Abstract

We present experimentally and analytically the phase noise characterization of an externally injected gain switched comb source. The results reveal the residual high frequency FM noise in the comb lines, which stays unnoticed in the optical linewidth value but leads to an increased phase-error variance. The potential impact of the residual phase noise is investigated in a 10.7 GBaud optical DQPSK system where a 2 dB power penalty is recorded at BER of 10−9. In a 10.7 GBaud digital coherent QPSK system no penalty is observed but with 5 GBaud 16-QAM format a 3 dBpenalty exists at the FEC limit of 4.4e-3.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Morita and W. R. Peng, “High capacity WDM transmission using terabit super-channels,” ECOC2012, Th.2.C.3.
  2. G. Bosco, V. Curri, A. Carena, P. Poggiolini, F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
    [CrossRef]
  3. Y. K. Huang, E. Ip, Z. Wang, M. F. Huang, Y. Shao, T. Wang, “Transmission of spectral efficient super-channels using all-optical OFDM and digital coherent receiver technologies,” J. Lightwave Technol. 29(24), 3838–3844 (2011).
    [CrossRef]
  4. R. Zhou, P. M. Anandarajah, M. D. G. Pascual, J. O’Carroll, R. Phelan, B. Kelly, and L. P. Barry, “Monolithically integrated 2-section lasers for injection locked gain switched comb generation,” OFC2014, Th3A.3.
  5. P. M. Anandarajah, R. Zhou, R. Maher, M. D. G. Pascual, F. Smyth, V. Vujicic, and L. P. Barry, “Flexible optical comb source for super channel systems,” OFC2013, OTh3I.8.
  6. R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, P. Anandarajah, “40 nm wavelength tunable gain-switched optical comb source,” Opt. Express 19(26), B415–B420 (2011).
    [CrossRef] [PubMed]
  7. Y. Xing, Q. Wang, L. Huo, C. Lou, “Frequency chirp linearization for ultraflat optical frequency comb generation based on group velocity dispersion,” Opt. Lett. 38(13), 2188–2190 (2013).
    [CrossRef] [PubMed]
  8. A. K. Mishra, R. Schmogrow, I. Tomkos, D. Hillerkuss, C. Koos, W. Freude, J. Leuthold, “Flexible RF-based comb generator,” IEEE Photon. Technol. Lett. 25(7), 701–704 (2013).
    [CrossRef]
  9. K. Kikuchi, “Characterization of semiconductor-laser phase noise and estimation of bit-error rate performance with low-speed offline digital coherent receivers,” Opt. Express 20(5), 5291–5302 (2012).
    [CrossRef] [PubMed]
  10. T. N. Huynh, L. Nguyen, L. P. Barry, “Phase noise characterization of SGDBR lasers using phase modulation detection method with delayed self-heterodyne measurements,” J. Lightwave Technol. 31(8), 1300–1308 (2013).
    [CrossRef]
  11. R. Zhou, V. Vujicic, T. N. Huynh, P. M. Anandarajah, and L. P. Barry, “Effective phase noise suppression in externally injected gain switched comb source for coherent optical communications,” ECOC2013, P.2.5.
  12. P. Spano, S. Piazzolla, M. Tamburrini, “Frequency and intensity noise in injection-locked semiconductor lasers: theory and experiments,” IEEE J. Quantum Electron. QE22(3), 427–435 (1986).
    [CrossRef]
  13. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, 1988), Chap. 5.
  14. T. N. Huynh, F. Smyth, L. Nguyen, L. P. Barry, “Effects of phase noise of monolithic tunable laser on coherent communication systems,” Opt. Express 20(26), B244–B249 (2012).
    [CrossRef] [PubMed]
  15. M. Scholten, T. Coe, and J. Dillard, “Continuously-interleaved BCH (CI-BCH) FEC delivers best in class NECG for 40G and 100G metro applications,” OFC2010, NTuB3.

2013 (3)

2012 (2)

2011 (3)

1986 (1)

P. Spano, S. Piazzolla, M. Tamburrini, “Frequency and intensity noise in injection-locked semiconductor lasers: theory and experiments,” IEEE J. Quantum Electron. QE22(3), 427–435 (1986).
[CrossRef]

Anandarajah, P.

Barry, L. P.

Bosco, G.

Carena, A.

Curri, V.

Forghieri, F.

Freude, W.

A. K. Mishra, R. Schmogrow, I. Tomkos, D. Hillerkuss, C. Koos, W. Freude, J. Leuthold, “Flexible RF-based comb generator,” IEEE Photon. Technol. Lett. 25(7), 701–704 (2013).
[CrossRef]

Hillerkuss, D.

A. K. Mishra, R. Schmogrow, I. Tomkos, D. Hillerkuss, C. Koos, W. Freude, J. Leuthold, “Flexible RF-based comb generator,” IEEE Photon. Technol. Lett. 25(7), 701–704 (2013).
[CrossRef]

Huang, M. F.

Huang, Y. K.

Huo, L.

Huynh, T. N.

Ip, E.

Kikuchi, K.

Koos, C.

A. K. Mishra, R. Schmogrow, I. Tomkos, D. Hillerkuss, C. Koos, W. Freude, J. Leuthold, “Flexible RF-based comb generator,” IEEE Photon. Technol. Lett. 25(7), 701–704 (2013).
[CrossRef]

Latkowski, S.

Leuthold, J.

