Abstract

We propose a novel quasi-mode interpretation (QMI) method to represent acoustic radiation modes in acoustically antiguiding optical fibers (AAOFs) in terms of discrete quasi-modes. The QMI method readily enables one to obtain the full quasi-modal properties of AAOFs, including the complex propagation constants, mode center frequencies, and field distributions in an intuitive and much simplified way, compared to other previous methods. We apply the QMI method to analyze the Brillouin gain spectrum of an AAOF that has typically been used to mitigate stimulated Brillouin scattering of optical waves. The result based on the QMI method is in good agreement with the numerical and experimental results for the same fiber structure previously reported in the literature. Considering the effectiveness and simplicity of its numerical procedure, we expect the use of the QMI method can further be extended to even more complicated numerical analyses with acoustic radiation modes, which include the acoustically antiguiding, large-core optical fibers in multi-mode regimes.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. Chraplyvy, “Limitation on lightwave communication imposed by optical-fiber nonlinearities,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
    [CrossRef]
  2. Y. Jeong, J. K. Sahu, D. J. Richardson, J. Nilsson, “Seeded erbium/ytterbium codoped fibre amplifier source with 87 W of single-frequency output power,” Electron. Lett. 39(24), 1717–1719 (2003).
    [CrossRef]
  3. Y. Jeong, J. K. Sahu, D. B. Soh, C. A. Codemard, J. Nilsson, “High-power tunable single-frequency single-mode erbium:ytterbium codoped large-core fiber master-oscillator power amplifier source,” Opt. Lett. 30(22), 2997–2999 (2005).
    [CrossRef] [PubMed]
  4. Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. W. Turner, “Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power,” Opt. Lett. 30(5), 459–461 (2005).
    [CrossRef] [PubMed]
  5. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, P. W. Turner, “Power scaling of single-frequency Ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
    [CrossRef]
  6. Q. Fang, W. Shi, K. Kieu, E. Petersen, A. Chavez-Pirson, N. Peyghambarian, “High power and high energy monolithic single frequency 2 μm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling,” Opt. Express 20(15), 16410–16420 (2012).
    [CrossRef]
  7. C. A. S. de Oliveira, C. K. Jen, A. Shang, C. Saravanos, “Stimulated Brillouin scattering in cascaded fibers of different Brillouin frequency shift,” J. Opt. Soc. Am. B 10(6), 969–972 (1993).
    [CrossRef]
  8. A. Kobyakov, S. Kumar, D. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13(14), 5338–5346 (2005).
    [CrossRef] [PubMed]
  9. S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power,” J. Lightwave Technol. 15, 37–46 (2009).
  10. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, W. Chujo, “Simulating and designing Brillouin gain spectrum in single mode fibers,” J. Lightwave Technol. 22(2), 631–639 (2004).
    [CrossRef]
  11. M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, A. H. McCurdy, “11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, U63–U69 (2008).
    [CrossRef]
  12. P. D. Dragic, “Ultra-flat Brillouin gain spectrum via linear combination of two acoustically anti-guiding optical fibers,” Electron. Lett. 48(23), 1492–1493 (2012).
    [CrossRef]
  13. P. D. Dragic, “Brillouin suppression by fiber design,” in Photonics Society Summer Topical Meeting Series, (IEEE, 2010), Paper TuC3.2.
