Abstract

In this paper, we present a liquid-crystal-polymer (LCP)-based dual-layer micro-quarter-wave-retarder (MQWR) array for active polarization image sensors. The proposed MQWRs, for the first time, enable the extraction of the incident light’s circularly polarized components in the whole visible regime, which correspond to the fourth parameter of Stokes vector. Compared with the previous implementations, our proposed MQWRs feature high achromaticity, making their applications no longer limited to monochromatic illumination. In addition, the presented thin structure exhibits an overall thickness of 2.43μm, leading to greatly alleviated optical cross-talk between adjacent photo-sensing pixels. Moreover, the reported superior optical performance (e.g. minor transmittance, extinction ratio) validates our optical design and optimization of the proposed MQWRs. Furthermore, the demonstrated simple fabrication recipe offers a cost-effective solution for the monolithic integration between the proposed MQWR array and the commercial solid-state image sensors, which makes the multi-spectral full Stokes polarization imaging system on a single chip feasible.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Andreou, Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2, 566–576 (2002).
    [CrossRef]
  2. J. S. Tyo, D. L. Goldstein, D. B. Chenault, J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006).
    [CrossRef] [PubMed]
  3. J. Guo, D. Brady, “Fabrication of thin-film micropolarizer arrays for visible imaging polarimetry,” Appl. Opt. 39, 1486–1492 (2000).
    [CrossRef]
  4. C. K. Harnett, H. G. Craighead, “Liquid-crystal micropolarizer array for polarization-difference imaging,” Appl. Opt. 41, 1291–1296 (2002).
    [CrossRef] [PubMed]
  5. M. Momeni, A. H. Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neur. Netw. 7, 222–232 (2006).
    [CrossRef]
  6. V. Gruev, A. Ortu, N. Lazarus, Jan Van der Spiegel, N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express 15, 4994–5007 (2007).
    [CrossRef] [PubMed]
  7. R. Harding, I. Gardiner, H. J. Yoon, T. Perrett, O. Parri, K. Skjonnemand, “Reactive liquid crystal materials for optically anisotropic patterned retarders,” Proc. SPIE 7140, 71402J (2008).
    [CrossRef]
  8. X. Zhao, F. Boussaid, A. Bermak, V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Technol. Lett. 21, 805–807 (2009).
    [CrossRef]
  9. V. Gruev, R. Perkins, T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18, 19087–19094 (2010).
    [CrossRef] [PubMed]
  10. V. Gruev, Jan Van der Spiegel, N. Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express 18, 19292–19303 (2010).
    [CrossRef] [PubMed]
  11. X. Zhao, A. Bermak, F. Boussaid, V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18, 17776–17787 (2010).
    [CrossRef] [PubMed]
  12. V. Gruev, “Fabrication of a dual-layer aluminum nanowires polarization filter array,” Opt. Express 19, 24361–24369 (2011).
    [CrossRef] [PubMed]
  13. X. Zhao, F. Boussaid, A. Bermak, V. G. Chigrinov, “High-resolution thin ’guest-host’ micropolarizer arrays for visible imaging polarimetry,” Opt. Express 19, 5565–5573 (2011).
    [CrossRef] [PubMed]
  14. G. Myhre, W. Hsu, A. Peinado, C. LaCasse, N. Brock, R. A. Chipman, S. Pau, “Liquid crystal polymer full-stokes division of focal plane polarimeter,” Opt. Express 20, 27393–27409 (2012).
    [CrossRef] [PubMed]
  15. K. Sasagawa, S. Shishido, K. Ando, H. Matsuoka, T. Noda, T. Tokuda, K. Kakiuchi, J. Ohta, “Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology,” Opt. Express 21, 11132–11140 (2013).
    [CrossRef] [PubMed]
  16. W. Hsu, J. Ma, G. Myhre, K. Balakrishnan, S. Pau, “Patterned cholesteric liquid crystal polymer film,” J. Opt. Soc. Am. A 30, 252–258 (2013).
    [CrossRef]
  17. T. H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
    [CrossRef] [PubMed]
  18. N. W. Roberts, T. H. Chiou, N. J. Marshall, T. W. Cronin, “A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region,” Nat. Photonics 3, 641–644 (2009).
    [CrossRef]
  19. G. C. Giakos, “Multifusion, Multispectral, Optical Polarimetric Imaging Sensing Principles,” IEEE Trans. Instrum. Meas. 55, 1628–1633 (2006).
    [CrossRef]
  20. D. Goldstein, Polarized Light (Marcel Dekker, 2003).
    [CrossRef]
  21. M. Kulkarni, V. Gruev, “Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters,” Opt. Express 20, 22997–23012 (2012).
    [CrossRef] [PubMed]
  22. W. S. Kang, B. J. Mun, G. D. Lee, J. H. Lee, B. K. Kim, H. C. Choi, Y. J. Lim, S. H. Lee, “Optimal design of quarter-wave plate with wideband and wide viewing angle for three-dimensional liquid crystal display,” J. Appl. Phys. 111, 103119 (2012).
    [CrossRef]
  23. S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33, 1270–1274 (1986).
    [CrossRef] [PubMed]
  24. P. Hariharan, P. E. Ciddor, “Broad-band superachromatic retarders and circular polarizers for the UV, visible and near infrared,” J. Mod. Opt. 51, 2315–2322 (2004).
    [CrossRef]
  25. X. Zhao, A. Bermak, F. Boussaid, T. Du, V. G. Chigrinov, “High-resolution photo-aligned liquid-crystal micropolarizer array for polarization imaging in visible spectrum,” Opt. Lett. 34, 3619–3621 (2009).
    [CrossRef] [PubMed]

