Abstract

Linear Raman scattering has been applied for the determination of the temperature of the liquid phase in water sprays under normal and superheated conditions. The envelope of the Raman OH-stretching vibration band of water is deconvoluted into five Gaussian peaks which can be assigned to five different intermolecular interactions (hydrogen bonding). The intensity of each of the peaks is a function of the temperature and the phase of the water under investigation. The interference of the Raman signals originating from the water vapor is eliminated from the Raman signals originating from the liquid water. Consequently the temperature of the liquid water droplets surrounded by water vapor is accessible which is favorable for the investigation of non-equilibrium sprays where the droplet temperature is different to the vapor temperature.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lamanna, H. Kamoun, B. Weigand, J. Steelant, “Towards a unified treatment of fully flashing sprays,” Int. J. Multiph. Flow 58, 168–184 (2013).
  2. A. Günther, K.-E. Wirth, “Evaporation phenomena in superheated atomization and its impact on the generated spray,” Int. J. Heat Mass Transfer 64, 952–965 (2013).
    [CrossRef]
  3. C. Desnous, A. Cartellier, N. Meyers, “Experimental investigation of explosive vaporization of C6F14,” C. R. Mec. 341(1–2), 88–99 (2013).
    [CrossRef]
  4. S. Mutair, Y. Ikegami, “Experimental investigation on the characteristics of flash evaporation from superheated water jets for desalination,” Desalination 251(1–3), 103–111 (2010).
    [CrossRef]
  5. S. Mutair, Y. Ikegami, “On the evaporation of superheated water drops formed by flashing of liquid jets,” Int. J. Therm. Sci. 57, 37–44 (2012).
    [CrossRef]
  6. Y. Ra, R. D. Reitz, “A vaporization model for discrete multi-component fuel sprays,” Int. J. Multiph. Flow 35(2), 101–117 (2009).
    [CrossRef]
  7. J. Kim, “Spray cooling heat transfer: the state of the art,” Int. J. Heat Fluid Flow 28(4), 753–767 (2007).
    [CrossRef]
  8. W. Zeng, M. Xu, G. Zhang, Y. Zhang, D. J. Cleary, “Atomization and vaporization for flash-boiling multi-hole sprays with alcohol fuels,” Fuel 95, 287–297 (2012).
    [CrossRef]
  9. J. Senda, Y. Hojyo, H. Fujimoto, “Modeling on atomization and vaporization process in flash boiling spray,” JSAE Rev. 15(4), 291–296 (1994).
    [CrossRef]
  10. V. Cleary, P. Bowen, H. Witlox, “Flashing liquid jets and two-phase droplet dispersion I. Experiments for derivation of droplet atomisation correlations,” J. Hazard. Mater. 142(3), 786–796 (2007).
    [CrossRef] [PubMed]
  11. A. Labergue, A. Delconte, G. Castanet, F. Lemoine, “Study of the droplet size effect coupled with the laser light scattering in sprays for two-color LIF thermometry measurements,” Exp. Fluids 52(5), 1121–1132 (2012).
    [CrossRef]
  12. T. Müller, G. Grünefeld, V. Beushausen, “High-precision measurement of the temperature of methanol and ethanol droplets using spontaneous Raman scattering,” Appl. Phys. B 70(1), 155–158 (2000).
    [CrossRef]
  13. A. Günther, M. Rossmeissl, K. Wirth, “Discharge characteristics of the atomization of superheated liquids.”
  14. P. L. Geissler, “Temperature dependence of inhomogeneous broadening: On the meaning of isosbestic points,” J. Am. Chem. Soc. 127(42), 14930–14935 (2005).
    [CrossRef] [PubMed]
  15. D. M. Carey, G. M. Korenowski, “Measurement of the Raman spectrum of liquid water,” J. Chem. Phys. 108(7), 2669–2675 (1998).
    [CrossRef]
  16. R. Li, Z. Jiang, Y. Guan, H. Yang, B. Liu, “Effects of metal ion on the water structure studied by the Raman OH stretching spectrum,” J. Raman Spectrosc. 40(9), 1200–1204 (2009).
    [CrossRef]
  17. V. Crupi, S. Interdonato, F. Longo, D. Majolino, P. Migliardo, V. Venuti, “A new insight on the hydrogen bonding structures of nanoconfined water: a Raman study,” J. Raman Spectrosc. 39(2), 244–249 (2008).
    [CrossRef]
  18. R. Vehring, G. Schweiger, “Optical determination of the temperature of transparent microparticles,” Appl. Spectrosc. 46(1), 25–27 (1992).
    [CrossRef]
  19. W. F. Murphy, “The rovibrational Raman spectrum of water vapour v 1 and v 3,” Mol. Phys. 36(3), 727–732 (1978).
    [CrossRef]
  20. R. Symes, R. M. Sayer, J. P. Reid, “Cavity enhanced droplet spectroscopy: Principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6(3), 474–487 (2004).
    [CrossRef]