  14. P. D. Dragic, C. H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in Proceedings of the Conference on Lasers and Electro-optics, 2005 OSA Technical Digest Series (Optical Society of America, 2005), paper CThZ3.
    [CrossRef]
  15. S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15(25), 17044–17050 (2007).
    [CrossRef] [PubMed]
  16. M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
    [CrossRef] [PubMed]
  17. S. Yoo, C. A. Codemard, Y. Jeong, J. K. Sahu, J. Nilsson, “Analysis and optimization of acoustic speed profiles with large transverse variations for mitigation of stimulated Brillouin scattering in optical fibers,” Appl. Opt. 49(8), 1388–1399 (2010).
    [CrossRef] [PubMed]
  18. P. D. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE 7197, 719710 (2009).
    [CrossRef]
  19. L. Dong, “Limits of stimulated Brillouin scattering suppression in optical fibers with transverse acoustic waveguide designs,” J. Lightwave Technol. 21, 3156–3161 (2010).
  20. L. Dong, “Formulation of a complex mode solver for arbitrary circular acoustic wave guides,” J. Lightwave Technol. 21, 3162–3175 (2010).
  21. K. J. Chen, A. Safaai-Jazi, G. W. Farnell, “Leaky modes in weakly guiding fiber acoustic waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(6), 634–643 (1986).
    [CrossRef] [PubMed]
  22. A. Safaai-Jazi, C. K. Jen, G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(1), 59–68 (1986).
    [CrossRef] [PubMed]
  23. P. D. Dragic, P. C. Law, Y. S. Liu, “Higher order modes in acoustically antiguiding optical fiber,” Microw. Opt. Technol. Lett. 54(10), 2347–2349 (2012).
    [CrossRef]
  24. Y. Jeong, B. Lee, J. Nilsson, D. J. Richardson, “A quasi-mode interpretation of radiation modes in long-period fiber gratings,” IEEE J. Quantum Electron. 39(9), 1135–1142 (2003).
    [CrossRef]
  25. K. Park and Y. Jeong, “A quasi-mode interpretation of acoustic radiation modes for the analysis of acoustically antiguiding optical fibers,” in Advanced Solid-State Lasers, (Optical Society of America, Paris, 2013), Paper ATu3A.08.
  26. S. Dasgupta, F. Poletti, S. Liu, P. Petropoulos, D. J. Richardson, L. Grüner-Nielsen, S. Herstrøm, “Modeling Brillouin gain spectrum of solid and microstructured optical fibers using a finite element method,” J. Lightwave Technol. 29(1), 22–30 (2011).
    [CrossRef]
  27. Y. R. Shen, N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137(6A), A1787–A1805 (1965).
    [CrossRef]
  28. P. J. Thomas, N. L. Rowell, H. M. van Driel, G. I. Stegeman, “Normal acoustic modes and Brillouin scattering in single-mode optical fibers,” Phys. Rev. B 19(10), 4986–4998 (1979).
    [CrossRef]
  29. R. W. Boyd, Nonlinear optics, 3rd ed. (Academic Press, 2008), Chap. 9.
  30. L. Tartara, C. Codemard, J. Maran, R. Cherif, M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282(12), 2431–2436 (2009).
    [CrossRef]
  31. R. A. Waldron, “Some problems in the theory of guided microsonic waves,” IEEE Trans. Microw. Theory Tech. 17(11), 893–904 (1969).
    [CrossRef]
  32. N. Shibata, K. Okamoto, Y. Azuma, “Longitudinal acoustic modes and Brillouin-gain spectra for GeO2-doped-core single mode fibers,” J. Opt. Soc. Am. B 6(6), 1167–1174 (1989).
    [CrossRef]
  33. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of acoustics, 4th ed. (Wiley, 2010), Chap. 5.
  34. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic Press, 1991), Chap. 1–2.
  35. K. F. Graff, Wave Motion in Elastic Solids (Dover Publications, 1991), Chap. 8.
  36. B. A. Auld, Acoustic Fields and Waves in Solids Volume 1 (Wiley, 1973), Chap. 5.

