Abstract

We present the first multi-Watt demonstration of a diode pumped cryogenically cooled neodymium-doped yttrium aluminum garnet (YAG) laser operating at 946 nm on the4F3/24I9/2 transition. 3.8 W of continuous wave output power for 12.8 W of absorbed pump was obtained with a slope efficiency of 47%. In addition, we made an extensive characterization of the spectroscopic properties around the pump and laser wavelengths over the temperature range of 77 K to 300 K to find an increase of ~2.5 times for both the absorption and emission cross sections at the lowest temperature.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Zhou, E. B. Li, H. F. Li, P. Wang, J. Q. Yao, “Continuous-wave, 15.2 W diode-end-pumped Nd:YAG laser operating at 946 nm,” Opt. Lett. 31(12), 1869–1871 (2006).
    [CrossRef] [PubMed]
  2. X. Délen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B-Lasers Opt. 104(1), 1–4 (2011).
    [CrossRef]
  3. S. P. Ng, J. I. Mackenzie, “Power and radiance scaling of a 946 nm Nd:YAG planar waveguide laser,” Laser Phys. 22(3), 494–498 (2012).
    [CrossRef]
  4. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
    [CrossRef]
  5. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
    [CrossRef]
  6. H. Glur, R. Lavi, T. Graf, “Reduction of thermally induced lenses in Nd: YAG with low temperatures,” IEEE J. Quantum Electron. 40(5), 499–504 (2004).
    [CrossRef]
  7. D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33(5), 861–873 (1997).
    [CrossRef]
  8. W. A. Clarkson and D. C. Hanna, “Resonator design considerations for efficient operation of solid-state lasers end-pumped by high-power diode-bars,” in Optical Resonator: Science and Engineering, R. Kossowsky, M. Jelinek, J. Novak, eds. (Springer, Dordrecht, 1998).
  9. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5(7), 1412–1423 (1988).
    [CrossRef]
  10. T. Kushida, “Linewidths and thermal shifts of spectral lines in neodymium-doped yttrium aluminum garnet and calcium fluorophosphate,” Phys. Rev. 185(2), 500–508 (1969).
    [CrossRef]
  11. E. H. Carlson, G. H. Dieke, “The state of the Nd3+ ion as derived from the absorption and fluorescence spectra of NdCl3 and their Zeeman effects,” J. Chem. Phys. 34(5), 1602–1609 (1961).
    [CrossRef]
  12. B. Neuenschwander, R. Weber, H. P. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron. 31(6), 1082–1087 (1995).
    [CrossRef]
  13. S. P. Ng, J. I. Mackenzie, “Planar waveguide laser optimization and characterization employing real-time beam quality measurement,” IEEE J. Quantum Electron. 49(2), 146–153 (2013).
    [CrossRef]
  14. N. P. Barnes, B. M. Walsh, R. L. Hutcheson, R. W. Equall, “Pulsed F-4(3/2) to I-4(9/2) operation of Nd lasers,” J. Opt. Soc. Am. B 16(12), 2169–2177 (1999).
    [CrossRef]
  15. P. Hello, E. Durand, P. K. Fritschel, C. N. Man, “Thermal effects in Nd-YAG-SLABS 3D modeling and comparison with experiments,” J. Mod. Opt. 41, 1371–1390 (1994).
    [CrossRef]
  16. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
    [CrossRef]

2013 (1)

S. P. Ng, J. I. Mackenzie, “Planar waveguide laser optimization and characterization employing real-time beam quality measurement,” IEEE J. Quantum Electron. 49(2), 146–153 (2013).
[CrossRef]

2012 (1)

S. P. Ng, J. I. Mackenzie, “Power and radiance scaling of a 946 nm Nd:YAG planar waveguide laser,” Laser Phys. 22(3), 494–498 (2012).
[CrossRef]

2011 (1)

X. Délen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B-Lasers Opt. 104(1), 1–4 (2011).
[CrossRef]

2007 (1)

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

2006 (1)

2005 (2)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[CrossRef]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[CrossRef]

2004 (1)

H. Glur, R. Lavi, T. Graf, “Reduction of thermally induced lenses in Nd: YAG with low temperatures,” IEEE J. Quantum Electron. 40(5), 499–504 (2004).
[CrossRef]

1999 (1)

1997 (1)

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33(5), 861–873 (1997).
[CrossRef]

1995 (1)

B. Neuenschwander, R. Weber, H. P. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron. 31(6), 1082–1087 (1995).
[CrossRef]

1994 (1)