2013 (2)

2012 (3)

2011 (2)

2010 (3)

2009 (3)

N. W. Roberts, T. H. Chiou, N. J. Marshall, T. W. Cronin, “A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region,” Nat. Photonics 3, 641–644 (2009).
[CrossRef]

X. Zhao, F. Boussaid, A. Bermak, V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Technol. Lett. 21, 805–807 (2009).
[CrossRef]

X. Zhao, A. Bermak, F. Boussaid, T. Du, V. G. Chigrinov, “High-resolution photo-aligned liquid-crystal micropolarizer array for polarization imaging in visible spectrum,” Opt. Lett. 34, 3619–3621 (2009).
[CrossRef] [PubMed]

2008 (2)

R. Harding, I. Gardiner, H. J. Yoon, T. Perrett, O. Parri, K. Skjonnemand, “Reactive liquid crystal materials for optically anisotropic patterned retarders,” Proc. SPIE 7140, 71402J (2008).
[CrossRef]

T. H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (3)

M. Momeni, A. H. Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neur. Netw. 7, 222–232 (2006).
[CrossRef]

J. S. Tyo, D. L. Goldstein, D. B. Chenault, J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006).
[CrossRef] [PubMed]

G. C. Giakos, “Multifusion, Multispectral, Optical Polarimetric Imaging Sensing Principles,” IEEE Trans. Instrum. Meas. 55, 1628–1633 (2006).
[CrossRef]

2004 (1)

P. Hariharan, P. E. Ciddor, “Broad-band superachromatic retarders and circular polarizers for the UV, visible and near infrared,” J. Mod. Opt. 51, 2315–2322 (2004).
[CrossRef]

2002 (2)

A. G. Andreou, Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2, 566–576 (2002).
[CrossRef]

C. K. Harnett, H. G. Craighead, “Liquid-crystal micropolarizer array for polarization-difference imaging,” Appl. Opt. 41, 1291–1296 (2002).
[CrossRef] [PubMed]

2000 (1)

1986 (1)

S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33, 1270–1274 (1986).
[CrossRef] [PubMed]

Ando, K.

Andreou, A. G.

A. G. Andreou, Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2, 566–576 (2002).
[CrossRef]

Balakrishnan, K.

Bermak, A.

Boussaid, F.

Brady, D.

Brock, N.

Caldwell, R.

T. H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[CrossRef] [PubMed]

Chenault, D. B.

Chigrinov, V. G.

Chiou, T. H.

N. W. Roberts, T. H. Chiou, N. J. Marshall, T. W. Cronin, “A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region,” Nat. Photonics 3, 641–644 (2009).
[CrossRef]

T. H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[CrossRef] [PubMed]

Chipman, R. A.

Choi, H. C.

W. S. Kang, B. J. Mun, G. D. Lee, J. H. Lee, B. K. Kim, H. C. Choi, Y. J. Lim, S. H. Lee, “Optimal design of quarter-wave plate with wideband and wide viewing angle for three-dimensional liquid crystal display,” J. Appl. Phys. 111, 103119 (2012).
[CrossRef]

Ciddor, P. E.