2012

P. D. Dragic, P. C. Law, Y. S. Liu, “Higher order modes in acoustically antiguiding optical fiber,” Microw. Opt. Technol. Lett. 54(10), 2347–2349 (2012).
[CrossRef]

P. D. Dragic, “Ultra-flat Brillouin gain spectrum via linear combination of two acoustically anti-guiding optical fibers,” Electron. Lett. 48(23), 1492–1493 (2012).
[CrossRef]

Q. Fang, W. Shi, K. Kieu, E. Petersen, A. Chavez-Pirson, N. Peyghambarian, “High power and high energy monolithic single frequency 2 μm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling,” Opt. Express 20(15), 16410–16420 (2012).
[CrossRef]

2011

2010

S. Yoo, C. A. Codemard, Y. Jeong, J. K. Sahu, J. Nilsson, “Analysis and optimization of acoustic speed profiles with large transverse variations for mitigation of stimulated Brillouin scattering in optical fibers,” Appl. Opt. 49(8), 1388–1399 (2010).
[CrossRef] [PubMed]

L. Dong, “Limits of stimulated Brillouin scattering suppression in optical fibers with transverse acoustic waveguide designs,” J. Lightwave Technol. 21, 3156–3161 (2010).

L. Dong, “Formulation of a complex mode solver for arbitrary circular acoustic wave guides,” J. Lightwave Technol. 21, 3162–3175 (2010).

2009

S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power,” J. Lightwave Technol. 15, 37–46 (2009).

P. D. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE 7197, 719710 (2009).
[CrossRef]

L. Tartara, C. Codemard, J. Maran, R. Cherif, M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282(12), 2431–2436 (2009).
[CrossRef]

2008

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, A. H. McCurdy, “11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, U63–U69 (2008).
[CrossRef]

2007

2005

2004

2003

Y. Jeong, B. Lee, J. Nilsson, D. J. Richardson, “A quasi-mode interpretation of radiation modes in long-period fiber gratings,” IEEE J. Quantum Electron. 39(9), 1135–1142 (2003).
[CrossRef]

Y. Jeong, J. K. Sahu, D. J. Richardson, J. Nilsson, “Seeded erbium/ytterbium codoped fibre amplifier source with 87 W of single-frequency output power,” Electron. Lett. 39(24), 1717–1719 (2003).
[CrossRef]

1993

1990

A. R. Chraplyvy, “Limitation on lightwave communication imposed by optical-fiber nonlinearities,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
[CrossRef]

1989

1986

K. J. Chen, A. Safaai-Jazi, G. W. Farnell, “Leaky modes in weakly guiding fiber acoustic waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(6), 634–643 (1986).
[CrossRef] [PubMed]

A. Safaai-Jazi, C. K. Jen, G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(1), 59–68 (1986).
[CrossRef] [PubMed]

1979

P. J. Thomas, N. L. Rowell, H. M. van Driel, G. I. Stegeman, “Normal acoustic modes and Brillouin scattering in single-mode optical fibers,” Phys. Rev. B 19(10), 4986–4998 (1979).
[CrossRef]

1969

R. A. Waldron, “Some problems in the theory of guided microsonic waves,” IEEE Trans. Microw. Theory Tech. 17(11), 893–904 (1969).
[CrossRef]

1965

Y. R. Shen, N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137(6A), A1787–A1805 (1965).
[CrossRef]

Alegria, C.

Alvarez-Chavez, J. A.

Andrejco, M. J.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, A. H. McCurdy, “11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, U63–U69 (2008).
[CrossRef]

Azuma, Y.

Bickham, S. R.

Bloembergen, N.

Y. R. Shen, N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137(6A), A1787–A1805 (1965).
[CrossRef]

Chavez-Pirson, A.

Chen, K. J.

K. J. Chen, A. Safaai-Jazi, G. W. Farnell, “Leaky modes in weakly guiding fiber acoustic waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(6), 634–643 (1986).
[CrossRef] [PubMed]

Chen, X.

Cherif, R.

L. Tartara, C. Codemard, J. Maran, R. Cherif, M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282(12), 2431–2436 (2009).
[CrossRef]

Chowdhury, D.

Chraplyvy, A. R.

A. R. Chraplyvy, “Limitation on lightwave communication imposed by optical-fiber nonlinearities,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
[CrossRef]

Chryssou, C. E.

Chujo, W.

Codemard, C.

L. Tartara, C. Codemard, J. Maran, R. Cherif, M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282(12), 2431–2436 (2009).
[CrossRef]

Codemard, C. A.

Crowley, A. M.

Dasgupta, S.

de Oliveira, C. A. S.

Demeritt, J. A.

