Abstract

Acoustic and ultrasonic transducers are key components in biomedical information technology, which has been applied in medical diagnosis, photoacoustic endoscopy and photoacoustic imaging. In this paper, an acoustic transducer based on Fabry-Perot interferometer (FPI) fabricated in a microscaled optical fiber is demonstrated. The transducer is fabricated by forming two wavelength-matched Bragg gratings into the microfiber by means of side illumination with a 193nm excimer laser. When placing the transducer in water, the applied acoustic signal periodically changes the refractive index (RI) of the surrounding liquid and modulates the transmission of the FPI based on the evanescent-field interaction between the liquid and the transmitting light. As a result, the acoustic signal can be constructed with a tunable laser whose output wavelength is located at the slope of the inteferometric fringes. The transducer presents a sensitivity of 10 times higher than the counterparts fabricated in conventional singlemode fibers and has great potential to achieve higher resolution for photoacoustic imaging due to its reduced diameter.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Z. Zhang, J. G. Laufer, R. B. Pedley, P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
    [CrossRef] [PubMed]
  2. M. Haltmeier, O. Scherzer, P. Burgholzer, G. Paltuaf, “Thermoacoustic computed tomography with large planar receivers,” Inverse Probl. 20(5), 1663–1673 (2004).
    [CrossRef]
  3. T. Berer, H. Grün, C. Hofer, P. Burgholzer, “Photoacoustic microscopy with large integrating optical annular detectors,” Proc. SPIE 7371, 73710X (2009).
    [CrossRef]
  4. G. Zangerl, O. Scherzer, M. Haltmeier, “Circular integrating detectors in photo and themoacoustic tomgraphy,” Inverse Probl. Sci. Eng. 17(1), 133–142 (2009).
    [CrossRef]
  5. P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
    [CrossRef] [PubMed]
  6. H. Grün, G. Paltauf, M. Haltmeier, P. Burgholzer, “Photoacoustic tomography using a fiber based fabry-perot interferometer as an integrating line detector and image reconstruction by model-based time reversal method,” Proc. SPIE 6631, 663107 (2007).
    [CrossRef]
  7. R. Nuster, S. Gratt, K. Passler, H. Grün, Th. Berer, P. Burgholzer, G. Paltauf, “Comparison of optical and piezoelectric integrating line detectors,” Proc. SPIE 7177, 71770T (2009).
    [CrossRef]
  8. H. Grün, T. Berer, R. Nuster, G. Paltauf, P. Burgholzer, “Fiber-based detectors for photoacoustic imaging,” Proc. SPIE 7371, 73710T (2009).
    [CrossRef]
  9. Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, M. V. Andrés, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14(14), 6394–6399 (2006).
    [CrossRef] [PubMed]
  10. C. Wurster, J. Staudenraus, W. Eisenmenger, “The fiber optic probe hydrophone,” IEEE Ultrason. Symp.2(3), 941–944 (1994).
    [CrossRef]
  11. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th edition (Oxford University Press, 2006).
  12. R. D. Paula, J. Cole, J. Bucaro, “Broad-band ultrasonic sensor based on induced optical phase shifts in single-mode fibers,” J. Lightwave Technol. 1(2), 390–393 (1983).
    [CrossRef]
  13. J. J. Zhang, Q. Z. Sun, R. B. Liang, J. H. Wo, D. M. Liu, P. Shum, “Microfiber Fabry-Perot interferometer fabricated by taper-drawing technique and its application as a radio frequency interrogated refractive index sensor,” Opt. Lett. 37(14), 2925–2927 (2012).
    [CrossRef] [PubMed]
  14. Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, B. O. Guan, “High-efficiency ultraviolet inscription of Bragg gratings in microfibers,” IEEE Photonics Journal. 4(1), 181–186 (2012).
    [CrossRef]
  15. Th. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J Biophotonics 5(7), 518–528 (2012).
    [CrossRef] [PubMed]
  16. J. Li, X. Shen, L. P. Sun, B. O. Guan, “Characteristics of microfiber Fabry-Perot resonators fabricated by UV exposure,” Opt. Express 21(10), 12111–12121 (2013).
    [CrossRef] [PubMed]

2013 (1)

2012 (3)

J. J. Zhang, Q. Z. Sun, R. B. Liang, J. H. Wo, D. M. Liu, P. Shum, “Microfiber Fabry-Perot interferometer fabricated by taper-drawing technique and its application as a radio frequency interrogated refractive index sensor,” Opt. Lett. 37(14), 2925–2927 (2012).
[CrossRef] [PubMed]