P. Hello, E. Durand, P. K. Fritschel, C. N. Man, “Thermal effects in Nd-YAG-SLABS 3D modeling and comparison with experiments,” J. Mod. Opt. 41, 1371–1390 (1994).
[CrossRef]

1988 (1)

1969 (1)

T. Kushida, “Linewidths and thermal shifts of spectral lines in neodymium-doped yttrium aluminum garnet and calcium fluorophosphate,” Phys. Rev. 185(2), 500–508 (1969).
[CrossRef]

1961 (1)

E. H. Carlson, G. H. Dieke, “The state of the Nd3+ ion as derived from the absorption and fluorescence spectra of NdCl3 and their Zeeman effects,” J. Chem. Phys. 34(5), 1602–1609 (1961).
[CrossRef]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[CrossRef]

Aubry, N.

X. Délen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B-Lasers Opt. 104(1), 1–4 (2011).
[CrossRef]

Balembois, F.

X. Délen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B-Lasers Opt. 104(1), 1–4 (2011).
[CrossRef]

Barnes, N. P.

Brown, D. C.

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[CrossRef]

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33(5), 861–873 (1997).
[CrossRef]

Carlson, E. H.

E. H. Carlson, G. H. Dieke, “The state of the Nd3+ ion as derived from the absorption and fluorescence spectra of NdCl3 and their Zeeman effects,” J. Chem. Phys. 34(5), 1602–1609 (1961).
[CrossRef]

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Délen, X.

X. Délen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B-Lasers Opt. 104(1), 1–4 (2011).
[CrossRef]

Didierjean, J.

X. Délen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B-Lasers Opt. 104(1), 1–4 (2011).
[CrossRef]

Dieke, G. H.

E. H. Carlson, G. H. Dieke, “The state of the Nd3+ ion as derived from the absorption and fluorescence spectra of NdCl3 and their Zeeman effects,” J. Chem. Phys. 34(5), 1602–1609 (1961).
[CrossRef]

Durand, E.

P. Hello, E. Durand, P. K. Fritschel, C. N. Man, “Thermal effects in Nd-YAG-SLABS 3D modeling and comparison with experiments,” J. Mod. Opt. 41, 1371–1390 (1994).
[CrossRef]

Equall, R. W.

Fan, T. Y.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[CrossRef]

Fritschel, P. K.

P. Hello, E. Durand, P. K. Fritschel, C. N. Man, “Thermal effects in Nd-YAG-SLABS 3D modeling and comparison with experiments,” J. Mod. Opt. 41, 1371–1390 (1994).
[CrossRef]

Georges, P.

X. Délen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B-Lasers Opt. 104(1), 1–4 (2011).
[CrossRef]

Glur, H.

H. Glur, R. Lavi, T. Graf, “Reduction of thermally induced lenses in Nd: YAG with low temperatures,” IEEE J. Quantum Electron. 40(5), 499–504 (2004).
[CrossRef]

Graf, T.

H. Glur, R. Lavi, T. Graf, “Reduction of thermally induced lenses in Nd: YAG with low temperatures,” IEEE J. Quantum Electron. 40(5), 499–504 (2004).
[CrossRef]

Hello, P.

P. Hello, E. Durand, P. K. Fritschel, C. N. Man, “Thermal effects in Nd-YAG-SLABS 3D modeling and comparison with experiments,” J. Mod. Opt. 41, 1371–1390 (1994).
[CrossRef]

Hutcheson, R. L.

Kushida, T.

T. Kushida, “Linewidths and thermal shifts of spectral lines in neodymium-doped yttrium aluminum garnet and calcium fluorophosphate,” Phys. Rev. 185(2), 500–508 (1969).
[CrossRef]

Lavi, R.

H. Glur, R. Lavi, T. Graf, “Reduction of thermally induced lenses in Nd: YAG with low temperatures,” IEEE J. Quantum Electron. 40(5), 499–504 (2004).
[CrossRef]

Li, E. B.

Li, H. F.

Mackenzie, J. I.

S. P. Ng, J. I. Mackenzie, “Planar waveguide laser optimization and characterization employing real-time beam quality measurement,” IEEE J. Quantum Electron. 49(2), 146–153 (2013).
[CrossRef]

S. P. Ng, J. I. Mackenzie, “Power and radiance scaling of a 946 nm Nd:YAG planar waveguide laser,” Laser Phys. 22(3), 494–498 (2012).
[CrossRef]

Man, C. N.

P. Hello, E. Durand, P. K. Fritschel, C. N. Man, “Thermal effects in Nd-YAG-SLABS 3D modeling and comparison with experiments,” J. Mod. Opt. 41, 1371–1390 (1994).
[CrossRef]

Martial, I.

