Abstract

Two methods for performing range-resolved vibrometry measurements using frequency combs are presented. A modified correction algorithm taking into account the differences from the typical dual comb spectroscopic technique is developed. Results are presented showing the recovery of a human voice sample and other sounds from different vibrating surfaces, including a diffuse wall and a glass slab. When multiple surfaces are present, range selection makes it possible to select the surface from which the vibration is demodulated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Coddington, W. Swann, N. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
    [CrossRef]
  2. S. Potvin, J. Genest, “Dual-comb spectroscopy using frequency-doubled combs around 775 nm,” Opt. Express 21(25), 30707–30715 (2013).
    [CrossRef] [PubMed]
  3. J. Mandon, G. Guelachvili, N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
    [CrossRef]
  4. G. Taurand, P. Giaccari, J. D. Deschênes, J. Genest, “Time-domain optical reflectometry measurements using a frequency comb interferometer,” Appl. Opt. 49(23), 4413–4419 (2010).
    [CrossRef] [PubMed]
  5. S. Boudreau, S. Levasseur, C. Perilla, S. Roy, J. Genest, “Chemical detection with hyperspectral lidar using dual frequency combs,” Opt. Express 21(6), 7411–7418 (2013).
    [CrossRef] [PubMed]
  6. S. Boudreau, S. Levasseur, S. Roy, and J. Genest, “Remote range resolved chemical detection using dual comb interferometry,” in CLEO: Science and Innovations (2013).
  7. I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [CrossRef]
  8. L. Yang, J. Nie, L. Duan, “Dynamic optical sampling by cavity tuning and its application in lidar,” Opt. Express 21(3), 3850–3860 (2013).
    [CrossRef] [PubMed]
  9. J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
    [CrossRef]
  10. T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18(2), 1613–1617 (2010).
    [CrossRef] [PubMed]
  11. S. Potvin, S. Boudreau, J.-D. Deschênes, J. Genest, “Fully referenced single-comb interferometry using optical sampling by laser-cavity tuning,” Appl. Opt. 52(2), 248–255 (2013).
    [CrossRef] [PubMed]
  12. P. Giaccari, J.-D. Deschênes, P. Saucier, J. Genest, P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16(6), 4347–4365 (2008).
    [CrossRef] [PubMed]
  13. J. Watkinson, “Transducer drive mechanisms,” in Loudspeaker and Headphone Handbook, J. Borwick, ed. (CRC, 2012), pp. 44–107.
  14. G. D. Davis and G. Davis, The Sound Reinforcement Handbook (Hal Leonard Corporation, 1989).
  15. Audacity: Free Audio Editor and Recorder,” http://audacity.sourceforge.net/ .

2013 (5)

2010 (3)

2009 (2)

J. Mandon, G. Guelachvili, N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[CrossRef]

I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

2008 (1)

Bae, E.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[CrossRef]

Boudreau, S.

Coddington, I.

I. Coddington, W. Swann, N. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[CrossRef]

I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Deschênes, J. D.

Deschênes, J.-D.

Duan, L.

Genest, J.

Giaccari, P.

Guelachvili, G.

J. Mandon, G. Guelachvili, N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[CrossRef]

Han, S.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[CrossRef]

Hochrein, T.

Holzwarth, R.

Kim, S.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[CrossRef]

Kim, S.-W.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[CrossRef]

Kim, Y.-J.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[CrossRef]

Koch, M.

Krumbholz, N.

Lee, J.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[CrossRef]

Lee, K.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[CrossRef]

Lee, S.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[CrossRef]

Levasseur, S.

Mandon, J.

J. Mandon, G. Guelachvili, N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[CrossRef]

Mei, M.

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Newbury, N.

I. Coddington, W. Swann, N. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[CrossRef]

Newbury, N. R.

I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Nie, J.

Perilla, C.

Picqué, N.

J. Mandon, G. Guelachvili, N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[CrossRef]

Potvin, S.

Roy, S.

Saucier, P.

Swann, W.

I. Coddington, W. Swann, N. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[CrossRef]

Swann, W. C.

I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Taurand, G.

Tremblay, P.

Wilk, R.

Yang, L.

Appl. Opt. (2)

Meas. Sci. Technol. (1)

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[CrossRef]

Nat. Photonics (2)

J. Mandon, G. Guelachvili, N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[CrossRef]

I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Opt. Express (5)

Phys. Rev. A (1)

I. Coddington, W. Swann, N. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[CrossRef]

Other (4)

S. Boudreau, S. Levasseur, S. Roy, and J. Genest, “Remote range resolved chemical detection using dual comb interferometry,” in CLEO: Science and Innovations (2013).

