Abstract

The traditional arrangement for visualizing optical phenomena with the schlieren technique is modified to include a Mach-Zehnder geometry. This allows for the implementation of two independent knife edges along two different beam paths, resulting in an enhanced combined image that is uniquely adjustable. Post-processed combined images are also generated by spatially separating the paths from each arm and then colorizing and combining the images into a single composite. In this way, bidirectional, color schlieren images have been produced using both white-light and monochromatic sources.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. Settles, Schlieren and Shadowgraph Techniques (Springer, 2001).
  2. G. S. Settles, “Important developments in schlieren and shadowgraph visualization during the last decade,” in Proceedings of the 14th International Symposium on Flow Visualization (2010), paper 267.
  3. L. Martí-López, R. Ocaña, J. A. Porro, M. Morales, and J. L. Ocaña, “Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes,” Appl. Opt. 48(19), 3671–3680 (2009).
    [Crossref] [PubMed]
  4. A. Vogel, I. Apitz, S. Freidank, and R. Dijkink, “Sensitive high-resolution white-light Schlieren technique with a large dynamic range for the investigation of ablation dynamics,” Opt. Lett. 31(12), 1812–1814 (2006).
    [Crossref] [PubMed]
  5. A. Ben-Yakar and R. K. Hanson, “Ultra-fast-framing schlieren system for studies of the time evolution of jets in supersonic crossflows,” Exp. Fluids 32(6), 652–666 (2002).
    [Crossref]
  6. S. A. Kaiser, V. M. Salazar, and A. A. Hoops, “Schlieren measurements in the round cylinder of an optically accessible internal combustion engine,” Appl. Opt. 52(14), 3433–3443 (2013).
    [Crossref] [PubMed]
  7. Q. Wang, H. W. Huang, Y. Zhang, and C. Zhao, “Impinging flame ignition and propagation visualisation using Schlieren and colour-enhanced stereo imaging techniques,” Fuel 108, 177–183 (2013).
    [Crossref]
  8. D. M. Friday, P. B. Broughton, T. A. Lee, G. A. Schutz, J. N. Betz, and C. M. Lindsay, “Further insight into the nature of ball-lightning-like atmospheric pressure plasmoids,” J. Phys. Chem. A 117(39), 9931–9940 (2013).
    [Crossref] [PubMed]
  9. I. Zergioti, A. Karaiskou, D. G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-pecosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247(1–4), 584–589 (2005).
    [Crossref]
  10. M. J. Hargather and G. S. Settles, “Retroreflective shadowgraph technique for large-scale flow visualization,” Appl. Opt. 48(22), 4449–4457 (2009).
    [Crossref] [PubMed]
  11. M. J. Hargather, “Background-oriented schlieren diagnostics for large-scale explosive testing,” Shock Waves 23(5), 529–536 (2013).
    [Crossref]
  12. G. S. Settles, “A direction-indicating color schlieren system,” AIAA J. 8(12), 2282–2284 (1970).
    [Crossref]
  13. W. L. Howes, “Rainbow schlieren and its applications,” Appl. Opt. 23(14), 2449–2460 (1984).
    [Crossref] [PubMed]
  14. G. E. Elsinga, B. W. van Oudheusden, F. Scarano, and D. W. Watt, “Assessment and application of quantitative schlieren methods: Calibrated color schlieren and background oriented schlieren,” Exp. Fluids 36(2), 309–325 (2004).
    [Crossref]
  15. H. Kleine, K. Hiraki, H. Maruyama, T. Hayashida, J. Yonai, K. Kitamura, Y. Kondo, and T. G. Etoh, “High-speed time-resolved color schlieren visualization of shock wave phenomena,” Shock Waves 14(5–6), 333–341 (2005).
    [Crossref]
  16. H. Kleine, H. Gronig, and K. Takayama, “Simultaneous shadow, schlieren and interferometric visualization of compressible flows,” Opt. Lasers Eng. 44(3-4), 170–189 (2006).
    [Crossref]
  17. J. Stricker, B. Zakharin, B. T. Hornick, and F. Rosenblatt, “Bidirectional quantitative color schlieren,” Opt. Eng. 45(12), 123604 (2006).
    [Crossref]
  18. D. A. Feikema, “Quantitative rainbow schlieren deflectometry as a temperature diagnostic for nonsooting spherical flames,” Appl. Opt. 45(20), 4826–4832 (2006).
    [Crossref] [PubMed]
  19. M. J. Hargather and G. S. Settles, “A comparison of three quantitative schlieren techniques,” Opt. Lasers Eng. 50(1), 8–17 (2012).
    [Crossref]
  20. C. C. Ting and C. C. Chen, “Detection of gas leakage using microcolor schlieren technique,” Measurement 46(8), 2467–2472 (2013).
    [Crossref]
  21. H. Kleine, “Schlieren imaging and the real world,” J. Vis. 16(3), 193–199 (2013).
  22. F. W. Barry and G. M. Edelman, “An improved schlieren apparatus,” J. Aeronaut. Sci. 15(6), 364–365 (1948).
  23. R. B. Owen and W. K. Witherow, “Dual laser optical system and method for studying fluid flow,” United States Patent #4,391,518 (1983).
  24. G. Rudinger and L. M. Somers, “A simple schlieren system for two simultaneous views of a gas flow,” J SMPTE 66(10), 622 (1957).
    [Crossref]
  25. V. V. Golub, A. I. Kharitonov, I. L. Sharov, and A. M. Shulmeister, “Two-direction visualization of vortex rings emerging in the course of formation of the supersonic jet,” in Flow Visualization V:Proceedings of the Fifth International Symposium, R. Reznicek, ed. (Taylor and Francis, 1990), pp. 556–561.

