Abstract

We have presented an atmospheric correction algorithm for HJ-1 CCD imagery over Lakes Taihu and Chaohu with highly turbid waters. The Rayleigh scattering radiance (Lr) is calculated using the hyperspectral Lr with a wavelength interval 1nm. The hyperspectral Lr is interpolated from Lr in the central wavelengths of MODIS bands, which are converted from the band response-averaged Lr calculated using the Rayleigh look up tables (LUTs) in SeaDAS6.1. The scattering radiance due to aerosol (La) is interpolated from La at MODIS band 869nm, which is derived from MODIS imagery using a shortwave infrared atmospheric correction scheme. The accuracy of the atmospheric correction algorithm is firstly evaluated by comparing the CCD measured remote sensing reflectance (Rrs) with MODIS measurements, which are validated by the in situ data. The CCD measured Rrs is further validated by the in situ data for a total of 30 observation stations within ± 1h time window of satellite overpass and field measurements. The validation shows the mean relative errors about 0.341, 0.259, 0.293 and 0.803 at blue, green, red and near infrared bands.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Li, Y. Xue, X. He, J. Guang, “High-resolution aerosol remote sensing retrieval over urban areas by synergetic use of HJ-1 CCD and MODIS data,” Atmos. Environ. 46, 173–180 (2012).
  2. H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
    [CrossRef] [PubMed]
  3. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
    [CrossRef]
  4. D. A. Siegel, M. Wang, S. Maritorena, W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39(21), 3582–3591 (2000).
    [CrossRef] [PubMed]
  5. M. Wang, W. Shi, “Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005).
    [CrossRef]
  6. R. A. Arnone, M. Sydor, R. W. Gould., “Remote sensing reflectance of case 2 waters,” Ocean Optics XIII 2963, 222–227 (1996).
    [CrossRef]
  7. X. He, D. Pan, “A practical method of atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Proc. SPIE 4892, 494–505 (2003).
    [CrossRef]
  8. S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean color images over turbid waters,” Cont. Shelf Res. 25(4), 539–555 (2005).
    [CrossRef]
  9. J. Ding, J. Tang, Q. Song, X. Wang, “Atmospheric correction for Chinese coastal turbid waters using iteration and optimization method,” J. Remote Sens. 10, 732–741 (2006).
  10. C. Hu, K. L. Carder, F. E. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
    [CrossRef]
  11. K. G. Ruddick, F. Ovidio, M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39(6), 897–912 (2000).
    [CrossRef] [PubMed]
  12. P. Dash, N. Walker, D. Mishra, E. d’Sa, S. Ladner, “Atmospheric correction and vicarious calibration of Oceansat-1 Ocean Color Monitor(OCM) data in coastal case 2 waters,” Remote Sens. 4(12), 1716–1740 (2012).
    [CrossRef]
  13. M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).
    [CrossRef] [PubMed]
  14. M. Wang, W. Shi, J. Tang, “Water property monitoring and assessment for China’s inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ. 115(3), 841–854 (2011).
    [CrossRef]
  15. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-micrometer wavelength region,” Appl. Opt. 12(3), 555–563 (1973).
    [CrossRef] [PubMed]
  16. L. Gross-Colzy, S. Colzy, R. Frouin, P. Henry, “A general ocean color atmospheric correction scheme based on principal components analysis: Part I. performance on Case 1 and Case 2 waters,” Proc. SPIE 6680, 668002 (2007).
    [CrossRef]
  17. T. Schroeder, I. Behnert, M. Schaale, J. Fischer, R. Doerffer, “Atmospheric correction algorithm for MERIS above case-2 waters,” Int. J. Remote Sens. 28(7), 1469–1486 (2007).
    [CrossRef]
  18. C. Hu, F. E. Muller-Karger, S. Andrefouet, K. L. Carder, “Atmospheric correction and cross-calibration of LANDSAT-7/ETM+ imagery over aquatic environments: A multiplatform approach using SeaWiFS/MODIS,” Remote Sens. Environ. 78(1–2), 99–107 (2001).
    [CrossRef]
  19. J. Li, B. Zhang, Z. Chen, Q. Shen, “Atmospheric correction of CBERS CCD images with MODIS data,” Sci. China Ser. E 49, 149–158 (2006).
  20. J. Chen, J. Fu, M. Zhang, “An atmospheric correction algorithm for Landsat/TM imagery basing on inverse distance spatial interpolation algorithm: a case study in Taihu Lake,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 4(4), 882–889 (2011).
    [CrossRef]
  21. A. G. Dekker, R. J. Vos, S. W. Peters, “Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes,” Sci. Total Environ. 268(1–3), 197–214 (2001).
    [CrossRef] [PubMed]
  22. C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, Florida,” Remote Sens. Environ. 93(3), 423–441 (2004).
    [CrossRef]
  23. A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
    [CrossRef]
  24. M. Zhang, J. Tang, Q. Dong, Q. Song, J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
    [CrossRef]
  25. J. Chen, W. Quan, G. Yao, T. Cui, “Retrieval of absorption and backscattering coefficients from HJ-1A/CCD imagery in coastal waters,” Opt. Express 21(5), 5803–5821 (2013).
    [CrossRef] [PubMed]
  26. J. Chen, W. Quan, “An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS Imagery,” Environ. Monit. Assess. 185(3), 2243–2255 (2013).
    [CrossRef] [PubMed]
  27. L. Guo, P. Xie, L. Ni, W. Hu, H. Li, “The status of fishery resources of lake Chaohu and its response to eutrophication,” Acta Hydrobiol. Sin. 31, 700–705 (2007).
  28. J. L. Mueller, C. Davis, R. Arnone, R. Frouin, K. L. Carder, Z. Lee, R. G. Steward, S. Hooker, C. D. Mobley, and S. McLean, “Above-water radiance and remote sensing reflectance measurements and analysis protocols,” in Radiometric Measurements and Data Analysis Protocols, Vol. III in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, revision 4, (2003), Chap. 3, pp. 21–30.
  29. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38(36), 7442–7455 (1999).
    [CrossRef] [PubMed]
  30. R. Ma, J. Tang, J. Dai, Y. Zhang, Q. Song, “Absorption and scattering properties of water body in Taihu Lake, China: absorption,” Int. J. Remote Sens. 27(19), 4277–4304 (2006).