J. Watkinson, “Transducer drive mechanisms,” in Loudspeaker and Headphone Handbook, J. Borwick, ed. (CRC, 2012), pp. 44–107.

G. D. Davis and G. Davis, The Sound Reinforcement Handbook (Hal Leonard Corporation, 1989).

Audacity: Free Audio Editor and Recorder,” http://audacity.sourceforge.net/ .

Supplementary Material (8)

» Media 1: MOV (352 KB)     
» Media 2: MOV (352 KB)     
» Media 3: MOV (469 KB)     
» Media 4: MOV (469 KB)     
» Media 5: MOV (469 KB)     
» Media 6: MOV (469 KB)     
» Media 7: MOV (469 KB)     
» Media 8: MOV (469 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the experimental setup. The comb is split into two parts. The delay between the two arms is 300 m. This allows the generation of an inter-pulse delay with a change of repetition frequency. The other part is sent to an optional acousto-optic modulator (AOM), which resolves phase ambiguity without the need to sweep the interferogram. After amplification and pulse picking, one arm is used as a local oscillator, while the other one is sent to the target using a beam expander. The backscattered signal is combined with the local oscillator on a balanced photodiode (BPD).

Fig. 2
Fig. 2

Schematic of one referencing experiment. The two trains to be referenced are combined and sent to a fiber Bragg grating. The beating signal collected on a photodetector through a circulator.

Fig. 3
Fig. 3

Standard deviation of corrected phase as a function of the gain applied to the second reference signal. The optimal gain in this case is a small positive value, and results in a marginal reduction of noise caused by inter-pulse jitter.

Fig. 4
Fig. 4

a): Voltage power spectral density of the vibrometry detector with the local oscillator pulse aligned and misaligned from the target pulse. Optical noise, including backscattered power from the fiber, is thus included. b): Voltage power spectral density on a reference detector with and without the reference signal fiber plugged in. c): Phase power spectral densities of the raw vibrometry signal, along with corrected signals using one and two references for correction. The sum of the noise contributions from the detectors, shown on a) and b), is converted to phase noise and shown on the light blue curve. It corresponds to the best case post-correction noise floor.

Fig. 5
Fig. 5

Measured noise power spectral density from the signal channel, with both no extra fiber and 50 m of extra fiber added before the launcher. Adding fiber increases the measured signal amplitude at the AOM frequency, which confirms that the peak is due to backscatter in the fiber before the launcher.

Fig. 6
Fig. 6

a) Zoom on the extracted phase from several OSCAT sweeps. Some slowly varying phase is left over from the correction on each sweep due to the drifts between the measurement acquisitions and the reference acquisition. (Media 1) b) Twice differentiated phase, proportional to the voltage signal which would generate the measured displacement waveform. The slowly varying error from a) has been attenuated by the differentiation (Media 2).

Fig. 7
Fig. 7

Phase power spectral density for the same measurement before and after removing the noisy devices (Media 3 and Media 4). The PSD is significantly lower with the devices off the optical tables, which shows that the coupling from mechanical vibrations to optical phase is significant. The remaining peaks on the green curves are mostly multiples of 60 Hz, coming from the power supplies of the devices which were not removed from the table.

Fig. 8
Fig. 8

Phase PSD before (Media 4) and after (Media 5) notching out multiples of 60 Hz.

Fig. 9
Fig. 9

Voice waveform before (Media 5) and after (Media 6) spectral noise gating. A substantial amount of noise it removed, to the point where individual words can be seen on the waveform.

Fig. 10
Fig. 10

Signal amplitudes recovered from the piezoelectric actuated glass slab (Media 7) and from the wall (Media 8). Although the vibration amplitude of the glass slab is much higher than that of the wall, the human voice sample can be recovered in isolation from the chirp signal on the glass slab.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

M=| R 12 ( τ+δ ) |exp[ jθ( τ+δ )+jΔϕ ],
ϕ M θ( τ 0 )+D×[ Δτ+δ ]+Δϕ,
R 1 = 2 π f 1 τ + Δ ϕ ,
R 2 R 1 = 2 π Δ f τ ,
C 1 =θ( τ 0 )+D[ Δτ+δ ]2π f 1 [ τ 0 +Δτ ],
C 1' D[ Δτ+δ ]2π f 1 Δτ.
C 2 Dδ,
C 2 = ϕ M R 1 +K( R 2 R 1 ),

Metrics