2013

G. Lamanna, H. Kamoun, B. Weigand, J. Steelant, “Towards a unified treatment of fully flashing sprays,” Int. J. Multiph. Flow 58, 168–184 (2013).

A. Günther, K.-E. Wirth, “Evaporation phenomena in superheated atomization and its impact on the generated spray,” Int. J. Heat Mass Transfer 64, 952–965 (2013).
[CrossRef]

C. Desnous, A. Cartellier, N. Meyers, “Experimental investigation of explosive vaporization of C6F14,” C. R. Mec. 341(1–2), 88–99 (2013).
[CrossRef]

2012

S. Mutair, Y. Ikegami, “On the evaporation of superheated water drops formed by flashing of liquid jets,” Int. J. Therm. Sci. 57, 37–44 (2012).
[CrossRef]

W. Zeng, M. Xu, G. Zhang, Y. Zhang, D. J. Cleary, “Atomization and vaporization for flash-boiling multi-hole sprays with alcohol fuels,” Fuel 95, 287–297 (2012).
[CrossRef]

A. Labergue, A. Delconte, G. Castanet, F. Lemoine, “Study of the droplet size effect coupled with the laser light scattering in sprays for two-color LIF thermometry measurements,” Exp. Fluids 52(5), 1121–1132 (2012).
[CrossRef]

2010

S. Mutair, Y. Ikegami, “Experimental investigation on the characteristics of flash evaporation from superheated water jets for desalination,” Desalination 251(1–3), 103–111 (2010).
[CrossRef]

2009

Y. Ra, R. D. Reitz, “A vaporization model for discrete multi-component fuel sprays,” Int. J. Multiph. Flow 35(2), 101–117 (2009).
[CrossRef]

R. Li, Z. Jiang, Y. Guan, H. Yang, B. Liu, “Effects of metal ion on the water structure studied by the Raman OH stretching spectrum,” J. Raman Spectrosc. 40(9), 1200–1204 (2009).
[CrossRef]

2008

V. Crupi, S. Interdonato, F. Longo, D. Majolino, P. Migliardo, V. Venuti, “A new insight on the hydrogen bonding structures of nanoconfined water: a Raman study,” J. Raman Spectrosc. 39(2), 244–249 (2008).
[CrossRef]

2007

J. Kim, “Spray cooling heat transfer: the state of the art,” Int. J. Heat Fluid Flow 28(4), 753–767 (2007).
[CrossRef]

V. Cleary, P. Bowen, H. Witlox, “Flashing liquid jets and two-phase droplet dispersion I. Experiments for derivation of droplet atomisation correlations,” J. Hazard. Mater. 142(3), 786–796 (2007).
[CrossRef] [PubMed]

2005

P. L. Geissler, “Temperature dependence of inhomogeneous broadening: On the meaning of isosbestic points,” J. Am. Chem. Soc. 127(42), 14930–14935 (2005).
[CrossRef] [PubMed]