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, B. O. Guan, “High-efficiency ultraviolet inscription of Bragg gratings in microfibers,” IEEE Photonics Journal. 4(1), 181–186 (2012).
[CrossRef]

Th. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J Biophotonics 5(7), 518–528 (2012).
[CrossRef] [PubMed]

2009 (5)

E. Z. Zhang, J. G. Laufer, R. B. Pedley, P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

T. Berer, H. Grün, C. Hofer, P. Burgholzer, “Photoacoustic microscopy with large integrating optical annular detectors,” Proc. SPIE 7371, 73710X (2009).
[CrossRef]

G. Zangerl, O. Scherzer, M. Haltmeier, “Circular integrating detectors in photo and themoacoustic tomgraphy,” Inverse Probl. Sci. Eng. 17(1), 133–142 (2009).
[CrossRef]

R. Nuster, S. Gratt, K. Passler, H. Grün, Th. Berer, P. Burgholzer, G. Paltauf, “Comparison of optical and piezoelectric integrating line detectors,” Proc. SPIE 7177, 71770T (2009).
[CrossRef]

H. Grün, T. Berer, R. Nuster, G. Paltauf, P. Burgholzer, “Fiber-based detectors for photoacoustic imaging,” Proc. SPIE 7371, 73710T (2009).
[CrossRef]

2007 (1)

H. Grün, G. Paltauf, M. Haltmeier, P. Burgholzer, “Photoacoustic tomography using a fiber based fabry-perot interferometer as an integrating line detector and image reconstruction by model-based time reversal method,” Proc. SPIE 6631, 663107 (2007).
[CrossRef]

2006 (1)

2005 (1)

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
[CrossRef] [PubMed]

2004 (1)

M. Haltmeier, O. Scherzer, P. Burgholzer, G. Paltuaf, “Thermoacoustic computed tomography with large planar receivers,” Inverse Probl. 20(5), 1663–1673 (2004).
[CrossRef]

1983 (1)

R. D. Paula, J. Cole, J. Bucaro, “Broad-band ultrasonic sensor based on induced optical phase shifts in single-mode fibers,” J. Lightwave Technol. 1(2), 390–393 (1983).
[CrossRef]

Andrés, M. V.

Barmenkov, Y. O.

Bauer-Marschallinger, J.

Th. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J Biophotonics 5(7), 518–528 (2012).
[CrossRef] [PubMed]

Beard, P. C.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

Berer, T.

T. Berer, H. Grün, C. Hofer, P. Burgholzer, “Photoacoustic microscopy with large integrating optical annular detectors,” Proc. SPIE 7371, 73710X (2009).
[CrossRef]

H. Grün, T. Berer, R. Nuster, G. Paltauf, P. Burgholzer, “Fiber-based detectors for photoacoustic imaging,” Proc. SPIE 7371, 73710T (2009).
[CrossRef]

Berer, Th.

Th. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J Biophotonics 5(7), 518–528 (2012).
[CrossRef] [PubMed]

R. Nuster, S. Gratt, K. Passler, H. Grün, Th. Berer, P. Burgholzer, G. Paltauf, “Comparison of optical and piezoelectric integrating line detectors,” Proc. SPIE 7177, 71770T (2009).
[CrossRef]

Bucaro, J.

R. D. Paula, J. Cole, J. Bucaro, “Broad-band ultrasonic sensor based on induced optical phase shifts in single-mode fibers,” J. Lightwave Technol. 1(2), 390–393 (1983).
[CrossRef]

Burgholzer, P.

Th. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J Biophotonics 5(7), 518–528 (2012).
[CrossRef] [PubMed]

H. Grün, T. Berer, R. Nuster, G. Paltauf, P. Burgholzer, “Fiber-based detectors for photoacoustic imaging,” Proc. SPIE 7371, 73710T (2009).
[CrossRef]

R. Nuster, S. Gratt, K. Passler, H. Grün, Th. Berer, P. Burgholzer, G. Paltauf, “Comparison of optical and piezoelectric integrating line detectors,” Proc. SPIE 7177, 71770T (2009).
[CrossRef]

T. Berer, H. Grün, C. Hofer, P. Burgholzer, “Photoacoustic microscopy with large integrating optical annular detectors,” Proc. SPIE 7371, 73710X (2009).
[CrossRef]

H. Grün, G. Paltauf, M. Haltmeier, P. Burgholzer, “Photoacoustic tomography using a fiber based fabry-perot interferometer as an integrating line detector and image reconstruction by model-based time reversal method,” Proc. SPIE 6631, 663107 (2007).
[CrossRef]

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
[CrossRef] [PubMed]

M. Haltmeier, O. Scherzer, P. Burgholzer, G. Paltuaf, “Thermoacoustic computed tomography with large planar receivers,” Inverse Probl. 20(5), 1663–1673 (2004).
[CrossRef]

Cole, J.