DiGiovanni, D. J.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, A. H. McCurdy, “11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, U63–U69 (2008).
[CrossRef]

Dong, L.

L. Dong, “Formulation of a complex mode solver for arbitrary circular acoustic wave guides,” J. Lightwave Technol. 21, 3162–3175 (2010).

L. Dong, “Limits of stimulated Brillouin scattering suppression in optical fibers with transverse acoustic waveguide designs,” J. Lightwave Technol. 21, 3156–3161 (2010).

Dragic, P. D.

P. D. Dragic, “Ultra-flat Brillouin gain spectrum via linear combination of two acoustically anti-guiding optical fibers,” Electron. Lett. 48(23), 1492–1493 (2012).
[CrossRef]

P. D. Dragic, P. C. Law, Y. S. Liu, “Higher order modes in acoustically antiguiding optical fiber,” Microw. Opt. Technol. Lett. 54(10), 2347–2349 (2012).
[CrossRef]

P. D. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE 7197, 719710 (2009).
[CrossRef]

Dupriez, P.

Fang, Q.

Farnell, G. W.

K. J. Chen, A. Safaai-Jazi, G. W. Farnell, “Leaky modes in weakly guiding fiber acoustic waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(6), 634–643 (1986).
[CrossRef] [PubMed]

A. Safaai-Jazi, C. K. Jen, G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(1), 59–68 (1986).
[CrossRef] [PubMed]

Fini, J.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, A. H. McCurdy, “11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, U63–U69 (2008).
[CrossRef]

Gray, S.

Grüner-Nielsen, L.

Headley, C.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, A. H. McCurdy, “11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, U63–U69 (2008).
[CrossRef]

Herstrøm, S.

Hickey, L. M. B.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, P. W. Turner, “Power scaling of single-frequency Ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. W. Turner, “Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power,” Opt. Lett. 30(5), 459–461 (2005).
[CrossRef] [PubMed]

Horley, R.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, P. W. Turner, “Power scaling of single-frequency Ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. W. Turner, “Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power,” Opt. Lett. 30(5), 459–461 (2005).
[CrossRef] [PubMed]

Jen, C. K.

C. A. S. de Oliveira, C. K. Jen, A. Shang, C. Saravanos, “Stimulated Brillouin scattering in cascaded fibers of different Brillouin frequency shift,” J. Opt. Soc. Am. B 10(6), 969–972 (1993).
[CrossRef]

A. Safaai-Jazi, C. K. Jen, G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(1), 59–68 (1986).
[CrossRef] [PubMed]

Jeong, Y.

S. Yoo, C. A. Codemard, Y. Jeong, J. K. Sahu, J. Nilsson, “Analysis and optimization of acoustic speed profiles with large transverse variations for mitigation of stimulated Brillouin scattering in optical fibers,” Appl. Opt. 49(8), 1388–1399 (2010).
[CrossRef] [PubMed]

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, P. W. Turner, “Power scaling of single-frequency Ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. W. Turner, “Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power,” Opt. Lett. 30(5), 459–461 (2005).
[CrossRef] [PubMed]

Y. Jeong, J. K. Sahu, D. B. Soh, C. A. Codemard, J. Nilsson, “High-power tunable single-frequency single-mode erbium:ytterbium codoped large-core fiber master-oscillator power amplifier source,” Opt. Lett. 30(22), 2997–2999 (2005).
[CrossRef] [PubMed]

Y. Jeong, B. Lee, J. Nilsson, D. J. Richardson, “A quasi-mode interpretation of radiation modes in long-period fiber gratings,” IEEE J. Quantum Electron. 39(9), 1135–1142 (2003).
[CrossRef]

Y. Jeong, J. K. Sahu, D. J. Richardson, J. Nilsson, “Seeded erbium/ytterbium codoped fibre amplifier source with 87 W of single-frequency output power,” Electron. Lett. 39(24), 1717–1719 (2003).
[CrossRef]

Kieu, K.

Kobyakov, A.

Koyamada, Y.

Kumar, S.

Law, P. C.