2004

R. Symes, R. M. Sayer, J. P. Reid, “Cavity enhanced droplet spectroscopy: Principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6(3), 474–487 (2004).
[CrossRef]

2000

T. Müller, G. Grünefeld, V. Beushausen, “High-precision measurement of the temperature of methanol and ethanol droplets using spontaneous Raman scattering,” Appl. Phys. B 70(1), 155–158 (2000).
[CrossRef]

1998

D. M. Carey, G. M. Korenowski, “Measurement of the Raman spectrum of liquid water,” J. Chem. Phys. 108(7), 2669–2675 (1998).
[CrossRef]

1994

J. Senda, Y. Hojyo, H. Fujimoto, “Modeling on atomization and vaporization process in flash boiling spray,” JSAE Rev. 15(4), 291–296 (1994).
[CrossRef]

1992

1978

W. F. Murphy, “The rovibrational Raman spectrum of water vapour v 1 and v 3,” Mol. Phys. 36(3), 727–732 (1978).
[CrossRef]

Beushausen, V.

T. Müller, G. Grünefeld, V. Beushausen, “High-precision measurement of the temperature of methanol and ethanol droplets using spontaneous Raman scattering,” Appl. Phys. B 70(1), 155–158 (2000).
[CrossRef]

Bowen, P.

V. Cleary, P. Bowen, H. Witlox, “Flashing liquid jets and two-phase droplet dispersion I. Experiments for derivation of droplet atomisation correlations,” J. Hazard. Mater. 142(3), 786–796 (2007).
[CrossRef] [PubMed]

Carey, D. M.

D. M. Carey, G. M. Korenowski, “Measurement of the Raman spectrum of liquid water,” J. Chem. Phys. 108(7), 2669–2675 (1998).
[CrossRef]

Cartellier, A.

C. Desnous, A. Cartellier, N. Meyers, “Experimental investigation of explosive vaporization of C6F14,” C. R. Mec. 341(1–2), 88–99 (2013).
[CrossRef]

Castanet, G.

A. Labergue, A. Delconte, G. Castanet, F. Lemoine, “Study of the droplet size effect coupled with the laser light scattering in sprays for two-color LIF thermometry measurements,” Exp. Fluids 52(5), 1121–1132 (2012).
[CrossRef]

Cleary, D. J.

W. Zeng, M. Xu, G. Zhang, Y. Zhang, D. J. Cleary, “Atomization and vaporization for flash-boiling multi-hole sprays with alcohol fuels,” Fuel 95, 287–297 (2012).
[CrossRef]

Cleary, V.

V. Cleary, P. Bowen, H. Witlox, “Flashing liquid jets and two-phase droplet dispersion I. Experiments for derivation of droplet atomisation correlations,” J. Hazard. Mater. 142(3), 786–796 (2007).
[CrossRef] [PubMed]

Crupi, V.

V. Crupi, S. Interdonato, F. Longo, D. Majolino, P. Migliardo, V. Venuti, “A new insight on the hydrogen bonding structures of nanoconfined water: a Raman study,” J. Raman Spectrosc. 39(2), 244–249 (2008).
[CrossRef]

Delconte, A.

A. Labergue, A. Delconte, G. Castanet, F. Lemoine, “Study of the droplet size effect coupled with the laser light scattering in sprays for two-color LIF thermometry measurements,” Exp. Fluids 52(5), 1121–1132 (2012).
[CrossRef]

Desnous, C.

C. Desnous, A. Cartellier, N. Meyers, “Experimental investigation of explosive vaporization of C6F14,” C. R. Mec. 341(1–2), 88–99 (2013).
[CrossRef]

Fujimoto, H.

J. Senda, Y. Hojyo, H. Fujimoto, “Modeling on atomization and vaporization process in flash boiling spray,” JSAE Rev. 15(4), 291–296 (1994).
[CrossRef]

Geissler, P. L.

P. L. Geissler, “Temperature dependence of inhomogeneous broadening: On the meaning of isosbestic points,” J. Am. Chem. Soc. 127(42), 14930–14935 (2005).
[CrossRef] [PubMed]

Grünefeld, G.