R. D. Paula, J. Cole, J. Bucaro, “Broad-band ultrasonic sensor based on induced optical phase shifts in single-mode fibers,” J. Lightwave Technol. 1(2), 390–393 (1983).
[CrossRef]

Cruz, J. L.

Eisenmenger, W.

C. Wurster, J. Staudenraus, W. Eisenmenger, “The fiber optic probe hydrophone,” IEEE Ultrason. Symp.2(3), 941–944 (1994).
[CrossRef]

Felbermayer, K.

Th. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J Biophotonics 5(7), 518–528 (2012).
[CrossRef] [PubMed]

Gratt, S.

R. Nuster, S. Gratt, K. Passler, H. Grün, Th. Berer, P. Burgholzer, G. Paltauf, “Comparison of optical and piezoelectric integrating line detectors,” Proc. SPIE 7177, 71770T (2009).
[CrossRef]

Grün, H.

Th. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J Biophotonics 5(7), 518–528 (2012).
[CrossRef] [PubMed]

R. Nuster, S. Gratt, K. Passler, H. Grün, Th. Berer, P. Burgholzer, G. Paltauf, “Comparison of optical and piezoelectric integrating line detectors,” Proc. SPIE 7177, 71770T (2009).
[CrossRef]

H. Grün, T. Berer, R. Nuster, G. Paltauf, P. Burgholzer, “Fiber-based detectors for photoacoustic imaging,” Proc. SPIE 7371, 73710T (2009).
[CrossRef]

T. Berer, H. Grün, C. Hofer, P. Burgholzer, “Photoacoustic microscopy with large integrating optical annular detectors,” Proc. SPIE 7371, 73710X (2009).
[CrossRef]

H. Grün, G. Paltauf, M. Haltmeier, P. Burgholzer, “Photoacoustic tomography using a fiber based fabry-perot interferometer as an integrating line detector and image reconstruction by model-based time reversal method,” Proc. SPIE 6631, 663107 (2007).
[CrossRef]

Guan, B. O.

J. Li, X. Shen, L. P. Sun, B. O. Guan, “Characteristics of microfiber Fabry-Perot resonators fabricated by UV exposure,” Opt. Express 21(10), 12111–12121 (2013).
[CrossRef] [PubMed]

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, B. O. Guan, “High-efficiency ultraviolet inscription of Bragg gratings in microfibers,” IEEE Photonics Journal. 4(1), 181–186 (2012).
[CrossRef]

Haltmeier, M.

G. Zangerl, O. Scherzer, M. Haltmeier, “Circular integrating detectors in photo and themoacoustic tomgraphy,” Inverse Probl. Sci. Eng. 17(1), 133–142 (2009).
[CrossRef]

H. Grün, G. Paltauf, M. Haltmeier, P. Burgholzer, “Photoacoustic tomography using a fiber based fabry-perot interferometer as an integrating line detector and image reconstruction by model-based time reversal method,” Proc. SPIE 6631, 663107 (2007).
[CrossRef]

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
[CrossRef] [PubMed]

M. Haltmeier, O. Scherzer, P. Burgholzer, G. Paltuaf, “Thermoacoustic computed tomography with large planar receivers,” Inverse Probl. 20(5), 1663–1673 (2004).
[CrossRef]

Hofer, C.

T. Berer, H. Grün, C. Hofer, P. Burgholzer, “Photoacoustic microscopy with large integrating optical annular detectors,” Proc. SPIE 7371, 73710X (2009).
[CrossRef]

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
[CrossRef] [PubMed]

Jin, L.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, B. O. Guan, “High-efficiency ultraviolet inscription of Bragg gratings in microfibers,” IEEE Photonics Journal. 4(1), 181–186 (2012).
[CrossRef]

Laufer, J. G.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

Li, J.

J. Li, X. Shen, L. P. Sun, B. O. Guan, “Characteristics of microfiber Fabry-Perot resonators fabricated by UV exposure,” Opt. Express 21(10), 12111–12121 (2013).
[CrossRef] [PubMed]

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, B. O. Guan, “High-efficiency ultraviolet inscription of Bragg gratings in microfibers,” IEEE Photonics Journal. 4(1), 181–186 (2012).
[CrossRef]

Liang, R. B.