    [CrossRef]
  31. M. Rijkeboer, A. G. Dekker, H. J. Gons, “Subsurface irradiance reflectance spectra of inland waters differing in morphometry and hydrology,” Aquat. Ecol. 31(3), 313–323 (1998).
    [CrossRef]
  32. D. Gurlin, A. A. Gitelson, W. J. Moses, “Remote estimation of chl-a concentration in turbid productive waters - Return to a simple two-band NIR-red model?” Remote Sens. Environ. 115(12), 3479–3490 (2011).
    [CrossRef]
  33. Y. Zhang, L. Feng, J. Li, L. Luo, Y. Yin, M. Liu, Y. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res. 32(7), 1023–1037 (2010).
    [CrossRef]
  34. C. C. Trees, R. R. Bidigare, D. M. Karl, L. V. Heukelem, and J. Dore, “Fluorometric chlorophyll a: sampling, laboratory methods, and data analysis protocols,” in Biogeochemical and Bio-optical Measurements and Data Analysis Protocols, Vol. V in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, revision 5 (2003), Chap. 3, pp. 15–25.
  35. J. D. H. Strickland and T. R. Parsons, A Practical Handbook of Seawater Analysis, 2nd ed. (Board of Canada, 1972).
  36. M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: accounting for the effects of ocean surface roughness,” Int. J. Remote Sens. 23(13), 2693–2702 (2002).
    [CrossRef]
  37. M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sens. 26(24), 5651–5663 (2005).
    [CrossRef]
  38. C. Cox, W. Munk, “Measurement of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44(11), 838–850 (1954).
    [CrossRef]
  39. M. Wang, S. W. Bailey, “Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40(27), 4790–4798 (2001).
    [CrossRef] [PubMed]
  40. H. R. Gordon, M. Wang, “Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors,” Appl. Opt. 33(33), 7754–7763 (1994).
    [CrossRef] [PubMed]
  41. W. W. Gregg, K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35(8), 1657–1675 (1990).
    [CrossRef]
  42. R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, C. R. McClain, “Calibration of SeaWiFS. II. vicarious techniques,” Appl. Opt. 40(36), 6701–6718 (2001).
    [CrossRef] [PubMed]
  43. H. R. Gordon, D. J. Castaño, “Aerosol analysis with the Coastal zone color scanner: A simple method for including multiple scattering effects,” Appl. Opt. 28(7), 1320–1326 (1989).
    [CrossRef] [PubMed]
  44. H. R. Gordon, D. J. Castaño, “Coastal zone color scanner atmospheric correction algorithm: multiple scattering effects,” Appl. Opt. 26(11), 2111–2122 (1987).
    [CrossRef] [PubMed]
  45. H. R. Gordon, “Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response,” Appl. Opt. 34(36), 8363–8374 (1995).
    [CrossRef] [PubMed]
  46. M. Zhang, R. Ma, J. Li, B. Zhang, H. Duan, “A validation study of an improved SWIR iterative atmospheric correction algorithm for MODIS-Aqua measurements in Lake Taihu, China,” IEEE Trans. Geosci. Remote Sens. 52, 4686–4695 (2014).
  47. M. Wang, S. Son, W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
    [CrossRef]
  48. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22(1), 20–36 (1983).
    [CrossRef] [PubMed]
  49. S. W. Bailey, P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102(1–2), 12–23 (2006).
    [CrossRef]
  50. D. Wang, D. Morton, J. Masek, A. Wu, J. Nagol, X. Xiong, R. Levy, E. Vermote, R. Wolfe, “Impact of sensor degradation on the MODIS NDVI time series,” Remote Sens. Environ. 119, 55–61 (2012).
    [CrossRef]
  51. R. Ma, H. Duan, X. Gu, S. Zhang, “Detecting aquatic vegetation changes in Taihu Lake, China using multi-temporal satellite imagery,” Sensors 8(6), 3988–4005 (2008).
    [CrossRef]
  52. P. N. Reinersman, K. L. Carder, “Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect,” Appl. Opt. 34(21), 4453–4471 (1995).
    [CrossRef] [PubMed]
  53. Q. Li, S. Niu, D. Xu, “Remote sensing of aerosol optical properties and air pollution with MFRSR measurements in Taihu region,” T. Atmos. Sci. 35, 364–371 (2012).
  54. L. Tian, J. Lu, X. Chen, Z. Yu, J. Xiao, F. Qiu, X. Zhao, “Atmospheric correction of HJ-1A/B CCD images over Chinese coastal waters using MODIS-Terra aerosol data,” Sci. China Ser. E 53(S1), 191–195 (2010).
    [CrossRef]
  55. Z. Yu, X. Chen, L. Tian, B. Zhou, “Atmospheric correction method for Poyang lake HJ-1A/B CCD image,” Geomatics Info. Sci. Wuhan U. 37, 1078–1082 (2012).
  56. R. L. Miller, B. A. McKee, “Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters,” Remote Sens. Environ. 93(1–2), 259–266 (2004).
    [CrossRef]
  57. V. Rodríguez-Guzmán, F. Gilbes-Santaella, “Using MODIS 250 m imagery to estimate total suspended sediment in a tropical open bay,” Int. J. Syst. Appl. Eng. Dev. 3, 36–44 (2009).
  58. B. Nechad, K. Ruddick, Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ. 114(4), 854–866 (2010).
    [CrossRef]
  59. G. Neukermans, K. Ruddick, E. Bernard, D. Ramon, B. Nechad, P. Y. Deschamps, “Mapping total suspended matter from geostationary satellites: a feasibility study with SEVIRI in the Southern North Sea,” Opt. Express 17(16), 14029–14052 (2009).
    [CrossRef] [PubMed]
  60. Z. Chen, C. Hu, F. Muller-Karger, “Monitoring turbidity in Tampa bay using MODIS/Aqua 250 m imagery,” Remote Sens. Environ. 109(2), 207–220 (2007).
    [CrossRef]
  61. G. Dall’Olmo, A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt. 44(3), 412–422 (2005).
    [CrossRef] [PubMed]
  62. G. Zhou, Q. Liu, R. Ma, G. Tian, “Inversion of chlorophyll-a concentration in turbid water of lake Taihu based on optimized multi-spectral combination,” J. Lake Sci. 20, 153–159 (2008).
  63. C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, H. Lu, “A four-band semi-analytical model for estimation chlorophyll a in highly turbid lakes: the case of Taihu Lake, China,” Remote Sens. Environ. 113(6), 1175–1182 (2009).
    [CrossRef]
  64. Z. Lee, M. Darecki, K. L. Carder, C. Davis, D. Stramski, W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005).
  65. X. A. Xia, H. B. Chen, P. C. Wang, “Validation of MODIS aerosol retrievals and evaluation of potential cloud contamination in east Asia,” J. Environ. Sci. China 16(5), 832–837 (2004).
    [PubMed]

