. Petroff, “Electronic states tuning of InAs self-assembled quantum dots,” Appl. Phys. Lett. 72(24), 3172–3174 (1998).
[CrossRef]

Yamamoto, Y.

K. De Greve, D. Press, P. L. McMahon, Y. Yamamoto, “Ultrafast optical control of individual quantum dot spin qubits,” Rep. Prog. Phys. 76(9), 092501 (2013).
[CrossRef] [PubMed]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4(6), 367–370 (2010).
[CrossRef]

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Zajac, J. M.

J. M. Zajac, W. Langbein, “Structure and zero-dimensional polariton spectrum of natural defects in GaAs/AlAs microcavities,” Phys. Rev. B 86(19), 195401 (2012).
[CrossRef]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Zhang, B.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Zwiller, V.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010).
[CrossRef]

L. Mai, F. Ding, T. Stöferle, A. Knoll, B. J. Offrein, R. F. Mahrt, “Integrated vertical microcavity using a nano-scale deformation for strong lateral confinement,” Appl. Phys. Lett. 103(24), 243305 (2013).
[CrossRef]

O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut, R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett. 88(6), 061105 (2006).
[CrossRef]

J. M. García, T. Mankad, P. O. Holtz, P. J. Wellman, P. M. Petroff, “Electronic states tuning of InAs self-assembled quantum dots,” Appl. Phys. Lett. 72(24), 3172–3174 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

N. Gregersen, P. Kaer, J. Mørk, “Modeling and design of high-efficiency single-photon sources,” IEEE J. Sel. Top. Quantum Electron. 19(5), 9000516 (2013).
[CrossRef]

J. Appl. Phys. (1)

P. Royo, R. P. Stanley, M. Ilegems, “Planar dielectric microcavity light-emitting diodes: Analytical analysis of the extraction efficiency,” J. Appl. Phys. 90(1), 283–293 (2001).
[CrossRef]

Nat. Commun. (2)

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[CrossRef] [PubMed]

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[CrossRef] [PubMed]

Nat. Photonics (3)

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4(6), 367–370 (2010).
[CrossRef]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
[CrossRef]

S. Strauf, “Quantum optics: Towards efficient quantum sources,” Nat. Photonics 4(3), 132–134 (2010).
[CrossRef]

Nature (3)

E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[CrossRef] [PubMed]

M. Bayer, O. Stern, P. Hawrylak, S. Fafard, A. Forchel, “Hidden symmetries in the energy levels of excitonic ‘artificial atoms’,” Nature 405(6789), 923–926 (2000).
[CrossRef] [PubMed]

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

P. Bienstman, R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4–5), 327–341 (2001).
[CrossRef]

Phys. Rev. B (3)

J. M. Zajac, W. Langbein, “Structure and zero-dimensional polariton spectrum of natural defects in GaAs/AlAs microcavities,” Phys. Rev. B 86(19), 195401 (2012).
[CrossRef]

F. Ding, T. Stöferle, L. Mai, A. Knoll, R. F. Mahrt, “Vertical microcavities with high Q and strong lateral mode confinement,” Phys. Rev. B 87(16), 161116 (2013).
[CrossRef]

P. Gold, A. Thoma, S. Maier, S. Reitzenstein, C. Schneider, S. Höfling, M. Kamp, “Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths,” Phys. Rev. B 89(3), 035313 (2014).
[CrossRef]

Phys. Rev. Lett. (1)

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

K. De Greve, D. Press, P. L. McMahon, Y. Yamamoto, “Ultrafast optical control of individual quantum dot spin qubits,” Rep. Prog. Phys. 76(9), 092501 (2013).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Surface image of CCD camera under white light excitation of the sample and use of a cold light mirror, revealing spots of very intense QD emission. The grey letter in the background serves for orientation on the sample. (b) µPL spectrum of a QD cluster. (c) µPL spectrum next to a QD cluster under the same conditions (red). The black curve shows the same spectrum with a rescaled axis.

Fig. 2
Fig. 2

(a), (b) Atomic force microscopy measurements reveal oval defects. (c) Cross sectional height distribution of the oval defects.

Fig. 3
Fig. 3

(a) µPL spectrum (measured at 6 K) of a single QD in a natural trap. (b) Second order auto-correlation function measured in a Hanbury Brown and Twiss setup under pulsed excitation.

Fig. 4
Fig. 4

Hong-Ou-Mandel experiment: (a) Schematic drawing of the interference setup. (b) Correlation histogram for two photon interference of consecutively emitted photons from the same QD.

Fig. 5
Fig. 5

Simulation results: (a) Electric field amplitude profile of the planar DBR structure. (b) Schematic drawing of the simulation layout. (c) Electric field amplitude profile of the defect structure. (d) Simulated extraction efficiency of the planar structure and the defect structure with a variation in height.

Tables (1)

Tables Icon

Table 1 Transmission of the optical elements in the detection path with relative errors.

Metrics