Abstract

An optical fibre chemical sensor that is insensitive to interfering parameters including temperature and surrounding refractive index is described. The sensor is based upon a Mach-Zehnder interferometer formed by a pair of identical cascaded long period gratings (LPGs), with the entire device coated with a mesoporous coating of silica nanoparticles. A functional material is infused only into the coating over the section of optical fibre separating the LPGs. The transmission spectrum of the device consists of a channeled spectrum arising from interference of the core and cladding modes within the envelope of the LPG resonance band. Parameters such as temperature, strain and surrounding refractive perturb the entire device, causing the phase of the channeled spectrum and the central wavelength of the envelope shift at the same rate. Exposure of the device to the analyte of interest perturbs only the optical characteristics of the section of fibre into which the functional material was infused, thus influencing only the phase of the channeled spectrum. Measurement of the phase of the channeled spectrum relative to the central wavelength of the envelope allows the monitoring of the concentration of the analyte with no interference from other parameters.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. James, R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
    [CrossRef]
  2. V. Bhatia, A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
    [CrossRef] [PubMed]
  3. S. Korposh, R. Selyanchyn, W. Yasukochi, S.-W. Lee, S. W. James, R. P. Tatam, “Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water,” Mater. Chem. Phys. 133(2–3), 784–792 (2012).
    [CrossRef]
  4. M. Konstantaki, A. Klini, D. Anglos, S. Pissadakis, “An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating,” Opt. Express 20(8), 8472–8484 (2012).
    [CrossRef] [PubMed]
  5. S. M. Topliss, S. W. James, F. Davis, S. J. P. Higson, R. P. Tatam, “Optical fibre long period grating based selective vapour sensing of volatile organic compounds,” Sens. Actuators B Chem. 143(2), 629–634 (2010).
    [CrossRef]
  6. X. Shu, L. Zhang, I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
    [CrossRef]
  7. S. C. Cheung, S. M. Topliss, S. W. James, R. P. Tatam, “Response of fibre optic long period gratings operating near the phase matching turning point to the deposition of nanostructured coatings,” J. Opt. Soc. Am. B 25(6), 897–902 (2008).
    [CrossRef]
  8. B. H. Lee, J. Nishii, “Bending sensitivity of in-series long-period fiber gratings,” Opt. Lett. 23(20), 1624–1626 (1998).
    [CrossRef] [PubMed]
  9. Y. Liu, J. A. R. Williams, L. Zhang, I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun. 164(1–3), 27–31 (1999).
    [CrossRef]
  10. M. J. Kim, Y. H. Kim, G. Mudhana, B. H. Lee, “Simultaneous measurement of temperature and strain based on double cladding fiber interferometer assisted by fiber grating pair,” IEEE Photonics Technol. Lett. 20(15), 1290–1292 (2008).
    [CrossRef]
  11. S. W. James, I. Ishaq, G. J. Ashwell, R. P. Tatam, “Cascaded long-period gratings with nanostructured coatings,” Opt. Lett. 30(17), 2197–2199 (2005).
    [CrossRef] [PubMed]
  12. S. Korposh, S. W. James, S.-W. Lee, S. M. Topliss, S. C. Cheung, W. J. Batty, R. P. Tatam, “Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2 nanoparticles,” Opt. Express 18(12), 13227–13238 (2010).
    [CrossRef] [PubMed]
  13. S. Korposh, T. Wang, S. W. James, R. P. Tatam, S.-W. Lee, “Pronounced aromatic carboxylic acid detection using a layer-by-layer mesoporous coating on optical fibre long period grating,” Sens. Actuators B Chem. 173, 300–309 (2012).
    [CrossRef]
  14. S. W. James, S. M. Topliss, R. P. Tatam, “Properties of length-apodized phase-shifted long period gratings operating at the phase matching turning point,” J. Lightwave Technol. 30(13), 2203–2209 (2012).
    [CrossRef]
  15. E. Anemogiannis, E. N. Glytsis, T. K. Gaylord, “Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variations,” J. Lightwave Technol. 21(1), 218–227 (2003).
    [CrossRef]

2012 (4)