2014 (1)

M. Zhang, R. Ma, J. Li, B. Zhang, H. Duan, “A validation study of an improved SWIR iterative atmospheric correction algorithm for MODIS-Aqua measurements in Lake Taihu, China,” IEEE Trans. Geosci. Remote Sens. 52, 4686–4695 (2014).

2013 (2)

J. Chen, W. Quan, G. Yao, T. Cui, “Retrieval of absorption and backscattering coefficients from HJ-1A/CCD imagery in coastal waters,” Opt. Express 21(5), 5803–5821 (2013).
[CrossRef] [PubMed]

J. Chen, W. Quan, “An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS Imagery,” Environ. Monit. Assess. 185(3), 2243–2255 (2013).
[CrossRef] [PubMed]

2012 (5)

P. Dash, N. Walker, D. Mishra, E. d’Sa, S. Ladner, “Atmospheric correction and vicarious calibration of Oceansat-1 Ocean Color Monitor(OCM) data in coastal case 2 waters,” Remote Sens. 4(12), 1716–1740 (2012).
[CrossRef]

D. Wang, D. Morton, J. Masek, A. Wu, J. Nagol, X. Xiong, R. Levy, E. Vermote, R. Wolfe, “Impact of sensor degradation on the MODIS NDVI time series,” Remote Sens. Environ. 119, 55–61 (2012).
[CrossRef]

Q. Li, S. Niu, D. Xu, “Remote sensing of aerosol optical properties and air pollution with MFRSR measurements in Taihu region,” T. Atmos. Sci. 35, 364–371 (2012).

Z. Yu, X. Chen, L. Tian, B. Zhou, “Atmospheric correction method for Poyang lake HJ-1A/B CCD image,” Geomatics Info. Sci. Wuhan U. 37, 1078–1082 (2012).

Y. Li, Y. Xue, X. He, J. Guang, “High-resolution aerosol remote sensing retrieval over urban areas by synergetic use of HJ-1 CCD and MODIS data,” Atmos. Environ. 46, 173–180 (2012).

2011 (3)

J. Chen, J. Fu, M. Zhang, “An atmospheric correction algorithm for Landsat/TM imagery basing on inverse distance spatial interpolation algorithm: a case study in Taihu Lake,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 4(4), 882–889 (2011).
[CrossRef]

M. Wang, W. Shi, J. Tang, “Water property monitoring and assessment for China’s inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ. 115(3), 841–854 (2011).
[CrossRef]

D. Gurlin, A. A. Gitelson, W. J. Moses, “Remote estimation of chl-a concentration in turbid productive waters - Return to a simple two-band NIR-red model?” Remote Sens. Environ. 115(12), 3479–3490 (2011).
[CrossRef]

2010 (4)

Y. Zhang, L. Feng, J. Li, L. Luo, Y. Yin, M. Liu, Y. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res. 32(7), 1023–1037 (2010).
[CrossRef]

L. Tian, J. Lu, X. Chen, Z. Yu, J. Xiao, F. Qiu, X. Zhao, “Atmospheric correction of HJ-1A/B CCD images over Chinese coastal waters using MODIS-Terra aerosol data,” Sci. China Ser. E 53(S1), 191–195 (2010).
[CrossRef]

M. Zhang, J. Tang, Q. Dong, Q. Song, J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[CrossRef]

B. Nechad, K. Ruddick, Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ. 114(4), 854–866 (2010).
[CrossRef]

2009 (4)

M. Wang, S. Son, W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[CrossRef]

C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, H. Lu, “A four-band semi-analytical model for estimation chlorophyll a in highly turbid lakes: the case of Taihu Lake, China,” Remote Sens. Environ. 113(6), 1175–1182 (2009).
[CrossRef]

G. Neukermans, K. Ruddick, E. Bernard, D. Ramon, B. Nechad, P. Y. Deschamps, “Mapping total suspended matter from geostationary satellites: a feasibility study with SEVIRI in the Southern North Sea,” Opt. Express 17(16), 14029–14052 (2009).
[CrossRef] [PubMed]

V. Rodríguez-Guzmán, F. Gilbes-Santaella, “Using MODIS 250 m imagery to estimate total suspended sediment in a tropical open bay,” Int. J. Syst. Appl. Eng. Dev. 3, 36–44 (2009).