P. Hariharan, P. E. Ciddor, “Broad-band superachromatic retarders and circular polarizers for the UV, visible and near infrared,” J. Mod. Opt. 51, 2315–2322 (2004).
[CrossRef]

Craighead, H. G.

Cronin, T.

T. H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[CrossRef] [PubMed]

Cronin, T. W.

N. W. Roberts, T. H. Chiou, N. J. Marshall, T. W. Cronin, “A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region,” Nat. Photonics 3, 641–644 (2009).
[CrossRef]

Du, T.

Engheta, N.

Gardiner, I.

R. Harding, I. Gardiner, H. J. Yoon, T. Perrett, O. Parri, K. Skjonnemand, “Reactive liquid crystal materials for optically anisotropic patterned retarders,” Proc. SPIE 7140, 71402J (2008).
[CrossRef]

Giakos, G. C.

G. C. Giakos, “Multifusion, Multispectral, Optical Polarimetric Imaging Sensing Principles,” IEEE Trans. Instrum. Meas. 55, 1628–1633 (2006).
[CrossRef]

Goldizen, A.

T. H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[CrossRef] [PubMed]

Goldstein, D.

D. Goldstein, Polarized Light (Marcel Dekker, 2003).
[CrossRef]

Goldstein, D. L.

Gruev, V.

Guo, J.

Harding, R.

R. Harding, I. Gardiner, H. J. Yoon, T. Perrett, O. Parri, K. Skjonnemand, “Reactive liquid crystal materials for optically anisotropic patterned retarders,” Proc. SPIE 7140, 71402J (2008).
[CrossRef]

Hariharan, P.

P. Hariharan, P. E. Ciddor, “Broad-band superachromatic retarders and circular polarizers for the UV, visible and near infrared,” J. Mod. Opt. 51, 2315–2322 (2004).
[CrossRef]

Harnett, C. K.

Hsu, W.

Kakiuchi, K.

Kalayjian, Z. K.

A. G. Andreou, Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2, 566–576 (2002).
[CrossRef]

Kang, W. S.

W. S. Kang, B. J. Mun, G. D. Lee, J. H. Lee, B. K. Kim, H. C. Choi, Y. J. Lim, S. H. Lee, “Optimal design of quarter-wave plate with wideband and wide viewing angle for three-dimensional liquid crystal display,” J. Appl. Phys. 111, 103119 (2012).
[CrossRef]

Kim, B. K.

W. S. Kang, B. J. Mun, G. D. Lee, J. H. Lee, B. K. Kim, H. C. Choi, Y. J. Lim, S. H. Lee, “Optimal design of quarter-wave plate with wideband and wide viewing angle for three-dimensional liquid crystal display,” J. Appl. Phys. 111, 103119 (2012).
[CrossRef]

Kleinlogel, S.

T. H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[CrossRef] [PubMed]

Kulkarni, M.

LaCasse, C.

Lazarus, N.

Lee, G. D.

W. S. Kang, B. J. Mun, G. D. Lee, J. H. Lee, B. K. Kim, H. C. Choi, Y. J. Lim, S. H. Lee, “Optimal design of quarter-wave plate with wideband and wide viewing angle for three-dimensional liquid crystal display,” J. Appl. Phys. 111, 103119 (2012).
[CrossRef]

Lee, J. H.

W. S. Kang, B. J. Mun, G. D. Lee, J. H. Lee, B. K. Kim, H. C. Choi, Y. J. Lim, S. H. Lee, “Optimal design of quarter-wave plate with wideband and wide viewing angle for three-dimensional liquid crystal display,” J. Appl. Phys. 111, 103119 (2012).
[CrossRef]

Lee, S. H.

W. S. Kang, B. J. Mun, G. D. Lee, J. H. Lee, B. K. Kim, H. C. Choi, Y. J. Lim, S. H. Lee, “Optimal design of quarter-wave plate with wideband and wide viewing angle for three-dimensional liquid crystal display,” J. Appl. Phys. 111, 103119 (2012).
[CrossRef]

Lim, Y. J.