2013 (6)

S. A. Kaiser, V. M. Salazar, and A. A. Hoops, “Schlieren measurements in the round cylinder of an optically accessible internal combustion engine,” Appl. Opt. 52(14), 3433–3443 (2013).
[Crossref] [PubMed]

Q. Wang, H. W. Huang, Y. Zhang, and C. Zhao, “Impinging flame ignition and propagation visualisation using Schlieren and colour-enhanced stereo imaging techniques,” Fuel 108, 177–183 (2013).
[Crossref]

D. M. Friday, P. B. Broughton, T. A. Lee, G. A. Schutz, J. N. Betz, and C. M. Lindsay, “Further insight into the nature of ball-lightning-like atmospheric pressure plasmoids,” J. Phys. Chem. A 117(39), 9931–9940 (2013).
[Crossref] [PubMed]

M. J. Hargather, “Background-oriented schlieren diagnostics for large-scale explosive testing,” Shock Waves 23(5), 529–536 (2013).
[Crossref]

C. C. Ting and C. C. Chen, “Detection of gas leakage using microcolor schlieren technique,” Measurement 46(8), 2467–2472 (2013).
[Crossref]

H. Kleine, “Schlieren imaging and the real world,” J. Vis. 16(3), 193–199 (2013).

2012 (1)

M. J. Hargather and G. S. Settles, “A comparison of three quantitative schlieren techniques,” Opt. Lasers Eng. 50(1), 8–17 (2012).
[Crossref]

2009 (2)

2006 (4)

A. Vogel, I. Apitz, S. Freidank, and R. Dijkink, “Sensitive high-resolution white-light Schlieren technique with a large dynamic range for the investigation of ablation dynamics,” Opt. Lett. 31(12), 1812–1814 (2006).
[Crossref] [PubMed]

H. Kleine, H. Gronig, and K. Takayama, “Simultaneous shadow, schlieren and interferometric visualization of compressible flows,” Opt. Lasers Eng. 44(3-4), 170–189 (2006).
[Crossref]

J. Stricker, B. Zakharin, B. T. Hornick, and F. Rosenblatt, “Bidirectional quantitative color schlieren,” Opt. Eng. 45(12), 123604 (2006).
[Crossref]