S. Korposh, R. Selyanchyn, W. Yasukochi, S.-W. Lee, S. W. James, R. P. Tatam, “Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water,” Mater. Chem. Phys. 133(2–3), 784–792 (2012).
[CrossRef]

M. Konstantaki, A. Klini, D. Anglos, S. Pissadakis, “An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating,” Opt. Express 20(8), 8472–8484 (2012).
[CrossRef] [PubMed]

S. Korposh, T. Wang, S. W. James, R. P. Tatam, S.-W. Lee, “Pronounced aromatic carboxylic acid detection using a layer-by-layer mesoporous coating on optical fibre long period grating,” Sens. Actuators B Chem. 173, 300–309 (2012).
[CrossRef]

S. W. James, S. M. Topliss, R. P. Tatam, “Properties of length-apodized phase-shifted long period gratings operating at the phase matching turning point,” J. Lightwave Technol. 30(13), 2203–2209 (2012).
[CrossRef]

2010 (2)

S. Korposh, S. W. James, S.-W. Lee, S. M. Topliss, S. C. Cheung, W. J. Batty, R. P. Tatam, “Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2 nanoparticles,” Opt. Express 18(12), 13227–13238 (2010).
[CrossRef] [PubMed]

S. M. Topliss, S. W. James, F. Davis, S. J. P. Higson, R. P. Tatam, “Optical fibre long period grating based selective vapour sensing of volatile organic compounds,” Sens. Actuators B Chem. 143(2), 629–634 (2010).
[CrossRef]

2008 (2)

S. C. Cheung, S. M. Topliss, S. W. James, R. P. Tatam, “Response of fibre optic long period gratings operating near the phase matching turning point to the deposition of nanostructured coatings,” J. Opt. Soc. Am. B 25(6), 897–902 (2008).
[CrossRef]

M. J. Kim, Y. H. Kim, G. Mudhana, B. H. Lee, “Simultaneous measurement of temperature and strain based on double cladding fiber interferometer assisted by fiber grating pair,” IEEE Photonics Technol. Lett. 20(15), 1290–1292 (2008).
[CrossRef]

2005 (1)

2003 (2)

2002 (1)

1999 (1)

Y. Liu, J. A. R. Williams, L. Zhang, I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun. 164(1–3), 27–31 (1999).
[CrossRef]

1998 (1)

1996 (1)

Anemogiannis, E.

Anglos, D.

Ashwell, G. J.

Batty, W. J.

Bennion, I.

X. Shu, L. Zhang, I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
[CrossRef]

Y. Liu, J. A. R. Williams, L. Zhang, I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun. 164(1–3), 27–31 (1999).
[CrossRef]

Bhatia, V.

Cheung, S. C.

Davis, F.

S. M. Topliss, S. W. James, F. Davis, S. J. P. Higson, R. P. Tatam, “Optical fibre long period grating based selective vapour sensing of volatile organic compounds,” Sens. Actuators B Chem. 143(2), 629–634 (2010).
[CrossRef]

Gaylord, T. K.

Glytsis, E. N.

Higson, S. J. P.

S. M. Topliss, S. W. James, F. Davis, S. J. P. Higson, R. P. Tatam, “Optical fibre long period grating based selective vapour sensing of volatile organic compounds,” Sens. Actuators B Chem. 143(2), 629–634 (2010).
[CrossRef]

Ishaq, I.

James, S. W.

S. W. James, S. M. Topliss, R. P. Tatam, “Properties of length-apodized phase-shifted long period gratings operating at the phase matching turning point,” J. Lightwave Technol. 30(13), 2203–2209 (2012).
[CrossRef]

S. Korposh, T. Wang, S. W. James, R. P. Tatam, S.-W. Lee, “Pronounced aromatic carboxylic acid detection using a layer-by-layer mesoporous coating on optical fibre long period grating,” Sens. Actuators B Chem. 173, 300–309 (2012).
[CrossRef]

S. Korposh, R. Selyanchyn, W. Yasukochi, S.-W. Lee, S. W. James, R. P. Tatam, “Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water,” Mater. Chem. Phys. 133(2–3), 784–792 (2012).
[CrossRef]