2008 (2)

R. Ma, H. Duan, X. Gu, S. Zhang, “Detecting aquatic vegetation changes in Taihu Lake, China using multi-temporal satellite imagery,” Sensors 8(6), 3988–4005 (2008).
[CrossRef]

G. Zhou, Q. Liu, R. Ma, G. Tian, “Inversion of chlorophyll-a concentration in turbid water of lake Taihu based on optimized multi-spectral combination,” J. Lake Sci. 20, 153–159 (2008).

2007 (6)

Z. Chen, C. Hu, F. Muller-Karger, “Monitoring turbidity in Tampa bay using MODIS/Aqua 250 m imagery,” Remote Sens. Environ. 109(2), 207–220 (2007).
[CrossRef]

M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).
[CrossRef] [PubMed]

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[CrossRef]

L. Guo, P. Xie, L. Ni, W. Hu, H. Li, “The status of fishery resources of lake Chaohu and its response to eutrophication,” Acta Hydrobiol. Sin. 31, 700–705 (2007).

L. Gross-Colzy, S. Colzy, R. Frouin, P. Henry, “A general ocean color atmospheric correction scheme based on principal components analysis: Part I. performance on Case 1 and Case 2 waters,” Proc. SPIE 6680, 668002 (2007).
[CrossRef]

T. Schroeder, I. Behnert, M. Schaale, J. Fischer, R. Doerffer, “Atmospheric correction algorithm for MERIS above case-2 waters,” Int. J. Remote Sens. 28(7), 1469–1486 (2007).
[CrossRef]

2006 (4)

R. Ma, J. Tang, J. Dai, Y. Zhang, Q. Song, “Absorption and scattering properties of water body in Taihu Lake, China: absorption,” Int. J. Remote Sens. 27(19), 4277–4304 (2006).
[CrossRef]

J. Li, B. Zhang, Z. Chen, Q. Shen, “Atmospheric correction of CBERS CCD images with MODIS data,” Sci. China Ser. E 49, 149–158 (2006).

J. Ding, J. Tang, Q. Song, X. Wang, “Atmospheric correction for Chinese coastal turbid waters using iteration and optimization method,” J. Remote Sens. 10, 732–741 (2006).

S. W. Bailey, P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102(1–2), 12–23 (2006).
[CrossRef]

2005 (5)

M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sens. 26(24), 5651–5663 (2005).
[CrossRef]

S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean color images over turbid waters,” Cont. Shelf Res. 25(4), 539–555 (2005).
[CrossRef]

M. Wang, W. Shi, “Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005).
[CrossRef]

G. Dall’Olmo, A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt. 44(3), 412–422 (2005).
[CrossRef] [PubMed]

Z. Lee, M. Darecki, K. L. Carder, C. Davis, D. Stramski, W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005).

2004 (3)

X. A. Xia, H. B. Chen, P. C. Wang, “Validation of MODIS aerosol retrievals and evaluation of potential cloud contamination in east Asia,” J. Environ. Sci. China 16(5), 832–837 (2004).
[PubMed]

C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, Florida,” Remote Sens. Environ. 93(3), 423–441 (2004).
[CrossRef]

R. L. Miller, B. A. McKee, “Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters,” Remote Sens. Environ. 93(1–2), 259–266 (2004).
[CrossRef]

2003 (1)

X. He, D. Pan, “A practical method of atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Proc. SPIE 4892, 494–505 (2003).
[CrossRef]

2002 (1)

M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: accounting for the effects of ocean surface roughness,” Int. J. Remote Sens. 23(13), 2693–2702 (2002).
[CrossRef]

2001 (4)

C. Hu, F. E. Muller-Karger, S. Andrefouet, K. L. Carder, “Atmospheric correction and cross-calibration of LANDSAT-7/ETM+ imagery over aquatic environments: A multiplatform approach using SeaWiFS/MODIS,” Remote Sens. Environ. 78(1–2), 99–107 (2001).
[CrossRef]

A. G. Dekker, R. J. Vos, S. W. Peters, “Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes,” Sci. Total Environ. 268(1–3), 197–214 (2001).
[CrossRef] [PubMed]

M. Wang, S. W. Bailey, “Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40(27), 4790–4798 (2001).
[CrossRef] [PubMed]

R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, C. R. McClain, “Calibration of SeaWiFS. II. vicarious techniques,” Appl. Opt. 40(36), 6701–6718 (2001).
[CrossRef] [PubMed]

2000 (3)

1999 (1)

1998 (1)

M. Rijkeboer, A. G. Dekker, H. J. Gons, “Subsurface irradiance reflectance spectra of inland waters differing in morphometry and hydrology,” Aquat. Ecol. 31(3), 313–323 (1998).
[CrossRef]

1996 (1)

R. A. Arnone, M. Sydor, R. W. Gould., “Remote sensing reflectance of case 2 waters,” Ocean Optics XIII 2963, 222–227 (1996).
[CrossRef]

1995 (2)

1994 (2)

1990 (1)

W. W. Gregg, K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35(8), 1657–1675 (1990).
[CrossRef]

1989 (1)

1987 (1)

1983 (1)

1977 (1)

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[CrossRef]

1973 (1)

1954 (1)

Aiken, J.

S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean color images over turbid waters,” Cont. Shelf Res. 25(4), 539–555 (2005).
[CrossRef]

Andrefouet, S.

C. Hu, F. E. Muller-Karger, S. Andrefouet, K. L. Carder, “Atmospheric correction and cross-calibration of LANDSAT-7/ETM+ imagery over aquatic environments: A multiplatform approach using SeaWiFS/MODIS,” Remote Sens. Environ. 78(1–2), 99–107 (2001).
[CrossRef]

Arnone, R. A.