D. A. Feikema, “Quantitative rainbow schlieren deflectometry as a temperature diagnostic for nonsooting spherical flames,” Appl. Opt. 45(20), 4826–4832 (2006).
[Crossref] [PubMed]

2005 (2)

H. Kleine, K. Hiraki, H. Maruyama, T. Hayashida, J. Yonai, K. Kitamura, Y. Kondo, and T. G. Etoh, “High-speed time-resolved color schlieren visualization of shock wave phenomena,” Shock Waves 14(5–6), 333–341 (2005).
[Crossref]

I. Zergioti, A. Karaiskou, D. G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-pecosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247(1–4), 584–589 (2005).
[Crossref]

2004 (1)

G. E. Elsinga, B. W. van Oudheusden, F. Scarano, and D. W. Watt, “Assessment and application of quantitative schlieren methods: Calibrated color schlieren and background oriented schlieren,” Exp. Fluids 36(2), 309–325 (2004).
[Crossref]

2002 (1)

A. Ben-Yakar and R. K. Hanson, “Ultra-fast-framing schlieren system for studies of the time evolution of jets in supersonic crossflows,” Exp. Fluids 32(6), 652–666 (2002).
[Crossref]

1984 (1)

1970 (1)

G. S. Settles, “A direction-indicating color schlieren system,” AIAA J. 8(12), 2282–2284 (1970).
[Crossref]

1957 (1)

G. Rudinger and L. M. Somers, “A simple schlieren system for two simultaneous views of a gas flow,” J SMPTE 66(10), 622 (1957).
[Crossref]

1948 (1)

F. W. Barry and G. M. Edelman, “An improved schlieren apparatus,” J. Aeronaut. Sci. 15(6), 364–365 (1948).

Apitz, I.

Barry, F. W.

F. W. Barry and G. M. Edelman, “An improved schlieren apparatus,” J. Aeronaut. Sci. 15(6), 364–365 (1948).

Ben-Yakar, A.

A. Ben-Yakar and R. K. Hanson, “Ultra-fast-framing schlieren system for studies of the time evolution of jets in supersonic crossflows,” Exp. Fluids 32(6), 652–666 (2002).
[Crossref]

Betz, J. N.

D. M. Friday, P. B. Broughton, T. A. Lee, G. A. Schutz, J. N. Betz, and C. M. Lindsay, “Further insight into the nature of ball-lightning-like atmospheric pressure plasmoids,” J. Phys. Chem. A 117(39), 9931–9940 (2013).
[Crossref] [PubMed]

Broughton, P. B.

D. M. Friday, P. B. Broughton, T. A. Lee, G. A. Schutz, J. N. Betz, and C. M. Lindsay, “Further insight into the nature of ball-lightning-like atmospheric pressure plasmoids,” J. Phys. Chem. A 117(39), 9931–9940 (2013).
[Crossref] [PubMed]

Chen, C. C.

C. C. Ting and C. C. Chen, “Detection of gas leakage using microcolor schlieren technique,” Measurement 46(8), 2467–2472 (2013).
[Crossref]

Dijkink, R.

Edelman, G. M.

F. W. Barry and G. M. Edelman, “An improved schlieren apparatus,” J. Aeronaut. Sci. 15(6), 364–365 (1948).

Elsinga, G. E.

G. E. Elsinga, B. W. van Oudheusden, F. Scarano, and D. W. Watt, “Assessment and application of quantitative schlieren methods: Calibrated color schlieren and background oriented schlieren,” Exp. Fluids 36(2), 309–325 (2004).
[Crossref]

Etoh, T. G.

H. Kleine, K. Hiraki, H. Maruyama, T. Hayashida, J. Yonai, K. Kitamura, Y. Kondo, and T. G. Etoh, “High-speed time-resolved color schlieren visualization of shock wave phenomena,” Shock Waves 14(5–6), 333–341 (2005).
[Crossref]

Feikema, D. A.

Fotakis, C.