S. M. Topliss, S. W. James, F. Davis, S. J. P. Higson, R. P. Tatam, “Optical fibre long period grating based selective vapour sensing of volatile organic compounds,” Sens. Actuators B Chem. 143(2), 629–634 (2010).
[CrossRef]

S. Korposh, S. W. James, S.-W. Lee, S. M. Topliss, S. C. Cheung, W. J. Batty, R. P. Tatam, “Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2 nanoparticles,” Opt. Express 18(12), 13227–13238 (2010).
[CrossRef] [PubMed]

S. C. Cheung, S. M. Topliss, S. W. James, R. P. Tatam, “Response of fibre optic long period gratings operating near the phase matching turning point to the deposition of nanostructured coatings,” J. Opt. Soc. Am. B 25(6), 897–902 (2008).
[CrossRef]

S. W. James, I. Ishaq, G. J. Ashwell, R. P. Tatam, “Cascaded long-period gratings with nanostructured coatings,” Opt. Lett. 30(17), 2197–2199 (2005).
[CrossRef] [PubMed]

S. W. James, R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[CrossRef]

Kim, M. J.

M. J. Kim, Y. H. Kim, G. Mudhana, B. H. Lee, “Simultaneous measurement of temperature and strain based on double cladding fiber interferometer assisted by fiber grating pair,” IEEE Photonics Technol. Lett. 20(15), 1290–1292 (2008).
[CrossRef]

Kim, Y. H.

M. J. Kim, Y. H. Kim, G. Mudhana, B. H. Lee, “Simultaneous measurement of temperature and strain based on double cladding fiber interferometer assisted by fiber grating pair,” IEEE Photonics Technol. Lett. 20(15), 1290–1292 (2008).
[CrossRef]

Klini, A.

Konstantaki, M.

Korposh, S.

S. Korposh, R. Selyanchyn, W. Yasukochi, S.-W. Lee, S. W. James, R. P. Tatam, “Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water,” Mater. Chem. Phys. 133(2–3), 784–792 (2012).
[CrossRef]

S. Korposh, T. Wang, S. W. James, R. P. Tatam, S.-W. Lee, “Pronounced aromatic carboxylic acid detection using a layer-by-layer mesoporous coating on optical fibre long period grating,” Sens. Actuators B Chem. 173, 300–309 (2012).
[CrossRef]

S. Korposh, S. W. James, S.-W. Lee, S. M. Topliss, S. C. Cheung, W. J. Batty, R. P. Tatam, “Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2 nanoparticles,” Opt. Express 18(12), 13227–13238 (2010).
[CrossRef] [PubMed]

Lee, B. H.

M. J. Kim, Y. H. Kim, G. Mudhana, B. H. Lee, “Simultaneous measurement of temperature and strain based on double cladding fiber interferometer assisted by fiber grating pair,” IEEE Photonics Technol. Lett. 20(15), 1290–1292 (2008).
[CrossRef]

B. H. Lee, J. Nishii, “Bending sensitivity of in-series long-period fiber gratings,” Opt. Lett. 23(20), 1624–1626 (1998).
[CrossRef] [PubMed]

Lee, S.-W.

S. Korposh, R. Selyanchyn, W. Yasukochi, S.-W. Lee, S. W. James, R. P. Tatam, “Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water,” Mater. Chem. Phys. 133(2–3), 784–792 (2012).
[CrossRef]

S. Korposh, T. Wang, S. W. James, R. P. Tatam, S.-W. Lee, “Pronounced aromatic carboxylic acid detection using a layer-by-layer mesoporous coating on optical fibre long period grating,” Sens. Actuators B Chem. 173, 300–309 (2012).
[CrossRef]

S. Korposh, S. W. James, S.-W. Lee, S. M. Topliss, S. C. Cheung, W. J. Batty, R. P. Tatam, “Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2 nanoparticles,” Opt. Express 18(12), 13227–13238 (2010).
[CrossRef] [PubMed]

Liu, Y.

Y. Liu, J. A. R. Williams, L. Zhang, I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun. 164(1–3), 27–31 (1999).
[CrossRef]

Mudhana, G.