P. D. Dragic, P. C. Law, Y. S. Liu, “Higher order modes in acoustically antiguiding optical fiber,” Microw. Opt. Technol. Lett. 54(10), 2347–2349 (2012).
[CrossRef]

Lee, B.

Y. Jeong, B. Lee, J. Nilsson, D. J. Richardson, “A quasi-mode interpretation of radiation modes in long-period fiber gratings,” IEEE J. Quantum Electron. 39(9), 1135–1142 (2003).
[CrossRef]

Li, M. J.

Li, M.-J.

S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power,” J. Lightwave Technol. 15, 37–46 (2009).

S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15(25), 17044–17050 (2007).
[CrossRef] [PubMed]

Liu, A.

Liu, S.

Liu, Y. S.

P. D. Dragic, P. C. Law, Y. S. Liu, “Higher order modes in acoustically antiguiding optical fiber,” Microw. Opt. Technol. Lett. 54(10), 2347–2349 (2012).
[CrossRef]

Maran, J.

L. Tartara, C. Codemard, J. Maran, R. Cherif, M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282(12), 2431–2436 (2009).
[CrossRef]

McCurdy, A. H.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, A. H. McCurdy, “11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, U63–U69 (2008).
[CrossRef]

Mermelstein, M. D.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, A. H. McCurdy, “11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, U63–U69 (2008).
[CrossRef]

Mishra, R.

Nakamura, S.

Nilsson, J.

S. Yoo, C. A. Codemard, Y. Jeong, J. K. Sahu, J. Nilsson, “Analysis and optimization of acoustic speed profiles with large transverse variations for mitigation of stimulated Brillouin scattering in optical fibers,” Appl. Opt. 49(8), 1388–1399 (2010).
[CrossRef] [PubMed]

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, P. W. Turner, “Power scaling of single-frequency Ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Y. Jeong, J. K. Sahu, D. B. Soh, C. A. Codemard, J. Nilsson, “High-power tunable single-frequency single-mode erbium:ytterbium codoped large-core fiber master-oscillator power amplifier source,” Opt. Lett. 30(22), 2997–2999 (2005).
[CrossRef] [PubMed]

Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. W. Turner, “Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power,” Opt. Lett. 30(5), 459–461 (2005).
[CrossRef] [PubMed]

Y. Jeong, B. Lee, J. Nilsson, D. J. Richardson, “A quasi-mode interpretation of radiation modes in long-period fiber gratings,” IEEE J. Quantum Electron. 39(9), 1135–1142 (2003).
[CrossRef]

Y. Jeong, J. K. Sahu, D. J. Richardson, J. Nilsson, “Seeded erbium/ytterbium codoped fibre amplifier source with 87 W of single-frequency output power,” Electron. Lett. 39(24), 1717–1719 (2003).
[CrossRef]

Okamoto, K.

Payne, D. N.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, P. W. Turner, “Power scaling of single-frequency Ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. W. Turner, “Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power,” Opt. Lett. 30(5), 459–461 (2005).
[CrossRef] [PubMed]

Petersen, E.

Petropoulos, P.

Peyghambarian, N.

Poletti, F.

Richardson, D. J.

S. Dasgupta, F. Poletti, S. Liu, P. Petropoulos, D. J. Richardson, L. Grüner-Nielsen, S. Herstrøm, “Modeling Brillouin gain spectrum of solid and microstructured optical fibers using a finite element method,” J. Lightwave Technol. 29(1), 22–30 (2011).
[CrossRef]

Y. Jeong, J. K. Sahu, D. J. Richardson, J. Nilsson, “Seeded erbium/ytterbium codoped fibre amplifier source with 87 W of single-frequency output power,” Electron. Lett. 39(24), 1717–1719 (2003).
[CrossRef]

Y. Jeong, B. Lee, J. Nilsson, D. J. Richardson, “A quasi-mode interpretation of radiation modes in long-period fiber gratings,” IEEE J. Quantum Electron. 39(9), 1135–1142 (2003).
[CrossRef]

Rowell, N. L.