A. K. Mishra, R. Schmogrow, I. Tomkos, D. Hillerkuss, C. Koos, W. Freude, J. Leuthold, “Flexible RF-based comb generator,” IEEE Photon. Technol. Lett. 25(7), 701–704 (2013).
[CrossRef]

Lou, C.

Mishra, A. K.

A. K. Mishra, R. Schmogrow, I. Tomkos, D. Hillerkuss, C. Koos, W. Freude, J. Leuthold, “Flexible RF-based comb generator,” IEEE Photon. Technol. Lett. 25(7), 701–704 (2013).
[CrossRef]

Nguyen, L.

O’Carroll, J.

Phelan, R.

Piazzolla, S.

P. Spano, S. Piazzolla, M. Tamburrini, “Frequency and intensity noise in injection-locked semiconductor lasers: theory and experiments,” IEEE J. Quantum Electron. QE22(3), 427–435 (1986).
[CrossRef]

Poggiolini, P.

Schmogrow, R.

A. K. Mishra, R. Schmogrow, I. Tomkos, D. Hillerkuss, C. Koos, W. Freude, J. Leuthold, “Flexible RF-based comb generator,” IEEE Photon. Technol. Lett. 25(7), 701–704 (2013).
[CrossRef]

Shao, Y.

Smyth, F.

Spano, P.

P. Spano, S. Piazzolla, M. Tamburrini, “Frequency and intensity noise in injection-locked semiconductor lasers: theory and experiments,” IEEE J. Quantum Electron. QE22(3), 427–435 (1986).
[CrossRef]

Tamburrini, M.

P. Spano, S. Piazzolla, M. Tamburrini, “Frequency and intensity noise in injection-locked semiconductor lasers: theory and experiments,” IEEE J. Quantum Electron. QE22(3), 427–435 (1986).
[CrossRef]

Tomkos, I.

A. K. Mishra, R. Schmogrow, I. Tomkos, D. Hillerkuss, C. Koos, W. Freude, J. Leuthold, “Flexible RF-based comb generator,” IEEE Photon. Technol. Lett. 25(7), 701–704 (2013).
[CrossRef]

Wang, Q.

Wang, T.

Wang, Z.

Xing, Y.

Zhou, R.

IEEE J. Quantum Electron. (1)

P. Spano, S. Piazzolla, M. Tamburrini, “Frequency and intensity noise in injection-locked semiconductor lasers: theory and experiments,” IEEE J. Quantum Electron. QE22(3), 427–435 (1986).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. K. Mishra, R. Schmogrow, I. Tomkos, D. Hillerkuss, C. Koos, W. Freude, J. Leuthold, “Flexible RF-based comb generator,” IEEE Photon. Technol. Lett. 25(7), 701–704 (2013).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (3)

Opt. Lett. (1)

Other (6)

K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, 1988), Chap. 5.

M. Scholten, T. Coe, and J. Dillard, “Continuously-interleaved BCH (CI-BCH) FEC delivers best in class NECG for 40G and 100G metro applications,” OFC2010, NTuB3.

R. Zhou, V. Vujicic, T. N. Huynh, P. M. Anandarajah, and L. P. Barry, “Effective phase noise suppression in externally injected gain switched comb source for coherent optical communications,” ECOC2013, P.2.5.

R. Zhou, P. M. Anandarajah, M. D. G. Pascual, J. O’Carroll, R. Phelan, B. Kelly, and L. P. Barry, “Monolithically integrated 2-section lasers for injection locked gain switched comb generation,” OFC2014, Th3A.3.

P. M. Anandarajah, R. Zhou, R. Maher, M. D. G. Pascual, F. Smyth, V. Vujicic, and L. P. Barry, “Flexible optical comb source for super channel systems,” OFC2013, OTh3I.8.

I. Morita and W. R. Peng, “High capacity WDM transmission using terabit super-channels,” ECOC2012, Th.2.C.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for phase noise measurement of injected gain switched comb lines.

Fig. 2
Fig. 2

Optical spectra of (a) “flat” comb (b) “low noise” comb, both shown in red traces (OSA resolution 100 MHz). Optical linewidth measured with conventional DSH method shown on top of comb lines by the blue triangles.

Fig. 3
Fig. 3

Phase noise characterizations of the comb lines and that of the master. (a) FM-noise spectrum (b) field spectrum (averaged DSH lineshape on ESA) (c) phase-error variance.

Fig. 4
Fig. 4

Experimental setup for the comb line phase noise impact characterization. DLI: delay-interferemeter. PD: photodetector. ED: error detector.

Fig. 5
Fig. 5

BER versus received power for master, flat comb and low noise comb in different coherent systems. (a) 10.7 GBaud QPSK and 5 GBaud 16-QAM with digital coherent receiver. (b) 10.7 GBaud DQPSK direct detection, inset: BER vs. received power for the same optical sources in a 10.7 GBaud direct detection OOK system.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S F (f)= S 0 + k b f+ k p f 2
σ ϕ (τ) 2 =4π S 0 τ[ sin 2 (π f L τ) π f L τ sin 2 (π f U τ) π f U τ +Si(2π f U τ)Si(2π f L τ) ] +2 k b [ ln(π f U τ)ln(π f L τ)Ci(2π f U τ)+Ci(2π f L τ) ] + k p πτ [ 2π f U τ2π f L τsin(2π f U τ)+sin(2π f L τ) ]

Metrics