R. A. Arnone, M. Sydor, R. W. Gould., “Remote sensing reflectance of case 2 waters,” Ocean Optics XIII 2963, 222–227 (1996).
[CrossRef]

Bailey, S. W.

Barnes, R. A.

Behnert, I.

T. Schroeder, I. Behnert, M. Schaale, J. Fischer, R. Doerffer, “Atmospheric correction algorithm for MERIS above case-2 waters,” Int. J. Remote Sens. 28(7), 1469–1486 (2007).
[CrossRef]

Bernard, E.

Blondeau-Patissier, D.

S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean color images over turbid waters,” Cont. Shelf Res. 25(4), 539–555 (2005).
[CrossRef]

Brock, J. C.

C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, Florida,” Remote Sens. Environ. 93(3), 423–441 (2004).
[CrossRef]

Broenkow, W. W.

Brown, J. W.

Brown, O. B.

Carder, K. L.

Z. Lee, M. Darecki, K. L. Carder, C. Davis, D. Stramski, W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005).

C. Hu, F. E. Muller-Karger, S. Andrefouet, K. L. Carder, “Atmospheric correction and cross-calibration of LANDSAT-7/ETM+ imagery over aquatic environments: A multiplatform approach using SeaWiFS/MODIS,” Remote Sens. Environ. 78(1–2), 99–107 (2001).
[CrossRef]

C. Hu, K. L. Carder, F. E. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
[CrossRef]

P. N. Reinersman, K. L. Carder, “Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect,” Appl. Opt. 34(21), 4453–4471 (1995).
[CrossRef] [PubMed]

W. W. Gregg, K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35(8), 1657–1675 (1990).
[CrossRef]

Castaño, D. J.

Chen, H. B.

X. A. Xia, H. B. Chen, P. C. Wang, “Validation of MODIS aerosol retrievals and evaluation of potential cloud contamination in east Asia,” J. Environ. Sci. China 16(5), 832–837 (2004).
[PubMed]

Chen, J.

J. Chen, W. Quan, “An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS Imagery,” Environ. Monit. Assess. 185(3), 2243–2255 (2013).
[CrossRef] [PubMed]

J. Chen, W. Quan, G. Yao, T. Cui, “Retrieval of absorption and backscattering coefficients from HJ-1A/CCD imagery in coastal waters,” Opt. Express 21(5), 5803–5821 (2013).
[CrossRef] [PubMed]

J. Chen, J. Fu, M. Zhang, “An atmospheric correction algorithm for Landsat/TM imagery basing on inverse distance spatial interpolation algorithm: a case study in Taihu Lake,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 4(4), 882–889 (2011).
[CrossRef]

Chen, X.

Z. Yu, X. Chen, L. Tian, B. Zhou, “Atmospheric correction method for Poyang lake HJ-1A/B CCD image,” Geomatics Info. Sci. Wuhan U. 37, 1078–1082 (2012).

L. Tian, J. Lu, X. Chen, Z. Yu, J. Xiao, F. Qiu, X. Zhao, “Atmospheric correction of HJ-1A/B CCD images over Chinese coastal waters using MODIS-Terra aerosol data,” Sci. China Ser. E 53(S1), 191–195 (2010).
[CrossRef]

Chen, Z.

Z. Chen, C. Hu, F. Muller-Karger, “Monitoring turbidity in Tampa bay using MODIS/Aqua 250 m imagery,” Remote Sens. Environ. 109(2), 207–220 (2007).
[CrossRef]

J. Li, B. Zhang, Z. Chen, Q. Shen, “Atmospheric correction of CBERS CCD images with MODIS data,” Sci. China Ser. E 49, 149–158 (2006).

C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, Florida,” Remote Sens. Environ. 93(3), 423–441 (2004).
[CrossRef]

Clark, D. K.

Clayton, T. D.

C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, Florida,” Remote Sens. Environ. 93(3), 423–441 (2004).
[CrossRef]

Colzy, S.

L. Gross-Colzy, S. Colzy, R. Frouin, P. Henry, “A general ocean color atmospheric correction scheme based on principal components analysis: Part I. performance on Case 1 and Case 2 waters,” Proc. SPIE 6680, 668002 (2007).
[CrossRef]

Cox, C.

Cui, T.

d’Sa, E.

P. Dash, N. Walker, D. Mishra, E. d’Sa, S. Ladner, “Atmospheric correction and vicarious calibration of Oceansat-1 Ocean Color Monitor(OCM) data in coastal case 2 waters,” Remote Sens. 4(12), 1716–1740 (2012).
[CrossRef]

Dai, J.

R. Ma, J. Tang, J. Dai, Y. Zhang, Q. Song, “Absorption and scattering properties of water body in Taihu Lake, China: absorption,” Int. J. Remote Sens. 27(19), 4277–4304 (2006).
[CrossRef]

Dall’Olmo, G.

Darecki, M.

Z. Lee, M. Darecki, K. L. Carder, C. Davis, D. Stramski, W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005).

Dash, P.

P. Dash, N. Walker, D. Mishra, E. d’Sa, S. Ladner, “Atmospheric correction and vicarious calibration of Oceansat-1 Ocean Color Monitor(OCM) data in coastal case 2 waters,” Remote Sens. 4(12), 1716–1740 (2012).
[CrossRef]

Davis, C.

Z. Lee, M. Darecki, K. L. Carder, C. Davis, D. Stramski, W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005).

Dekker, A. G.

A. G. Dekker, R. J. Vos, S. W. Peters, “Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes,” Sci. Total Environ. 268(1–3), 197–214 (2001).
[CrossRef] [PubMed]

M. Rijkeboer, A. G. Dekker, H. J. Gons, “Subsurface irradiance reflectance spectra of inland waters differing in morphometry and hydrology,” Aquat. Ecol. 31(3), 313–323 (1998).
[CrossRef]

Deschamps, P. Y.