T. Müller, G. Grünefeld, V. Beushausen, “High-precision measurement of the temperature of methanol and ethanol droplets using spontaneous Raman scattering,” Appl. Phys. B 70(1), 155–158 (2000).
[CrossRef]

Guan, Y.

R. Li, Z. Jiang, Y. Guan, H. Yang, B. Liu, “Effects of metal ion on the water structure studied by the Raman OH stretching spectrum,” J. Raman Spectrosc. 40(9), 1200–1204 (2009).
[CrossRef]

Günther, A.

A. Günther, K.-E. Wirth, “Evaporation phenomena in superheated atomization and its impact on the generated spray,” Int. J. Heat Mass Transfer 64, 952–965 (2013).
[CrossRef]

A. Günther, M. Rossmeissl, K. Wirth, “Discharge characteristics of the atomization of superheated liquids.”

Hojyo, Y.

J. Senda, Y. Hojyo, H. Fujimoto, “Modeling on atomization and vaporization process in flash boiling spray,” JSAE Rev. 15(4), 291–296 (1994).
[CrossRef]

Ikegami, Y.

S. Mutair, Y. Ikegami, “On the evaporation of superheated water drops formed by flashing of liquid jets,” Int. J. Therm. Sci. 57, 37–44 (2012).
[CrossRef]

S. Mutair, Y. Ikegami, “Experimental investigation on the characteristics of flash evaporation from superheated water jets for desalination,” Desalination 251(1–3), 103–111 (2010).
[CrossRef]

Interdonato, S.

V. Crupi, S. Interdonato, F. Longo, D. Majolino, P. Migliardo, V. Venuti, “A new insight on the hydrogen bonding structures of nanoconfined water: a Raman study,” J. Raman Spectrosc. 39(2), 244–249 (2008).
[CrossRef]

Jiang, Z.

R. Li, Z. Jiang, Y. Guan, H. Yang, B. Liu, “Effects of metal ion on the water structure studied by the Raman OH stretching spectrum,” J. Raman Spectrosc. 40(9), 1200–1204 (2009).
[CrossRef]

Kamoun, H.

G. Lamanna, H. Kamoun, B. Weigand, J. Steelant, “Towards a unified treatment of fully flashing sprays,” Int. J. Multiph. Flow 58, 168–184 (2013).

Kim, J.

J. Kim, “Spray cooling heat transfer: the state of the art,” Int. J. Heat Fluid Flow 28(4), 753–767 (2007).
[CrossRef]

Korenowski, G. M.

D. M. Carey, G. M. Korenowski, “Measurement of the Raman spectrum of liquid water,” J. Chem. Phys. 108(7), 2669–2675 (1998).
[CrossRef]

Labergue, A.

A. Labergue, A. Delconte, G. Castanet, F. Lemoine, “Study of the droplet size effect coupled with the laser light scattering in sprays for two-color LIF thermometry measurements,” Exp. Fluids 52(5), 1121–1132 (2012).
[CrossRef]

Lamanna, G.

G. Lamanna, H. Kamoun, B. Weigand, J. Steelant, “Towards a unified treatment of fully flashing sprays,” Int. J. Multiph. Flow 58, 168–184 (2013).

Lemoine, F.

A. Labergue, A. Delconte, G. Castanet, F. Lemoine, “Study of the droplet size effect coupled with the laser light scattering in sprays for two-color LIF thermometry measurements,” Exp. Fluids 52(5), 1121–1132 (2012).
[CrossRef]

Li, R.

R. Li, Z. Jiang, Y. Guan, H. Yang, B. Liu, “Effects of metal ion on the water structure studied by the Raman OH stretching spectrum,” J. Raman Spectrosc. 40(9), 1200–1204 (2009).
[CrossRef]

Liu, B.