I. Zergioti, A. Karaiskou, D. G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-pecosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247(1–4), 584–589 (2005).
[Crossref]

Freidank, S.

Friday, D. M.

D. M. Friday, P. B. Broughton, T. A. Lee, G. A. Schutz, J. N. Betz, and C. M. Lindsay, “Further insight into the nature of ball-lightning-like atmospheric pressure plasmoids,” J. Phys. Chem. A 117(39), 9931–9940 (2013).
[Crossref] [PubMed]

Gronig, H.

H. Kleine, H. Gronig, and K. Takayama, “Simultaneous shadow, schlieren and interferometric visualization of compressible flows,” Opt. Lasers Eng. 44(3-4), 170–189 (2006).
[Crossref]

Hanson, R. K.

A. Ben-Yakar and R. K. Hanson, “Ultra-fast-framing schlieren system for studies of the time evolution of jets in supersonic crossflows,” Exp. Fluids 32(6), 652–666 (2002).
[Crossref]

Hargather, M. J.

M. J. Hargather, “Background-oriented schlieren diagnostics for large-scale explosive testing,” Shock Waves 23(5), 529–536 (2013).
[Crossref]

M. J. Hargather and G. S. Settles, “A comparison of three quantitative schlieren techniques,” Opt. Lasers Eng. 50(1), 8–17 (2012).
[Crossref]

M. J. Hargather and G. S. Settles, “Retroreflective shadowgraph technique for large-scale flow visualization,” Appl. Opt. 48(22), 4449–4457 (2009).
[Crossref] [PubMed]

Hayashida, T.

H. Kleine, K. Hiraki, H. Maruyama, T. Hayashida, J. Yonai, K. Kitamura, Y. Kondo, and T. G. Etoh, “High-speed time-resolved color schlieren visualization of shock wave phenomena,” Shock Waves 14(5–6), 333–341 (2005).
[Crossref]

Hiraki, K.

H. Kleine, K. Hiraki, H. Maruyama, T. Hayashida, J. Yonai, K. Kitamura, Y. Kondo, and T. G. Etoh, “High-speed time-resolved color schlieren visualization of shock wave phenomena,” Shock Waves 14(5–6), 333–341 (2005).
[Crossref]

Hoops, A. A.

Hornick, B. T.

J. Stricker, B. Zakharin, B. T. Hornick, and F. Rosenblatt, “Bidirectional quantitative color schlieren,” Opt. Eng. 45(12), 123604 (2006).
[Crossref]

Howes, W. L.

Huang, H. W.

Q. Wang, H. W. Huang, Y. Zhang, and C. Zhao, “Impinging flame ignition and propagation visualisation using Schlieren and colour-enhanced stereo imaging techniques,” Fuel 108, 177–183 (2013).
[Crossref]

Kafetzopoulos, D.

I. Zergioti, A. Karaiskou, D. G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-pecosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247(1–4), 584–589 (2005).
[Crossref]

Kaiser, S. A.

Kapsetaki, M.

I. Zergioti, A. Karaiskou, D. G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-pecosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247(1–4), 584–589 (2005).
[Crossref]

Karaiskou, A.

I. Zergioti, A. Karaiskou, D. G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-pecosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247(1–4), 584–589 (2005).
[Crossref]

Kitamura, K.

H. Kleine, K. Hiraki, H. Maruyama, T. Hayashida, J. Yonai, K. Kitamura, Y. Kondo, and T. G. Etoh, “High-speed time-resolved color schlieren visualization of shock wave phenomena,” Shock Waves 14(5–6), 333–341 (2005).
[Crossref]

Kleine, H.

H. Kleine, “Schlieren imaging and the real world,” J. Vis. 16(3), 193–199 (2013).

H. Kleine, H. Gronig, and K. Takayama, “Simultaneous shadow, schlieren and interferometric visualization of compressible flows,” Opt. Lasers Eng. 44(3-4), 170–189 (2006).
[Crossref]

H. Kleine, K. Hiraki, H. Maruyama, T. Hayashida, J. Yonai, K. Kitamura, Y. Kondo, and T. G. Etoh, “High-speed time-resolved color schlieren visualization of shock wave phenomena,” Shock Waves 14(5–6), 333–341 (2005).
[Crossref]

Kondo, Y.