P. J. Thomas, N. L. Rowell, H. M. van Driel, G. I. Stegeman, “Normal acoustic modes and Brillouin scattering in single-mode optical fibers,” Phys. Rev. B 19(10), 4986–4998 (1979).
[CrossRef]

Ruffin, A. B.

Safaai-Jazi, A.

K. J. Chen, A. Safaai-Jazi, G. W. Farnell, “Leaky modes in weakly guiding fiber acoustic waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(6), 634–643 (1986).
[CrossRef] [PubMed]

A. Safaai-Jazi, C. K. Jen, G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(1), 59–68 (1986).
[CrossRef] [PubMed]

Sahu, J. K.

Saravanos, C.

Sato, S.

Sauer, M.

Shang, A.

Shen, Y. R.

Y. R. Shen, N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137(6A), A1787–A1805 (1965).
[CrossRef]

Shi, W.

Shibata, N.

Soh, D. B.

Soh, D. B. S.

Sotobayashi, H.

Stegeman, G. I.

P. J. Thomas, N. L. Rowell, H. M. van Driel, G. I. Stegeman, “Normal acoustic modes and Brillouin scattering in single-mode optical fibers,” Phys. Rev. B 19(10), 4986–4998 (1979).
[CrossRef]

Tartara, L.

L. Tartara, C. Codemard, J. Maran, R. Cherif, M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282(12), 2431–2436 (2009).
[CrossRef]

Thomas, P. J.

P. J. Thomas, N. L. Rowell, H. M. van Driel, G. I. Stegeman, “Normal acoustic modes and Brillouin scattering in single-mode optical fibers,” Phys. Rev. B 19(10), 4986–4998 (1979).
[CrossRef]

Turner, P. W.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, P. W. Turner, “Power scaling of single-frequency Ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. W. Turner, “Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power,” Opt. Lett. 30(5), 459–461 (2005).
[CrossRef] [PubMed]

van Driel, H. M.

P. J. Thomas, N. L. Rowell, H. M. van Driel, G. I. Stegeman, “Normal acoustic modes and Brillouin scattering in single-mode optical fibers,” Phys. Rev. B 19(10), 4986–4998 (1979).
[CrossRef]

Waldron, R. A.

R. A. Waldron, “Some problems in the theory of guided microsonic waves,” IEEE Trans. Microw. Theory Tech. 17(11), 893–904 (1969).
[CrossRef]

Walton, D. T.

Wang, J.

Wanzcyk, L.

Yablon, A.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, A. H. McCurdy, “11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, U63–U69 (2008).
[CrossRef]

Yoo, S.

Zenteno, L. A.

Zghal, M.

L. Tartara, C. Codemard, J. Maran, R. Cherif, M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282(12), 2431–2436 (2009).
[CrossRef]

Appl. Opt.

Electron. Lett.

Y. Jeong, J. K. Sahu, D. J. Richardson, J. Nilsson, “Seeded erbium/ytterbium codoped fibre amplifier source with 87 W of single-frequency output power,” Electron. Lett. 39(24), 1717–1719 (2003).
[CrossRef]

P. D. Dragic, “Ultra-flat Brillouin gain spectrum via linear combination of two acoustically anti-guiding optical fibers,” Electron. Lett. 48(23), 1492–1493 (2012).
[CrossRef]

IEEE J. Quantum Electron.

Y. Jeong, B. Lee, J. Nilsson, D. J. Richardson, “A quasi-mode interpretation of radiation modes in long-period fiber gratings,” IEEE J. Quantum Electron. 39(9), 1135–1142 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, P. W. Turner, “Power scaling of single-frequency Ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

R. A. Waldron, “Some problems in the theory of guided microsonic waves,” IEEE Trans. Microw. Theory Tech. 17(11), 893–904 (1969).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

K. J. Chen, A. Safaai-Jazi, G. W. Farnell, “Leaky modes in weakly guiding fiber acoustic waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(6), 634–643 (1986).
[CrossRef] [PubMed]

A. Safaai-Jazi, C. K. Jen, G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(1), 59–68 (1986).
[CrossRef] [PubMed]

J. Lightwave Technol.

L. Dong, “Limits of stimulated Brillouin scattering suppression in optical fibers with transverse acoustic waveguide designs,” J. Lightwave Technol. 21, 3156–3161 (2010).