Ding, J.

M. Zhang, J. Tang, Q. Dong, Q. Song, J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[CrossRef]

J. Ding, J. Tang, Q. Song, X. Wang, “Atmospheric correction for Chinese coastal turbid waters using iteration and optimization method,” J. Remote Sens. 10, 732–741 (2006).

Doerffer, R.

T. Schroeder, I. Behnert, M. Schaale, J. Fischer, R. Doerffer, “Atmospheric correction algorithm for MERIS above case-2 waters,” Int. J. Remote Sens. 28(7), 1469–1486 (2007).
[CrossRef]

Dong, Q.

M. Zhang, J. Tang, Q. Dong, Q. Song, J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[CrossRef]

Duan, H.

M. Zhang, R. Ma, J. Li, B. Zhang, H. Duan, “A validation study of an improved SWIR iterative atmospheric correction algorithm for MODIS-Aqua measurements in Lake Taihu, China,” IEEE Trans. Geosci. Remote Sens. 52, 4686–4695 (2014).

R. Ma, H. Duan, X. Gu, S. Zhang, “Detecting aquatic vegetation changes in Taihu Lake, China using multi-temporal satellite imagery,” Sensors 8(6), 3988–4005 (2008).
[CrossRef]

Eplee, R. E.

Evans, R. H.

Feng, L.

Y. Zhang, L. Feng, J. Li, L. Luo, Y. Yin, M. Liu, Y. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res. 32(7), 1023–1037 (2010).
[CrossRef]

Fischer, J.

T. Schroeder, I. Behnert, M. Schaale, J. Fischer, R. Doerffer, “Atmospheric correction algorithm for MERIS above case-2 waters,” Int. J. Remote Sens. 28(7), 1469–1486 (2007).
[CrossRef]

Franz, B. A.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[CrossRef]

Frouin, R.

L. Gross-Colzy, S. Colzy, R. Frouin, P. Henry, “A general ocean color atmospheric correction scheme based on principal components analysis: Part I. performance on Case 1 and Case 2 waters,” Proc. SPIE 6680, 668002 (2007).
[CrossRef]

Fu, J.

J. Chen, J. Fu, M. Zhang, “An atmospheric correction algorithm for Landsat/TM imagery basing on inverse distance spatial interpolation algorithm: a case study in Taihu Lake,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 4(4), 882–889 (2011).
[CrossRef]

Gentili, B.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[CrossRef]

Gilbes-Santaella, F.

V. Rodríguez-Guzmán, F. Gilbes-Santaella, “Using MODIS 250 m imagery to estimate total suspended sediment in a tropical open bay,” Int. J. Syst. Appl. Eng. Dev. 3, 36–44 (2009).

Gitelson, A. A.

D. Gurlin, A. A. Gitelson, W. J. Moses, “Remote estimation of chl-a concentration in turbid productive waters - Return to a simple two-band NIR-red model?” Remote Sens. Environ. 115(12), 3479–3490 (2011).
[CrossRef]

G. Dall’Olmo, A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt. 44(3), 412–422 (2005).
[CrossRef] [PubMed]

Gons, H. J.

M. Rijkeboer, A. G. Dekker, H. J. Gons, “Subsurface irradiance reflectance spectra of inland waters differing in morphometry and hydrology,” Aquat. Ecol. 31(3), 313–323 (1998).
[CrossRef]

Gordon, H. R.

Gould, R. W.

R. A. Arnone, M. Sydor, R. W. Gould., “Remote sensing reflectance of case 2 waters,” Ocean Optics XIII 2963, 222–227 (1996).
[CrossRef]

Gregg, W. W.

W. W. Gregg, K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35(8), 1657–1675 (1990).
[CrossRef]

Gross-Colzy, L.

L. Gross-Colzy, S. Colzy, R. Frouin, P. Henry, “A general ocean color atmospheric correction scheme based on principal components analysis: Part I. performance on Case 1 and Case 2 waters,” Proc. SPIE 6680, 668002 (2007).
[CrossRef]

Gu, X.

R. Ma, H. Duan, X. Gu, S. Zhang, “Detecting aquatic vegetation changes in Taihu Lake, China using multi-temporal satellite imagery,” Sensors 8(6), 3988–4005 (2008).
[CrossRef]

Guang, J.

Y. Li, Y. Xue, X. He, J. Guang, “High-resolution aerosol remote sensing retrieval over urban areas by synergetic use of HJ-1 CCD and MODIS data,” Atmos. Environ. 46, 173–180 (2012).

Guo, L.

L. Guo, P. Xie, L. Ni, W. Hu, H. Li, “The status of fishery resources of lake Chaohu and its response to eutrophication,” Acta Hydrobiol. Sin. 31, 700–705 (2007).

Gurlin, D.

D. Gurlin, A. A. Gitelson, W. J. Moses, “Remote estimation of chl-a concentration in turbid productive waters - Return to a simple two-band NIR-red model?” Remote Sens. Environ. 115(12), 3479–3490 (2011).
[CrossRef]

Hale, G. M.

He, X.

Y. Li, Y. Xue, X. He, J. Guang, “High-resolution aerosol remote sensing retrieval over urban areas by synergetic use of HJ-1 CCD and MODIS data,” Atmos. Environ. 46, 173–180 (2012).

X. He, D. Pan, “A practical method of atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Proc. SPIE 4892, 494–505 (2003).
[CrossRef]

Henry, P.

L. Gross-Colzy, S. Colzy, R. Frouin, P. Henry, “A general ocean color atmospheric correction scheme based on principal components analysis: Part I. performance on Case 1 and Case 2 waters,” Proc. SPIE 6680, 668002 (2007).
[CrossRef]

Hooker, S. B.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[CrossRef]

Hu, C.