R. Li, Z. Jiang, Y. Guan, H. Yang, B. Liu, “Effects of metal ion on the water structure studied by the Raman OH stretching spectrum,” J. Raman Spectrosc. 40(9), 1200–1204 (2009).
[CrossRef]

Longo, F.

V. Crupi, S. Interdonato, F. Longo, D. Majolino, P. Migliardo, V. Venuti, “A new insight on the hydrogen bonding structures of nanoconfined water: a Raman study,” J. Raman Spectrosc. 39(2), 244–249 (2008).
[CrossRef]

Majolino, D.

V. Crupi, S. Interdonato, F. Longo, D. Majolino, P. Migliardo, V. Venuti, “A new insight on the hydrogen bonding structures of nanoconfined water: a Raman study,” J. Raman Spectrosc. 39(2), 244–249 (2008).
[CrossRef]

Meyers, N.

C. Desnous, A. Cartellier, N. Meyers, “Experimental investigation of explosive vaporization of C6F14,” C. R. Mec. 341(1–2), 88–99 (2013).
[CrossRef]

Migliardo, P.

V. Crupi, S. Interdonato, F. Longo, D. Majolino, P. Migliardo, V. Venuti, “A new insight on the hydrogen bonding structures of nanoconfined water: a Raman study,” J. Raman Spectrosc. 39(2), 244–249 (2008).
[CrossRef]

Müller, T.

T. Müller, G. Grünefeld, V. Beushausen, “High-precision measurement of the temperature of methanol and ethanol droplets using spontaneous Raman scattering,” Appl. Phys. B 70(1), 155–158 (2000).
[CrossRef]

Murphy, W. F.

W. F. Murphy, “The rovibrational Raman spectrum of water vapour v 1 and v 3,” Mol. Phys. 36(3), 727–732 (1978).
[CrossRef]

Mutair, S.

S. Mutair, Y. Ikegami, “On the evaporation of superheated water drops formed by flashing of liquid jets,” Int. J. Therm. Sci. 57, 37–44 (2012).
[CrossRef]

S. Mutair, Y. Ikegami, “Experimental investigation on the characteristics of flash evaporation from superheated water jets for desalination,” Desalination 251(1–3), 103–111 (2010).
[CrossRef]

Ra, Y.

Y. Ra, R. D. Reitz, “A vaporization model for discrete multi-component fuel sprays,” Int. J. Multiph. Flow 35(2), 101–117 (2009).
[CrossRef]

Reid, J. P.

R. Symes, R. M. Sayer, J. P. Reid, “Cavity enhanced droplet spectroscopy: Principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6(3), 474–487 (2004).
[CrossRef]

Reitz, R. D.

Y. Ra, R. D. Reitz, “A vaporization model for discrete multi-component fuel sprays,” Int. J. Multiph. Flow 35(2), 101–117 (2009).
[CrossRef]

Rossmeissl, M.

A. Günther, M. Rossmeissl, K. Wirth, “Discharge characteristics of the atomization of superheated liquids.”

Sayer, R. M.

R. Symes, R. M. Sayer, J. P. Reid, “Cavity enhanced droplet spectroscopy: Principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6(3), 474–487 (2004).
[CrossRef]

Schweiger, G.

Senda, J.

J. Senda, Y. Hojyo, H. Fujimoto, “Modeling on atomization and vaporization process in flash boiling spray,” JSAE Rev. 15(4), 291–296 (1994).
[CrossRef]

Steelant, J.

G. Lamanna, H. Kamoun, B. Weigand, J. Steelant, “Towards a unified treatment of fully flashing sprays,” Int. J. Multiph. Flow 58, 168–184 (2013).

Symes, R.

R. Symes, R. M. Sayer, J. P. Reid, “Cavity enhanced droplet spectroscopy: Principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6(3), 474–487 (2004).
[CrossRef]

Vehring, R.

Venuti, V.

V. Crupi, S. Interdonato, F. Longo, D. Majolino, P. Migliardo, V. Venuti, “A new insight on the hydrogen bonding structures of nanoconfined water: a Raman study,” J. Raman Spectrosc. 39(2), 244–249 (2008).
[CrossRef]

Weigand, B.