H. Kleine, K. Hiraki, H. Maruyama, T. Hayashida, J. Yonai, K. Kitamura, Y. Kondo, and T. G. Etoh, “High-speed time-resolved color schlieren visualization of shock wave phenomena,” Shock Waves 14(5–6), 333–341 (2005).
[Crossref]

Lee, T. A.

D. M. Friday, P. B. Broughton, T. A. Lee, G. A. Schutz, J. N. Betz, and C. M. Lindsay, “Further insight into the nature of ball-lightning-like atmospheric pressure plasmoids,” J. Phys. Chem. A 117(39), 9931–9940 (2013).
[Crossref] [PubMed]

Lindsay, C. M.

D. M. Friday, P. B. Broughton, T. A. Lee, G. A. Schutz, J. N. Betz, and C. M. Lindsay, “Further insight into the nature of ball-lightning-like atmospheric pressure plasmoids,” J. Phys. Chem. A 117(39), 9931–9940 (2013).
[Crossref] [PubMed]

Martí-López, L.

Maruyama, H.

H. Kleine, K. Hiraki, H. Maruyama, T. Hayashida, J. Yonai, K. Kitamura, Y. Kondo, and T. G. Etoh, “High-speed time-resolved color schlieren visualization of shock wave phenomena,” Shock Waves 14(5–6), 333–341 (2005).
[Crossref]

Morales, M.

Ocaña, J. L.

Ocaña, R.

Papazoglou, D. G.

I. Zergioti, A. Karaiskou, D. G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-pecosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247(1–4), 584–589 (2005).
[Crossref]

Porro, J. A.

Rosenblatt, F.

J. Stricker, B. Zakharin, B. T. Hornick, and F. Rosenblatt, “Bidirectional quantitative color schlieren,” Opt. Eng. 45(12), 123604 (2006).
[Crossref]

Rudinger, G.

G. Rudinger and L. M. Somers, “A simple schlieren system for two simultaneous views of a gas flow,” J SMPTE 66(10), 622 (1957).
[Crossref]

Salazar, V. M.

Scarano, F.

G. E. Elsinga, B. W. van Oudheusden, F. Scarano, and D. W. Watt, “Assessment and application of quantitative schlieren methods: Calibrated color schlieren and background oriented schlieren,” Exp. Fluids 36(2), 309–325 (2004).
[Crossref]

Schutz, G. A.

D. M. Friday, P. B. Broughton, T. A. Lee, G. A. Schutz, J. N. Betz, and C. M. Lindsay, “Further insight into the nature of ball-lightning-like atmospheric pressure plasmoids,” J. Phys. Chem. A 117(39), 9931–9940 (2013).
[Crossref] [PubMed]

Settles, G. S.

M. J. Hargather and G. S. Settles, “A comparison of three quantitative schlieren techniques,” Opt. Lasers Eng. 50(1), 8–17 (2012).
[Crossref]

M. J. Hargather and G. S. Settles, “Retroreflective shadowgraph technique for large-scale flow visualization,” Appl. Opt. 48(22), 4449–4457 (2009).
[Crossref] [PubMed]

G. S. Settles, “A direction-indicating color schlieren system,” AIAA J. 8(12), 2282–2284 (1970).
[Crossref]

Somers, L. M.

G. Rudinger and L. M. Somers, “A simple schlieren system for two simultaneous views of a gas flow,” J SMPTE 66(10), 622 (1957).
[Crossref]

Stricker, J.

J. Stricker, B. Zakharin, B. T. Hornick, and F. Rosenblatt, “Bidirectional quantitative color schlieren,” Opt. Eng. 45(12), 123604 (2006).
[Crossref]

Takayama, K.