X. Délen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B-Lasers Opt. 104(1), 1–4 (2011).
[CrossRef]

Neuenschwander, B.

B. Neuenschwander, R. Weber, H. P. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron. 31(6), 1082–1087 (1995).
[CrossRef]

Ng, S. P.

S. P. Ng, J. I. Mackenzie, “Planar waveguide laser optimization and characterization employing real-time beam quality measurement,” IEEE J. Quantum Electron. 49(2), 146–153 (2013).
[CrossRef]

S. P. Ng, J. I. Mackenzie, “Power and radiance scaling of a 946 nm Nd:YAG planar waveguide laser,” Laser Phys. 22(3), 494–498 (2012).
[CrossRef]

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[CrossRef]

Ripin, D. J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[CrossRef]

Risk, W. P.

Sangla, D.

X. Délen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B-Lasers Opt. 104(1), 1–4 (2011).
[CrossRef]

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Walsh, B. M.

Wang, P.

Weber, H. P.

B. Neuenschwander, R. Weber, H. P. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron. 31(6), 1082–1087 (1995).
[CrossRef]

Weber, R.

B. Neuenschwander, R. Weber, H. P. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron. 31(6), 1082–1087 (1995).
[CrossRef]

Yao, J. Q.

Zhou, R.

Appl. Phys. B-Lasers Opt. (1)

X. Délen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B-Lasers Opt. 104(1), 1–4 (2011).
[CrossRef]

IEEE J. Quantum Electron. (4)

H. Glur, R. Lavi, T. Graf, “Reduction of thermally induced lenses in Nd: YAG with low temperatures,” IEEE J. Quantum Electron. 40(5), 499–504 (2004).
[CrossRef]

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33(5), 861–873 (1997).
[CrossRef]

B. Neuenschwander, R. Weber, H. P. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron. 31(6), 1082–1087 (1995).
[CrossRef]

S. P. Ng, J. I. Mackenzie, “Planar waveguide laser optimization and characterization employing real-time beam quality measurement,” IEEE J. Quantum Electron. 49(2), 146–153 (2013).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[CrossRef]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

J. Appl. Phys. (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[CrossRef]

J. Chem. Phys. (1)

E. H. Carlson, G. H. Dieke, “The state of the Nd3+ ion as derived from the absorption and fluorescence spectra of NdCl3 and their Zeeman effects,” J. Chem. Phys. 34(5), 1602–1609 (1961).
[CrossRef]

J. Mod. Opt. (1)

P. Hello, E. Durand, P. K. Fritschel, C. N. Man, “Thermal effects in Nd-YAG-SLABS 3D modeling and comparison with experiments,” J. Mod. Opt. 41, 1371–1390 (1994).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

S. P. Ng, J. I. Mackenzie, “Power and radiance scaling of a 946 nm Nd:YAG planar waveguide laser,” Laser Phys. 22(3), 494–498 (2012).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

T. Kushida, “Linewidths and thermal shifts of spectral lines in neodymium-doped yttrium aluminum garnet and calcium fluorophosphate,” Phys. Rev. 185(2), 500–508 (1969).
[CrossRef]

Other (1)

W. A. Clarkson and D. C. Hanna, “Resonator design considerations for efficient operation of solid-state lasers end-pumped by high-power diode-bars,” in Optical Resonator: Science and Engineering, R. Kossowsky, M. Jelinek, J. Novak, eds. (Springer, Dordrecht, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental setup for the absorption spectra measurement.

Fig. 2
Fig. 2

Schematic diagram of the setup of the cryogenically cooled Nd:YAG laser.

Fig. 3
Fig. 3

(a) Stark levels Boltzmann population distribution for 4I9/2 (Z), (b) and (c) measured Nd:YAG (Z→S) absorption cross section at various temperatures between LNT and RT.

Fig. 4
Fig. 4

QCW pump diode emission spectra at full current and RT normalized absorption cross sections for LNT and RT, (b): absorption efficiency vs crystal temperature (*calculated from measure spectra) and RT normalized peak and bandwidth of absorption.

Fig. 5
Fig. 5

QCW laser operation for LNT – RT, (b): CW laser operation at LNT.

Tables (1)

Tables Icon

Table 1 Threshold power, slope and optical-optical efficiency performance for QCW and CW modes of operation with respect to absorbed power, and the respective B-factors [9], Boltzmann occupation factors for the two Stark levels Z5 and R1, and our measured emission cross section between them, for temperatures between LNT and RT

Metrics