Z. Chen, C. Hu, F. Muller-Karger, “Monitoring turbidity in Tampa bay using MODIS/Aqua 250 m imagery,” Remote Sens. Environ. 109(2), 207–220 (2007).
[CrossRef]

C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, Florida,” Remote Sens. Environ. 93(3), 423–441 (2004).
[CrossRef]

C. Hu, F. E. Muller-Karger, S. Andrefouet, K. L. Carder, “Atmospheric correction and cross-calibration of LANDSAT-7/ETM+ imagery over aquatic environments: A multiplatform approach using SeaWiFS/MODIS,” Remote Sens. Environ. 78(1–2), 99–107 (2001).
[CrossRef]

C. Hu, K. L. Carder, F. E. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
[CrossRef]

Hu, W.

L. Guo, P. Xie, L. Ni, W. Hu, H. Li, “The status of fishery resources of lake Chaohu and its response to eutrophication,” Acta Hydrobiol. Sin. 31, 700–705 (2007).

Huang, C.

C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, H. Lu, “A four-band semi-analytical model for estimation chlorophyll a in highly turbid lakes: the case of Taihu Lake, China,” Remote Sens. Environ. 113(6), 1175–1182 (2009).
[CrossRef]

Huot, Y.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[CrossRef]

Ladner, S.

P. Dash, N. Walker, D. Mishra, E. d’Sa, S. Ladner, “Atmospheric correction and vicarious calibration of Oceansat-1 Ocean Color Monitor(OCM) data in coastal case 2 waters,” Remote Sens. 4(12), 1716–1740 (2012).
[CrossRef]

Lavender, S. J.

S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean color images over turbid waters,” Cont. Shelf Res. 25(4), 539–555 (2005).
[CrossRef]

Le, C.

C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, H. Lu, “A four-band semi-analytical model for estimation chlorophyll a in highly turbid lakes: the case of Taihu Lake, China,” Remote Sens. Environ. 113(6), 1175–1182 (2009).
[CrossRef]

Lee, Z.

Z. Lee, M. Darecki, K. L. Carder, C. Davis, D. Stramski, W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005).

Levy, R.

D. Wang, D. Morton, J. Masek, A. Wu, J. Nagol, X. Xiong, R. Levy, E. Vermote, R. Wolfe, “Impact of sensor degradation on the MODIS NDVI time series,” Remote Sens. Environ. 119, 55–61 (2012).
[CrossRef]

Li, H.

L. Guo, P. Xie, L. Ni, W. Hu, H. Li, “The status of fishery resources of lake Chaohu and its response to eutrophication,” Acta Hydrobiol. Sin. 31, 700–705 (2007).

Li, J.

M. Zhang, R. Ma, J. Li, B. Zhang, H. Duan, “A validation study of an improved SWIR iterative atmospheric correction algorithm for MODIS-Aqua measurements in Lake Taihu, China,” IEEE Trans. Geosci. Remote Sens. 52, 4686–4695 (2014).

Y. Zhang, L. Feng, J. Li, L. Luo, Y. Yin, M. Liu, Y. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res. 32(7), 1023–1037 (2010).
[CrossRef]

J. Li, B. Zhang, Z. Chen, Q. Shen, “Atmospheric correction of CBERS CCD images with MODIS data,” Sci. China Ser. E 49, 149–158 (2006).

Li, Q.

Q. Li, S. Niu, D. Xu, “Remote sensing of aerosol optical properties and air pollution with MFRSR measurements in Taihu region,” T. Atmos. Sci. 35, 364–371 (2012).

Li, Y.

Y. Li, Y. Xue, X. He, J. Guang, “High-resolution aerosol remote sensing retrieval over urban areas by synergetic use of HJ-1 CCD and MODIS data,” Atmos. Environ. 46, 173–180 (2012).

Y. Zhang, L. Feng, J. Li, L. Luo, Y. Yin, M. Liu, Y. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res. 32(7), 1023–1037 (2010).
[CrossRef]

C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, H. Lu, “A four-band semi-analytical model for estimation chlorophyll a in highly turbid lakes: the case of Taihu Lake, China,” Remote Sens. Environ. 113(6), 1175–1182 (2009).
[CrossRef]

Liu, M.

Y. Zhang, L. Feng, J. Li, L. Luo, Y. Yin, M. Liu, Y. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res. 32(7), 1023–1037 (2010).
[CrossRef]

Liu, Q.

G. Zhou, Q. Liu, R. Ma, G. Tian, “Inversion of chlorophyll-a concentration in turbid water of lake Taihu based on optimized multi-spectral combination,” J. Lake Sci. 20, 153–159 (2008).

Lu, H.

C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, H. Lu, “A four-band semi-analytical model for estimation chlorophyll a in highly turbid lakes: the case of Taihu Lake, China,” Remote Sens. Environ. 113(6), 1175–1182 (2009).
[CrossRef]

Lu, J.

L. Tian, J. Lu, X. Chen, Z. Yu, J. Xiao, F. Qiu, X. Zhao, “Atmospheric correction of HJ-1A/B CCD images over Chinese coastal waters using MODIS-Terra aerosol data,” Sci. China Ser. E 53(S1), 191–195 (2010).
[CrossRef]

Luo, L.

Y. Zhang, L. Feng, J. Li, L. Luo, Y. Yin, M. Liu, Y. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res. 32(7), 1023–1037 (2010).
[CrossRef]

Ma, R.

M. Zhang, R. Ma, J. Li, B. Zhang, H. Duan, “A validation study of an improved SWIR iterative atmospheric correction algorithm for MODIS-Aqua measurements in Lake Taihu, China,” IEEE Trans. Geosci. Remote Sens. 52, 4686–4695 (2014).