G. Lamanna, H. Kamoun, B. Weigand, J. Steelant, “Towards a unified treatment of fully flashing sprays,” Int. J. Multiph. Flow 58, 168–184 (2013).

Wirth, K.

A. Günther, M. Rossmeissl, K. Wirth, “Discharge characteristics of the atomization of superheated liquids.”

Wirth, K.-E.

A. Günther, K.-E. Wirth, “Evaporation phenomena in superheated atomization and its impact on the generated spray,” Int. J. Heat Mass Transfer 64, 952–965 (2013).
[CrossRef]

Witlox, H.

V. Cleary, P. Bowen, H. Witlox, “Flashing liquid jets and two-phase droplet dispersion I. Experiments for derivation of droplet atomisation correlations,” J. Hazard. Mater. 142(3), 786–796 (2007).
[CrossRef] [PubMed]

Xu, M.

W. Zeng, M. Xu, G. Zhang, Y. Zhang, D. J. Cleary, “Atomization and vaporization for flash-boiling multi-hole sprays with alcohol fuels,” Fuel 95, 287–297 (2012).
[CrossRef]

Yang, H.

R. Li, Z. Jiang, Y. Guan, H. Yang, B. Liu, “Effects of metal ion on the water structure studied by the Raman OH stretching spectrum,” J. Raman Spectrosc. 40(9), 1200–1204 (2009).
[CrossRef]

Zeng, W.

W. Zeng, M. Xu, G. Zhang, Y. Zhang, D. J. Cleary, “Atomization and vaporization for flash-boiling multi-hole sprays with alcohol fuels,” Fuel 95, 287–297 (2012).
[CrossRef]

Zhang, G.

W. Zeng, M. Xu, G. Zhang, Y. Zhang, D. J. Cleary, “Atomization and vaporization for flash-boiling multi-hole sprays with alcohol fuels,” Fuel 95, 287–297 (2012).
[CrossRef]

Zhang, Y.

W. Zeng, M. Xu, G. Zhang, Y. Zhang, D. J. Cleary, “Atomization and vaporization for flash-boiling multi-hole sprays with alcohol fuels,” Fuel 95, 287–297 (2012).
[CrossRef]

Appl. Phys. B

T. Müller, G. Grünefeld, V. Beushausen, “High-precision measurement of the temperature of methanol and ethanol droplets using spontaneous Raman scattering,” Appl. Phys. B 70(1), 155–158 (2000).
[CrossRef]

Appl. Spectrosc.

C. R. Mec.

C. Desnous, A. Cartellier, N. Meyers, “Experimental investigation of explosive vaporization of C6F14,” C. R. Mec. 341(1–2), 88–99 (2013).
[CrossRef]

Desalination

S. Mutair, Y. Ikegami, “Experimental investigation on the characteristics of flash evaporation from superheated water jets for desalination,” Desalination 251(1–3), 103–111 (2010).
[CrossRef]

Exp. Fluids

A. Labergue, A. Delconte, G. Castanet, F. Lemoine, “Study of the droplet size effect coupled with the laser light scattering in sprays for two-color LIF thermometry measurements,” Exp. Fluids 52(5), 1121–1132 (2012).
[CrossRef]

Fuel

W. Zeng, M. Xu, G. Zhang, Y. Zhang, D. J. Cleary, “Atomization and vaporization for flash-boiling multi-hole sprays with alcohol fuels,” Fuel 95, 287–297 (2012).
[CrossRef]

Int. J. Heat Fluid Flow

J. Kim, “Spray cooling heat transfer: the state of the art,” Int. J. Heat Fluid Flow 28(4), 753–767 (2007).
[CrossRef]

Int. J. Heat Mass Transfer

A. Günther, K.-E. Wirth, “Evaporation phenomena in superheated atomization and its impact on the generated spray,” Int. J. Heat Mass Transfer 64, 952–965 (2013).
[CrossRef]

Int. J. Multiph. Flow

G. Lamanna, H. Kamoun, B. Weigand, J. Steelant, “Towards a unified treatment of fully flashing sprays,” Int. J. Multiph. Flow 58, 168–184 (2013).