M. J. Kim, Y. H. Kim, G. Mudhana, B. H. Lee, “Simultaneous measurement of temperature and strain based on double cladding fiber interferometer assisted by fiber grating pair,” IEEE Photonics Technol. Lett. 20(15), 1290–1292 (2008).
[CrossRef]

Nishii, J.

Pissadakis, S.

Selyanchyn, R.

S. Korposh, R. Selyanchyn, W. Yasukochi, S.-W. Lee, S. W. James, R. P. Tatam, “Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water,” Mater. Chem. Phys. 133(2–3), 784–792 (2012).
[CrossRef]

Shu, X.

Tatam, R. P.

S. Korposh, R. Selyanchyn, W. Yasukochi, S.-W. Lee, S. W. James, R. P. Tatam, “Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water,” Mater. Chem. Phys. 133(2–3), 784–792 (2012).
[CrossRef]

S. Korposh, T. Wang, S. W. James, R. P. Tatam, S.-W. Lee, “Pronounced aromatic carboxylic acid detection using a layer-by-layer mesoporous coating on optical fibre long period grating,” Sens. Actuators B Chem. 173, 300–309 (2012).
[CrossRef]

S. W. James, S. M. Topliss, R. P. Tatam, “Properties of length-apodized phase-shifted long period gratings operating at the phase matching turning point,” J. Lightwave Technol. 30(13), 2203–2209 (2012).
[CrossRef]

S. Korposh, S. W. James, S.-W. Lee, S. M. Topliss, S. C. Cheung, W. J. Batty, R. P. Tatam, “Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2 nanoparticles,” Opt. Express 18(12), 13227–13238 (2010).
[CrossRef] [PubMed]

S. M. Topliss, S. W. James, F. Davis, S. J. P. Higson, R. P. Tatam, “Optical fibre long period grating based selective vapour sensing of volatile organic compounds,” Sens. Actuators B Chem. 143(2), 629–634 (2010).
[CrossRef]

S. C. Cheung, S. M. Topliss, S. W. James, R. P. Tatam, “Response of fibre optic long period gratings operating near the phase matching turning point to the deposition of nanostructured coatings,” J. Opt. Soc. Am. B 25(6), 897–902 (2008).
[CrossRef]

S. W. James, I. Ishaq, G. J. Ashwell, R. P. Tatam, “Cascaded long-period gratings with nanostructured coatings,” Opt. Lett. 30(17), 2197–2199 (2005).
[CrossRef] [PubMed]

S. W. James, R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[CrossRef]

Topliss, S. M.

Vengsarkar, A. M.

Wang, T.

S. Korposh, T. Wang, S. W. James, R. P. Tatam, S.-W. Lee, “Pronounced aromatic carboxylic acid detection using a layer-by-layer mesoporous coating on optical fibre long period grating,” Sens. Actuators B Chem. 173, 300–309 (2012).
[CrossRef]

Williams, J. A. R.

Y. Liu, J. A. R. Williams, L. Zhang, I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun. 164(1–3), 27–31 (1999).
[CrossRef]

Yasukochi, W.

S. Korposh, R. Selyanchyn, W. Yasukochi, S.-W. Lee, S. W. James, R. P. Tatam, “Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water,” Mater. Chem. Phys. 133(2–3), 784–792 (2012).
[CrossRef]

Zhang, L.

X. Shu, L. Zhang, I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
[CrossRef]

Y. Liu, J. A. R. Williams, L. Zhang, I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun. 164(1–3), 27–31 (1999).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

M. J. Kim, Y. H. Kim, G. Mudhana, B. H. Lee, “Simultaneous measurement of temperature and strain based on double cladding fiber interferometer assisted by fiber grating pair,” IEEE Photonics Technol. Lett. 20(15), 1290–1292 (2008).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Mater. Chem. Phys. (1)

S. Korposh, R. Selyanchyn, W. Yasukochi, S.-W. Lee, S. W. James, R. P. Tatam, “Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water,” Mater. Chem. Phys. 133(2–3), 784–792 (2012).
[CrossRef]

Meas. Sci. Technol. (1)

S. W. James, R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[CrossRef]

Opt. Commun. (1)

Y. Liu, J. A. R. Williams, L. Zhang, I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun. 164(1–3), 27–31 (1999).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Sens. Actuators B Chem. (2)