H. Kleine, H. Gronig, and K. Takayama, “Simultaneous shadow, schlieren and interferometric visualization of compressible flows,” Opt. Lasers Eng. 44(3-4), 170–189 (2006).
[Crossref]

Ting, C. C.

C. C. Ting and C. C. Chen, “Detection of gas leakage using microcolor schlieren technique,” Measurement 46(8), 2467–2472 (2013).
[Crossref]

van Oudheusden, B. W.

G. E. Elsinga, B. W. van Oudheusden, F. Scarano, and D. W. Watt, “Assessment and application of quantitative schlieren methods: Calibrated color schlieren and background oriented schlieren,” Exp. Fluids 36(2), 309–325 (2004).
[Crossref]

Vogel, A.

Wang, Q.

Q. Wang, H. W. Huang, Y. Zhang, and C. Zhao, “Impinging flame ignition and propagation visualisation using Schlieren and colour-enhanced stereo imaging techniques,” Fuel 108, 177–183 (2013).
[Crossref]

Watt, D. W.

G. E. Elsinga, B. W. van Oudheusden, F. Scarano, and D. W. Watt, “Assessment and application of quantitative schlieren methods: Calibrated color schlieren and background oriented schlieren,” Exp. Fluids 36(2), 309–325 (2004).
[Crossref]

Yonai, J.

H. Kleine, K. Hiraki, H. Maruyama, T. Hayashida, J. Yonai, K. Kitamura, Y. Kondo, and T. G. Etoh, “High-speed time-resolved color schlieren visualization of shock wave phenomena,” Shock Waves 14(5–6), 333–341 (2005).
[Crossref]

Zakharin, B.

J. Stricker, B. Zakharin, B. T. Hornick, and F. Rosenblatt, “Bidirectional quantitative color schlieren,” Opt. Eng. 45(12), 123604 (2006).
[Crossref]

Zergioti, I.

I. Zergioti, A. Karaiskou, D. G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-pecosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247(1–4), 584–589 (2005).
[Crossref]

Zhang, Y.

Q. Wang, H. W. Huang, Y. Zhang, and C. Zhao, “Impinging flame ignition and propagation visualisation using Schlieren and colour-enhanced stereo imaging techniques,” Fuel 108, 177–183 (2013).
[Crossref]

Zhao, C.

Q. Wang, H. W. Huang, Y. Zhang, and C. Zhao, “Impinging flame ignition and propagation visualisation using Schlieren and colour-enhanced stereo imaging techniques,” Fuel 108, 177–183 (2013).
[Crossref]

AIAA J. (1)

G. S. Settles, “A direction-indicating color schlieren system,” AIAA J. 8(12), 2282–2284 (1970).
[Crossref]

Appl. Opt. (5)

Appl. Surf. Sci. (1)

I. Zergioti, A. Karaiskou, D. G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-pecosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247(1–4), 584–589 (2005).
[Crossref]

Exp. Fluids (2)

A. Ben-Yakar and R. K. Hanson, “Ultra-fast-framing schlieren system for studies of the time evolution of jets in supersonic crossflows,” Exp. Fluids 32(6), 652–666 (2002).
[Crossref]

G. E. Elsinga, B. W. van Oudheusden, F. Scarano, and D. W. Watt, “Assessment and application of quantitative schlieren methods: Calibrated color schlieren and background oriented schlieren,” Exp. Fluids 36(2), 309–325 (2004).
[Crossref]

Fuel (1)

Q. Wang, H. W. Huang, Y. Zhang, and C. Zhao, “Impinging flame ignition and propagation visualisation using Schlieren and colour-enhanced stereo imaging techniques,” Fuel 108, 177–183 (2013).
[Crossref]

J SMPTE (1)

G. Rudinger and L. M. Somers, “A simple schlieren system for two simultaneous views of a gas flow,” J SMPTE 66(10), 622 (1957).
[Crossref]