W. S. Kang, B. J. Mun, G. D. Lee, J. H. Lee, B. K. Kim, H. C. Choi, Y. J. Lim, S. H. Lee, “Optimal design of quarter-wave plate with wideband and wide viewing angle for three-dimensional liquid crystal display,” J. Appl. Phys. 111, 103119 (2012).
[CrossRef]

Loeffler, B.

T. H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[CrossRef] [PubMed]

Ma, J.

Marshall, J.

T. H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[CrossRef] [PubMed]

Marshall, N. J.

N. W. Roberts, T. H. Chiou, N. J. Marshall, T. W. Cronin, “A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region,” Nat. Photonics 3, 641–644 (2009).
[CrossRef]

Matsuoka, H.

Momeni, M.

M. Momeni, A. H. Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neur. Netw. 7, 222–232 (2006).
[CrossRef]

Mun, B. J.

W. S. Kang, B. J. Mun, G. D. Lee, J. H. Lee, B. K. Kim, H. C. Choi, Y. J. Lim, S. H. Lee, “Optimal design of quarter-wave plate with wideband and wide viewing angle for three-dimensional liquid crystal display,” J. Appl. Phys. 111, 103119 (2012).
[CrossRef]

Myhre, G.

Noda, T.

Ohta, J.

Ortu, A.

Parri, O.

R. Harding, I. Gardiner, H. J. Yoon, T. Perrett, O. Parri, K. Skjonnemand, “Reactive liquid crystal materials for optically anisotropic patterned retarders,” Proc. SPIE 7140, 71402J (2008).
[CrossRef]

Pau, S.

Peinado, A.

Perkins, R.

Perrett, T.

R. Harding, I. Gardiner, H. J. Yoon, T. Perrett, O. Parri, K. Skjonnemand, “Reactive liquid crystal materials for optically anisotropic patterned retarders,” Proc. SPIE 7140, 71402J (2008).
[CrossRef]

Roberts, N. W.

N. W. Roberts, T. H. Chiou, N. J. Marshall, T. W. Cronin, “A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region,” Nat. Photonics 3, 641–644 (2009).
[CrossRef]

Sasagawa, K.

Shaw, J. A.

Shishido, S.

Siddiqi, A.

T. H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[CrossRef] [PubMed]

Skjonnemand, K.

R. Harding, I. Gardiner, H. J. Yoon, T. Perrett, O. Parri, K. Skjonnemand, “Reactive liquid crystal materials for optically anisotropic patterned retarders,” Proc. SPIE 7140, 71402J (2008).
[CrossRef]

Titus, A. H.

M. Momeni, A. H. Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neur. Netw. 7, 222–232 (2006).
[CrossRef]

Tokuda, T.

Tyo, J. S.

Van der Spiegel, Jan

Wu, S. T.

S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33, 1270–1274 (1986).
[CrossRef] [PubMed]

Yoon, H. J.

R. Harding, I. Gardiner, H. J. Yoon, T. Perrett, O. Parri, K. Skjonnemand, “Reactive liquid crystal materials for optically anisotropic patterned retarders,” Proc. SPIE 7140, 71402J (2008).
[CrossRef]

York, T.

Zhao, X.

Appl. Opt. (3)

Curr. Biol. (1)

T. H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (1)

X. Zhao, F. Boussaid, A. Bermak, V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Technol. Lett. 21, 805–807 (2009).
[CrossRef]

IEEE Sens. J. (1)

A. G. Andreou, Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2, 566–576 (2002).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

G. C. Giakos, “Multifusion, Multispectral, Optical Polarimetric Imaging Sensing Principles,” IEEE Trans. Instrum. Meas. 55, 1628–1633 (2006).
[CrossRef]

IEEE Trans. Neur. Netw. (1)

M. Momeni, A. H. Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neur. Netw. 7, 222–232 (2006).
[CrossRef]

J. Appl. Phys. (1)

W. S. Kang, B. J. Mun, G. D. Lee, J. H. Lee, B. K. Kim, H. C. Choi, Y. J. Lim, S. H. Lee, “Optimal design of quarter-wave plate with wideband and wide viewing angle for three-dimensional liquid crystal display,” J. Appl. Phys. 111, 103119 (2012).
[CrossRef]

J. Mod. Opt. (1)

P. Hariharan, P. E. Ciddor, “Broad-band superachromatic retarders and circular polarizers for the UV, visible and near infrared,” J. Mod. Opt. 51, 2315–2322 (2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