Liu, D. M.

Nuster, R.

R. Nuster, S. Gratt, K. Passler, H. Grün, Th. Berer, P. Burgholzer, G. Paltauf, “Comparison of optical and piezoelectric integrating line detectors,” Proc. SPIE 7177, 71770T (2009).
[CrossRef]

H. Grün, T. Berer, R. Nuster, G. Paltauf, P. Burgholzer, “Fiber-based detectors for photoacoustic imaging,” Proc. SPIE 7371, 73710T (2009).
[CrossRef]

Paltauf, G.

H. Grün, T. Berer, R. Nuster, G. Paltauf, P. Burgholzer, “Fiber-based detectors for photoacoustic imaging,” Proc. SPIE 7371, 73710T (2009).
[CrossRef]

R. Nuster, S. Gratt, K. Passler, H. Grün, Th. Berer, P. Burgholzer, G. Paltauf, “Comparison of optical and piezoelectric integrating line detectors,” Proc. SPIE 7177, 71770T (2009).
[CrossRef]

H. Grün, G. Paltauf, M. Haltmeier, P. Burgholzer, “Photoacoustic tomography using a fiber based fabry-perot interferometer as an integrating line detector and image reconstruction by model-based time reversal method,” Proc. SPIE 6631, 663107 (2007).
[CrossRef]

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
[CrossRef] [PubMed]

Paltuaf, G.

M. Haltmeier, O. Scherzer, P. Burgholzer, G. Paltuaf, “Thermoacoustic computed tomography with large planar receivers,” Inverse Probl. 20(5), 1663–1673 (2004).
[CrossRef]

Passler, K.

R. Nuster, S. Gratt, K. Passler, H. Grün, Th. Berer, P. Burgholzer, G. Paltauf, “Comparison of optical and piezoelectric integrating line detectors,” Proc. SPIE 7177, 71770T (2009).
[CrossRef]

Paula, R. D.

R. D. Paula, J. Cole, J. Bucaro, “Broad-band ultrasonic sensor based on induced optical phase shifts in single-mode fibers,” J. Lightwave Technol. 1(2), 390–393 (1983).
[CrossRef]

Pedley, R. B.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

Ran, Y.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, B. O. Guan, “High-efficiency ultraviolet inscription of Bragg gratings in microfibers,” IEEE Photonics Journal. 4(1), 181–186 (2012).
[CrossRef]

Scherzer, O.

G. Zangerl, O. Scherzer, M. Haltmeier, “Circular integrating detectors in photo and themoacoustic tomgraphy,” Inverse Probl. Sci. Eng. 17(1), 133–142 (2009).
[CrossRef]

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
[CrossRef] [PubMed]

M. Haltmeier, O. Scherzer, P. Burgholzer, G. Paltuaf, “Thermoacoustic computed tomography with large planar receivers,” Inverse Probl. 20(5), 1663–1673 (2004).
[CrossRef]

Shen, X.

Shum, P.

Staudenraus, J.

C. Wurster, J. Staudenraus, W. Eisenmenger, “The fiber optic probe hydrophone,” IEEE Ultrason. Symp.2(3), 941–944 (1994).
[CrossRef]

Sun, L. P.

J. Li, X. Shen, L. P. Sun, B. O. Guan, “Characteristics of microfiber Fabry-Perot resonators fabricated by UV exposure,” Opt. Express 21(10), 12111–12121 (2013).
[CrossRef] [PubMed]

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, B. O. Guan, “High-efficiency ultraviolet inscription of Bragg gratings in microfibers,” IEEE Photonics Journal. 4(1), 181–186 (2012).
[CrossRef]

Sun, Q. Z.

Tan, Y. N.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, B. O. Guan, “High-efficiency ultraviolet inscription of Bragg gratings in microfibers,” IEEE Photonics Journal. 4(1), 181–186 (2012).
[CrossRef]

Torres-Peiró, S.

Veres, I. A.

Th. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J Biophotonics 5(7), 518–528 (2012).
[CrossRef] [PubMed]

Wo, J. H.

Wurster, C.

C. Wurster, J. Staudenraus, W. Eisenmenger, “The fiber optic probe hydrophone,” IEEE Ultrason. Symp.2(3), 941–944 (1994).
[CrossRef]

Zalvidea, D.

Zangerl, G.

G. Zangerl, O. Scherzer, M. Haltmeier, “Circular integrating detectors in photo and themoacoustic tomgraphy,” Inverse Probl. Sci. Eng. 17(1), 133–142 (2009).
[CrossRef]

Zhang, E. Z.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

Zhang, J. J.