L. Dong, “Formulation of a complex mode solver for arbitrary circular acoustic wave guides,” J. Lightwave Technol. 21, 3162–3175 (2010).

S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power,” J. Lightwave Technol. 15, 37–46 (2009).

A. R. Chraplyvy, “Limitation on lightwave communication imposed by optical-fiber nonlinearities,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
[CrossRef]

Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, W. Chujo, “Simulating and designing Brillouin gain spectrum in single mode fibers,” J. Lightwave Technol. 22(2), 631–639 (2004).
[CrossRef]

S. Dasgupta, F. Poletti, S. Liu, P. Petropoulos, D. J. Richardson, L. Grüner-Nielsen, S. Herstrøm, “Modeling Brillouin gain spectrum of solid and microstructured optical fibers using a finite element method,” J. Lightwave Technol. 29(1), 22–30 (2011).
[CrossRef]

J. Opt. Soc. Am. B

Microw. Opt. Technol. Lett.

P. D. Dragic, P. C. Law, Y. S. Liu, “Higher order modes in acoustically antiguiding optical fiber,” Microw. Opt. Technol. Lett. 54(10), 2347–2349 (2012).
[CrossRef]

Opt. Commun.

L. Tartara, C. Codemard, J. Maran, R. Cherif, M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282(12), 2431–2436 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

Y. R. Shen, N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137(6A), A1787–A1805 (1965).
[CrossRef]

Phys. Rev. B

P. J. Thomas, N. L. Rowell, H. M. van Driel, G. I. Stegeman, “Normal acoustic modes and Brillouin scattering in single-mode optical fibers,” Phys. Rev. B 19(10), 4986–4998 (1979).
[CrossRef]

Proc. SPIE

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, A. H. McCurdy, “11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, U63–U69 (2008).
[CrossRef]

P. D. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE 7197, 719710 (2009).
[CrossRef]

Other

K. Park and Y. Jeong, “A quasi-mode interpretation of acoustic radiation modes for the analysis of acoustically antiguiding optical fibers,” in Advanced Solid-State Lasers, (Optical Society of America, Paris, 2013), Paper ATu3A.08.

R. W. Boyd, Nonlinear optics, 3rd ed. (Academic Press, 2008), Chap. 9.

P. D. Dragic, “Brillouin suppression by fiber design,” in Photonics Society Summer Topical Meeting Series, (IEEE, 2010), Paper TuC3.2.

P. D. Dragic, C. H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in Proceedings of the Conference on Lasers and Electro-optics, 2005 OSA Technical Digest Series (Optical Society of America, 2005), paper CThZ3.
[CrossRef]

L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of acoustics, 4th ed. (Wiley, 2010), Chap. 5.

D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic Press, 1991), Chap. 1–2.

K. F. Graff, Wave Motion in Elastic Solids (Dover Publications, 1991), Chap. 8.

B. A. Auld, Acoustic Fields and Waves in Solids Volume 1 (Wiley, 1973), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Acoustic step-index antiguide structure: An ARM is guided by FR because the acoustic effective refractive index is lower than the lowest index of the fiber materials. (b) Acoustical and optical material parameters.

Fig. 2
Fig. 2

The normalized power density factor A a 2 for the step-index AAOF shown in Fig. 1, where AQMm denotes the m-th acoustic longitudinal quasi-modes. (b) The normalized power density factor A a 2 for AQM1 in (a) and its Lorentzian fit.

Fig. 3
Fig. 3

(a) Dispersion relations and (b) attenuation coefficients of the three lowest-order AQMs.

Fig. 4
Fig. 4

(a) Radial field patterns of AQMs based on the QMI method, neglecting the contributions of shear waves. (b) Radial field patterns of CP-ACMs obtained by the ACM method given in [10], considering both longitudinal waves and shear waves.