N. W. Roberts, T. H. Chiou, N. J. Marshall, T. W. Cronin, “A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region,” Nat. Photonics 3, 641–644 (2009).
[CrossRef]

Opt. Express (9)

V. Gruev, A. Ortu, N. Lazarus, Jan Van der Spiegel, N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express 15, 4994–5007 (2007).
[CrossRef] [PubMed]

V. Gruev, R. Perkins, T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18, 19087–19094 (2010).
[CrossRef] [PubMed]

V. Gruev, Jan Van der Spiegel, N. Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express 18, 19292–19303 (2010).
[CrossRef] [PubMed]

X. Zhao, A. Bermak, F. Boussaid, V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18, 17776–17787 (2010).
[CrossRef] [PubMed]

V. Gruev, “Fabrication of a dual-layer aluminum nanowires polarization filter array,” Opt. Express 19, 24361–24369 (2011).
[CrossRef] [PubMed]

X. Zhao, F. Boussaid, A. Bermak, V. G. Chigrinov, “High-resolution thin ’guest-host’ micropolarizer arrays for visible imaging polarimetry,” Opt. Express 19, 5565–5573 (2011).
[CrossRef] [PubMed]

G. Myhre, W. Hsu, A. Peinado, C. LaCasse, N. Brock, R. A. Chipman, S. Pau, “Liquid crystal polymer full-stokes division of focal plane polarimeter,” Opt. Express 20, 27393–27409 (2012).
[CrossRef] [PubMed]

K. Sasagawa, S. Shishido, K. Ando, H. Matsuoka, T. Noda, T. Tokuda, K. Kakiuchi, J. Ohta, “Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology,” Opt. Express 21, 11132–11140 (2013).
[CrossRef] [PubMed]

M. Kulkarni, V. Gruev, “Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters,” Opt. Express 20, 22997–23012 (2012).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. A (1)

S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33, 1270–1274 (1986).
[CrossRef] [PubMed]

Proc. SPIE (1)

R. Harding, I. Gardiner, H. J. Yoon, T. Perrett, O. Parri, K. Skjonnemand, “Reactive liquid crystal materials for optically anisotropic patterned retarders,” Proc. SPIE 7140, 71402J (2008).
[CrossRef]

Other (1)

D. Goldstein, Polarized Light (Marcel Dekker, 2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Optical cross-talk caused by the oblique incidence: (a) thick patterned retarder layer; (b) thin patterned retarder layer.

Fig. 2
Fig. 2

Optical design of the proposed MQWRs: (a) 45°MQWR; (b) 135°MQWR.

Fig. 3
Fig. 3

The relationship between the RMSE and the fast axis angle θ1 of the HWR.

Fig. 4
Fig. 4

The achromaticity comparison between the single-layer zero order QWR for 550 nm light and the proposed dual-layer achromatic MQWR.

Fig. 5
Fig. 5

Measured LCP film thickness with different spin coat speeds.

Fig. 6
Fig. 6

The fabrication process flow of our proposed MQWR array.

Fig. 7
Fig. 7

Test setup of our fabricated MQWR array.

Fig. 8
Fig. 8

Measured spectral minor transmittance for single-layer zero order QWR (550 nm) and the proposed dual-layer 45° MQWR (8μm spatial resolution) with left-handed circularly polarized incident light.

Fig. 9
Fig. 9

Measured spectral extinction ratio for our proposed dual-layer 45° MQWR (8μm spatial resolution) with circularly polarized incident light.

Fig. 10
Fig. 10

Microphotographs of the fabricated MQWR array with (a) (b) right-handed circularly polarized input polarized input polarized input; (c) (d) left-handed circularly polarized input.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Γ = 2 π Δ n ( λ ) d λ
M retarder ( φ , θ ) = [ 1 0 0 0 0 cos 2 2 θ + cos φ sin 2 2 θ ( 1 cos φ ) sin 2 θ cos 2 θ sin φ sin 2 θ 0 ( 1 cos φ ) sin 2 θ cos 2 θ sin 2 2 θ + cos φ cos 2 2 θ sin φ cos 2 θ 0 sin φ sin 2 θ sin φ cos 2 θ cos φ ]
M 45 ° MQWR = M retarder ( π 2 , θ 2 ) M retarder ( π , θ 1 )
M 45 ° ideal QWR = [ 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 ]

Metrics