S. M. Topliss, S. W. James, F. Davis, S. J. P. Higson, R. P. Tatam, “Optical fibre long period grating based selective vapour sensing of volatile organic compounds,” Sens. Actuators B Chem. 143(2), 629–634 (2010).
[CrossRef]

S. Korposh, T. Wang, S. W. James, R. P. Tatam, S.-W. Lee, “Pronounced aromatic carboxylic acid detection using a layer-by-layer mesoporous coating on optical fibre long period grating,” Sens. Actuators B Chem. 173, 300–309 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic diagram of a cascaded LPG Mach-Zehnder interferometer and (b) the transmission spectrum of a pair of near identical cascaded LPGs of length 30 mm and period 110.3 μm, separated by L = 30 mm.

Fig. 2
Fig. 2

Schematic of the proposed device. The entire length of the device is coated with a single- or multi- coating of silica nanospheres, shown here as SiO2 NPs, to form a porous coating. The functional material is then infused into the length of fibre separating the LPGs.

Fig. 3
Fig. 3

Plots of the simulated temperature response of the cascaded LPG spectrum of the resonance band corresponding to coupling to LP017, where the LPGs have a period of 111 μm. In (a), the temperature changes along the entire device uniformly. In (b) only the length of fibre separating the LPGs is heated while in (c) the temperature over the LPGs is varied differently to that over the section of fibre separating the LPGs. In (c) the left hand Y axis corresponds to the temperature of the LPGs while the right hand Y axis corresponds to the temperature of the fibre separating the LPGs. White represents 100% transmission, and black 0%. Figures 3(d), 3(e) and 3(f) show individual spectra to clarify the relative movement of the channelled spectra and the resonance band envelope. The dotted line represents the envelope of the attenuation bands, determined by modelling a single LPG.

Fig. 4
Fig. 4

Plots of the simulated temperature response of the cascaded LPG spectrum of the resonance band corresponding to coupling to LP018, where the LPGs have a period of 111 μm. In (a) the temperature along the entire device changes uniformly. In 4 (b) only the length of fibre separating the LPGs is heated while in (c) the temperature over the LPGs is varied differently to that over the section of fibre separating the LPGs. In (c) the left hand Y axis corresponds to the temperature of the LPGs while the right hand Y axis corresponds to the temperature of the fibre separating the LPGs. White represents 100% transmission, and black 0%.

Fig. 5
Fig. 5

The temperature response of the transmission spectrum of the cascaded LPG pair. (a) shows the resonance bands corresponding to coupling to both the LP017 (shorter wavelength band) and LP018 (longer wavelength band) modes when the section of fibre separating the LPGs was heated/cooled, with (b) focusing on the response of band corresponding to coupling to LP017. (c) and (d) show the responses of these bands when the length of the entire device was heated/cooled. The white and black correspond to transmission values of 100% and 0%, respectively. The colour bar immediately to the right of the grey-scale plot shows the temperature.

Fig. 6
Fig. 6

(a) Transmission spectra of a cascaded LPG pair with grating period 111 µm, measured when (a) the RI of the material surrounding the entire device was changed and (b) when only the section of optical fibre separating the LPGs was exposed to different RI values.

Fig. 7
Fig. 7

(a) Evolution of the transmission spectra of the cascaded LPG pair as the TSPP infused into the mesoporous coating over the section of optical fibre separating the LPGs, recorded in solution. (b) Transmission spectra recorded before and after infusion of TSPP, recorded in air.

Fig. 8
Fig. 8

Evolution of the transmission spectrum of the cascaded LPG with mesoporous coating (with the coating over the length of fibre separating the LPGs) in response to changing the temperature along the length of the entire device.

Fig. 9
Fig. 9

Evolution of the transmission spectrum of the device in response to a change in the surrounding RI.

Fig. 10
Fig. 10

Evolution of the transmission spectrum of the device on the exposure to (a), water and ammonia of different concentrations and (b), HCl vapour, for different time intervals.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ x =( n core n clad(x) )Λ
ϕ= 2π λ ( n core n clad(x) )L

Metrics