IEEE Photonics Journal. (1)

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, B. O. Guan, “High-efficiency ultraviolet inscription of Bragg gratings in microfibers,” IEEE Photonics Journal. 4(1), 181–186 (2012).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
[CrossRef] [PubMed]

Inverse Probl. (1)

M. Haltmeier, O. Scherzer, P. Burgholzer, G. Paltuaf, “Thermoacoustic computed tomography with large planar receivers,” Inverse Probl. 20(5), 1663–1673 (2004).
[CrossRef]

Inverse Probl. Sci. Eng. (1)

G. Zangerl, O. Scherzer, M. Haltmeier, “Circular integrating detectors in photo and themoacoustic tomgraphy,” Inverse Probl. Sci. Eng. 17(1), 133–142 (2009).
[CrossRef]

J Biophotonics (1)

Th. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J Biophotonics 5(7), 518–528 (2012).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

R. D. Paula, J. Cole, J. Bucaro, “Broad-band ultrasonic sensor based on induced optical phase shifts in single-mode fibers,” J. Lightwave Technol. 1(2), 390–393 (1983).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Med. Biol. (1)

E. Z. Zhang, J. G. Laufer, R. B. Pedley, P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

Proc. SPIE (4)

T. Berer, H. Grün, C. Hofer, P. Burgholzer, “Photoacoustic microscopy with large integrating optical annular detectors,” Proc. SPIE 7371, 73710X (2009).
[CrossRef]

H. Grün, G. Paltauf, M. Haltmeier, P. Burgholzer, “Photoacoustic tomography using a fiber based fabry-perot interferometer as an integrating line detector and image reconstruction by model-based time reversal method,” Proc. SPIE 6631, 663107 (2007).
[CrossRef]

R. Nuster, S. Gratt, K. Passler, H. Grün, Th. Berer, P. Burgholzer, G. Paltauf, “Comparison of optical and piezoelectric integrating line detectors,” Proc. SPIE 7177, 71770T (2009).
[CrossRef]

H. Grün, T. Berer, R. Nuster, G. Paltauf, P. Burgholzer, “Fiber-based detectors for photoacoustic imaging,” Proc. SPIE 7371, 73710T (2009).
[CrossRef]

Other (2)

C. Wurster, J. Staudenraus, W. Eisenmenger, “The fiber optic probe hydrophone,” IEEE Ultrason. Symp.2(3), 941–944 (1994).
[CrossRef]

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th edition (Oxford University Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Geometry of the proposed transducer (upper) and the schematic variation in transmission spectrum when the density of the ambient liquid changes (lower).

Fig. 2
Fig. 2

Calculated transmission of the F-P cavity and dT/dφ as a function of round-trip phase.

Fig. 3
Fig. 3

Measured transmission spectra of the FPIs fabricated in microfiber and conventional singlemode fibers, respectively. The blue fine line denotes the output wavelength of the incident laser.

Fig. 4
Fig. 4

Experimental setup to test the performance of the transducer.

Fig. 5
Fig. 5

(a) Waveform from the generator; (b) Transduced signal. Inset: Pulse series with a repetition of 5 kHz.

Fig. 6
Fig. 6

(a) Transduced signals for the interferometric transducers fabricated in microfiber and siglemode fiber. (b) Measured output voltages as a function of applied acoustic pressure for both transducers. (c) Power spectra of transduced signals. The applied acoustic pressure is 10.03 kPa and the repetition frequency is 5 kHz.

Fig. 7
Fig. 7

Measured frequency responses for the microfiber and singlemode-fiber transducers when the applied acoustic pressure is 10.03 kPa.

Fig. 8
Fig. 8

(a) schematic for the incident angle when testing the directivity of the transducer. (b) Measured normalized sensitivities as a function of alignment angle for both transducers.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

φ=2 k 0 n eff L eff =2mπ
n w (p)=1+( n w,0 1) (1+ p p 0 p 0 +Q ) 1 r
n w (p)= n w,0 +k(p p 0 )
T = (1- R 1 )(1- R 2 ) ( 1 R 1 R 2 ) 2 + 4 R 1 R 2 sin 2 φ
T = (1- R ) 2 ( 1 R ) 2 + 4 R sin 2 φ
dT dp = dT dφ dφ dp
dT dφ = 1 ( 1+ 4R (1R) 2 sin 2 φ ) 2 8R (1R) 2 sinφcosφ
dφ dP =φ( 1 L eff d L eff dP + 1 n eff d n eff dP )

Metrics