J. Aeronaut. Sci. (1)

F. W. Barry and G. M. Edelman, “An improved schlieren apparatus,” J. Aeronaut. Sci. 15(6), 364–365 (1948).

J. Phys. Chem. A (1)

D. M. Friday, P. B. Broughton, T. A. Lee, G. A. Schutz, J. N. Betz, and C. M. Lindsay, “Further insight into the nature of ball-lightning-like atmospheric pressure plasmoids,” J. Phys. Chem. A 117(39), 9931–9940 (2013).
[Crossref] [PubMed]

J. Vis. (1)

H. Kleine, “Schlieren imaging and the real world,” J. Vis. 16(3), 193–199 (2013).

Measurement (1)

C. C. Ting and C. C. Chen, “Detection of gas leakage using microcolor schlieren technique,” Measurement 46(8), 2467–2472 (2013).
[Crossref]

Opt. Eng. (1)

J. Stricker, B. Zakharin, B. T. Hornick, and F. Rosenblatt, “Bidirectional quantitative color schlieren,” Opt. Eng. 45(12), 123604 (2006).
[Crossref]

Opt. Lasers Eng. (2)

H. Kleine, H. Gronig, and K. Takayama, “Simultaneous shadow, schlieren and interferometric visualization of compressible flows,” Opt. Lasers Eng. 44(3-4), 170–189 (2006).
[Crossref]

M. J. Hargather and G. S. Settles, “A comparison of three quantitative schlieren techniques,” Opt. Lasers Eng. 50(1), 8–17 (2012).
[Crossref]

Opt. Lett. (1)

Shock Waves (2)

M. J. Hargather, “Background-oriented schlieren diagnostics for large-scale explosive testing,” Shock Waves 23(5), 529–536 (2013).
[Crossref]

H. Kleine, K. Hiraki, H. Maruyama, T. Hayashida, J. Yonai, K. Kitamura, Y. Kondo, and T. G. Etoh, “High-speed time-resolved color schlieren visualization of shock wave phenomena,” Shock Waves 14(5–6), 333–341 (2005).
[Crossref]

Other (4)

G. S. Settles, Schlieren and Shadowgraph Techniques (Springer, 2001).

G. S. Settles, “Important developments in schlieren and shadowgraph visualization during the last decade,” in Proceedings of the 14th International Symposium on Flow Visualization (2010), paper 267.

R. B. Owen and W. K. Witherow, “Dual laser optical system and method for studying fluid flow,” United States Patent #4,391,518 (1983).

V. V. Golub, A. I. Kharitonov, I. L. Sharov, and A. M. Shulmeister, “Two-direction visualization of vortex rings emerging in the course of formation of the supersonic jet,” in Flow Visualization V:Proceedings of the Fifth International Symposium, R. Reznicek, ed. (Taylor and Francis, 1990), pp. 556–561.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The experimental arrangement of the two-path system, showing the light source (LED), region of interest (ROI), parabolic mirror (PM), and Mach-Zehnder setup, with the final image captured by the Canon 60D DSLR.

Fig. 2
Fig. 2

A wire mesh screen is used to align the system: a) white-light fringes appear once the path lengths are matched, b) broad (nearly invisible) fringes form with fine tuning, c) adding green and red filters yields a yellow image, d) inserting knife edges gives color-indicating bidirectional sensitivity. By misaligning the system and removing the color filters, two views of a pane of glass are captured simultaneously: e) defects running vertically and f) horizontally. The left image corresponds to the path with the vertical knife edge, and the right image to the path with the horizontal knife edge.

Fig. 3
Fig. 3

Sample color schlieren images: a) flame from a lighter, b) flame and an aerosol duster, c) a hot soldering iron. Note the vertical green flow and horizontal red flow in (b).

Fig. 4
Fig. 4

Sample simultaneous two-view schlieren images and corresponding composite images using white light: a) flame from a lighter, b) a hot soldering iron, c) an aerosol duster.

Fig. 5
Fig. 5

Sample simultaneous two-view schlieren images and corresponding composite images of the flame from a lighter: a) using a green laser source and b) a red laser source.

Metrics