Y. Ra, R. D. Reitz, “A vaporization model for discrete multi-component fuel sprays,” Int. J. Multiph. Flow 35(2), 101–117 (2009).
[CrossRef]

Int. J. Therm. Sci.

S. Mutair, Y. Ikegami, “On the evaporation of superheated water drops formed by flashing of liquid jets,” Int. J. Therm. Sci. 57, 37–44 (2012).
[CrossRef]

J. Am. Chem. Soc.

P. L. Geissler, “Temperature dependence of inhomogeneous broadening: On the meaning of isosbestic points,” J. Am. Chem. Soc. 127(42), 14930–14935 (2005).
[CrossRef] [PubMed]

J. Chem. Phys.

D. M. Carey, G. M. Korenowski, “Measurement of the Raman spectrum of liquid water,” J. Chem. Phys. 108(7), 2669–2675 (1998).
[CrossRef]

J. Hazard. Mater.

V. Cleary, P. Bowen, H. Witlox, “Flashing liquid jets and two-phase droplet dispersion I. Experiments for derivation of droplet atomisation correlations,” J. Hazard. Mater. 142(3), 786–796 (2007).
[CrossRef] [PubMed]

J. Raman Spectrosc.

R. Li, Z. Jiang, Y. Guan, H. Yang, B. Liu, “Effects of metal ion on the water structure studied by the Raman OH stretching spectrum,” J. Raman Spectrosc. 40(9), 1200–1204 (2009).
[CrossRef]

V. Crupi, S. Interdonato, F. Longo, D. Majolino, P. Migliardo, V. Venuti, “A new insight on the hydrogen bonding structures of nanoconfined water: a Raman study,” J. Raman Spectrosc. 39(2), 244–249 (2008).
[CrossRef]

JSAE Rev.

J. Senda, Y. Hojyo, H. Fujimoto, “Modeling on atomization and vaporization process in flash boiling spray,” JSAE Rev. 15(4), 291–296 (1994).
[CrossRef]

Mol. Phys.

W. F. Murphy, “The rovibrational Raman spectrum of water vapour v 1 and v 3,” Mol. Phys. 36(3), 727–732 (1978).
[CrossRef]

Phys. Chem. Chem. Phys.

R. Symes, R. M. Sayer, J. P. Reid, “Cavity enhanced droplet spectroscopy: Principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6(3), 474–487 (2004).
[CrossRef]

Other

A. Günther, M. Rossmeissl, K. Wirth, “Discharge characteristics of the atomization of superheated liquids.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sketch of the experimental setup.

Fig. 2
Fig. 2

Raman OH-band in the temperature range from 293K to 371K (background) and the five corresponding deconvoluted Gaussian contributions. The plots in the foreground show the difference between the measured and the computed spectra for different temperatures. The inserted arrows indicate the temperature dependency of the different peaks and point towards increasing temperature.

Fig. 3
Fig. 3

Integrated Raman signal intensity for the five Gaussian peaks as a function of the temperature (a) and the applied calibration line for the temperature determination (b), corresponding to the third strategy.

Fig. 4
Fig. 4

Spline corrected Raman spectra of the measurement in the water spray and from the calibration; by means of the inserted arrows the spectra measured at hot and cold spray locations and the spectrum from the calibration are distinguishable

Fig. 5
Fig. 5

Deviation of the temperatures obtained by the different evaluation strategies; the crosses on the x-axis indicate the temperatures obtained by the third strategy in forming the ratio of peak II and peak III.

Tables (2)

Tables Icon

Table 1 Polynomial Functions of the Different Evaluation Strategies

Tables Icon

Table 2 Overview of Deviations between Normalized Experimental and Deconvoluted Spectra given in Fig. 4

Metrics