Fig. 5
Fig. 5

Concurrence of mode center frequencies: (a) Dispersion relations of AQMs by the QMI method represented in the propagation-constant domain [the same figure as Fig. 3(a)]. (b) The frequency spectrum of A a 2 by the QMI method represented in the frequency domain of. The 4th and 5th peaks in (b) are also matched with the intersection points from AQM4 and AQM5 although they are not shown in (a).

Fig. 6
Fig. 6

(a) Acoustical and optical refractive index profiles of an AAOF following fiber 2 in [10]. (b) Dispersion relations (top figure) and the power density factor A a 2 (bottom figure), indicating the mode center frequencies for individual AQMs. (c) The radial field patterns of the three lowest-order AQMs.

Fig. 7
Fig. 7

The total BGS of the AAOF given in Fig. 6(a) via the QMI method together with the ACM method. The dotted graph denotes the measured experimental data numerically sampled from Fig. 4 in [10].

Tables (1)

Tables Icon

Table 1 Summary of the Individual Brillouin Gain Spectra due to AQMs

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

2 ρ t 2 Γ 2 ρ t v 2 2 ρ = ε 0 γ e q 2 A p A s * ψ p ψ s * e i(Ωtqz)
G(Ω)= G 0 m 1 σ m ao Γ m ( Γ m /2) 2 (Ω Ω m ) 2 + ( Γ m /2) 2
σ m ao = ( | ψ | 2 dS ) 2 | ξ m | 2 dS | ψ ξ m ψdS | 2 .
u z =[iq A a X p ( k l r) k s B a Z p ( k s r)]cos(pϕ) e i(Ωtqz) ,
k l 2 = Ω 2 v l 2 q 2 = ρ 0 Ω 2 λ+2μ q 2 , and k s 2 = Ω 2 v s q 2 = ρ 0 Ω 2 μ q 2 ,
u z =iq A a X 0 ( k l r) e i(Ωtqz) .
ξ qm = ξ qm0 η m (r) e i(Ωt q mr z) e q mi z ,
u z =iq A a X 0 ( k l r) e i(Ωtqz) =iq A a U z (r) e i(Ωtqz) =iq η a (r) e i(Ωtqz) ,
U z (r)={ J 0 ( k l1 r), r a 1 B 1 J 0 ( k l2 r)+ B 2 Y 0 ( k l2 r), a 1 <r a 2 C 1 J 0 ( k l3 r)+ C 2 Y 0 ( k l3 r), a 2 <r a 3 D 1 J 0 ( k l4 r)+ D 2 Y 0 ( k l4 r), a 3 <r
u r (r)= A a d dr U z (r) e i(Ωtqz) = A a U r (r) e i(Ωtqz) ,
U r (r)={ k l1 J 0 ( k l1 r), r a 1 B 1 k l2 J 0 ( k l2 r)+ B 2 k l2 Y 0 ( k l2 r), a 1 <r a 2 C 1 k l3 J 0 ( k l3 r)+ C 2 k l3 Y 0 ( k l3 r), a 2 <r a 3 D 1 k l4 J 0 ( k l4 r)+ D 2 k l4 Y 0 ( k l4 r), a 3 <r .
[ u r u z T 1 T 5 ] layer1 r= a 1 = [ u r u z T 1 T 5 ] layer2 r= a 1 and Q 1 (r= a 1 )[ 1 0 ]= [ u r u z T 1 T 5 ] layer1 r= a 1 ,
[ B 1 B 2 ]= [ Q 2 (r= a 1 )] 1 [ Q 1 (r= a 1 )][ 1 0 ]= M 1 [ 1 0 ], [ C 1 C 2 ]= M 2 M 1 [ 1 0 ],and[ D 1 D 2 ]= M 3 M 2 M 1 [ 1 0 ],
1 4 {- v n * T m - v m * T n } a ^ z dS= P 0 δ( q m q n )
A a 2 = C A0 D 1 2 + D 2 2

Metrics