G. Zhou, Q. Liu, R. Ma, G. Tian, “Inversion of chlorophyll-a concentration in turbid water of lake Taihu based on optimized multi-spectral combination,” J. Lake Sci. 20, 153–159 (2008).

R. Ma, H. Duan, X. Gu, S. Zhang, “Detecting aquatic vegetation changes in Taihu Lake, China using multi-temporal satellite imagery,” Sensors 8(6), 3988–4005 (2008).
[CrossRef]

R. Ma, J. Tang, J. Dai, Y. Zhang, Q. Song, “Absorption and scattering properties of water body in Taihu Lake, China: absorption,” Int. J. Remote Sens. 27(19), 4277–4304 (2006).
[CrossRef]

Maritorena, S.

Masek, J.

D. Wang, D. Morton, J. Masek, A. Wu, J. Nagol, X. Xiong, R. Levy, E. Vermote, R. Wolfe, “Impact of sensor degradation on the MODIS NDVI time series,” Remote Sens. Environ. 119, 55–61 (2012).
[CrossRef]

McClain, C. R.

McKee, B. A.

R. L. Miller, B. A. McKee, “Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters,” Remote Sens. Environ. 93(1–2), 259–266 (2004).
[CrossRef]

Miller, R. L.

R. L. Miller, B. A. McKee, “Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters,” Remote Sens. Environ. 93(1–2), 259–266 (2004).
[CrossRef]

Mishra, D.

P. Dash, N. Walker, D. Mishra, E. d’Sa, S. Ladner, “Atmospheric correction and vicarious calibration of Oceansat-1 Ocean Color Monitor(OCM) data in coastal case 2 waters,” Remote Sens. 4(12), 1716–1740 (2012).
[CrossRef]

Mobley, C. D.

Moore, G. F.

S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean color images over turbid waters,” Cont. Shelf Res. 25(4), 539–555 (2005).
[CrossRef]

Morel, A.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[CrossRef]

Morton, D.

D. Wang, D. Morton, J. Masek, A. Wu, J. Nagol, X. Xiong, R. Levy, E. Vermote, R. Wolfe, “Impact of sensor degradation on the MODIS NDVI time series,” Remote Sens. Environ. 119, 55–61 (2012).
[CrossRef]

Moses, W. J.

D. Gurlin, A. A. Gitelson, W. J. Moses, “Remote estimation of chl-a concentration in turbid productive waters - Return to a simple two-band NIR-red model?” Remote Sens. Environ. 115(12), 3479–3490 (2011).
[CrossRef]

Muller-Karger, F.

Z. Chen, C. Hu, F. Muller-Karger, “Monitoring turbidity in Tampa bay using MODIS/Aqua 250 m imagery,” Remote Sens. Environ. 109(2), 207–220 (2007).
[CrossRef]

Muller-Karger, F. E.

C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, Florida,” Remote Sens. Environ. 93(3), 423–441 (2004).
[CrossRef]

C. Hu, F. E. Muller-Karger, S. Andrefouet, K. L. Carder, “Atmospheric correction and cross-calibration of LANDSAT-7/ETM+ imagery over aquatic environments: A multiplatform approach using SeaWiFS/MODIS,” Remote Sens. Environ. 78(1–2), 99–107 (2001).
[CrossRef]

C. Hu, K. L. Carder, F. E. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
[CrossRef]

Munk, W.

Nagol, J.

D. Wang, D. Morton, J. Masek, A. Wu, J. Nagol, X. Xiong, R. Levy, E. Vermote, R. Wolfe, “Impact of sensor degradation on the MODIS NDVI time series,” Remote Sens. Environ. 119, 55–61 (2012).
[CrossRef]

Nechad, B.

B. Nechad, K. Ruddick, Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ. 114(4), 854–866 (2010).
[CrossRef]

G. Neukermans, K. Ruddick, E. Bernard, D. Ramon, B. Nechad, P. Y. Deschamps, “Mapping total suspended matter from geostationary satellites: a feasibility study with SEVIRI in the Southern North Sea,” Opt. Express 17(16), 14029–14052 (2009).
[CrossRef] [PubMed]

Neukermans, G.

Ni, L.

L. Guo, P. Xie, L. Ni, W. Hu, H. Li, “The status of fishery resources of lake Chaohu and its response to eutrophication,” Acta Hydrobiol. Sin. 31, 700–705 (2007).

Niu, S.

Q. Li, S. Niu, D. Xu, “Remote sensing of aerosol optical properties and air pollution with MFRSR measurements in Taihu region,” T. Atmos. Sci. 35, 364–371 (2012).

Ovidio, F.

Pan, D.

X. He, D. Pan, “A practical method of atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Proc. SPIE 4892, 494–505 (2003).
[CrossRef]

Park, Y.

B. Nechad, K. Ruddick, Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ. 114(4), 854–866 (2010).
[CrossRef]

Peters, S. W.

A. G. Dekker, R. J. Vos, S. W. Peters, “Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes,” Sci. Total Environ. 268(1–3), 197–214 (2001).
[CrossRef] [PubMed]

Pinkerton, M. H.

S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean color images over turbid waters,” Cont. Shelf Res. 25(4), 539–555 (2005).
[CrossRef]

Prieur, L.

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[CrossRef]

Qiu, F.

L. Tian, J. Lu, X. Chen, Z. Yu, J. Xiao, F. Qiu, X. Zhao, “Atmospheric correction of HJ-1A/B CCD images over Chinese coastal waters using MODIS-Terra aerosol data,” Sci. China Ser. E 53(S1), 191–195 (2010).
[CrossRef]

Quan, W.

J. Chen, W. Quan, G. Yao, T. Cui, “Retrieval of absorption and backscattering coefficients from HJ-1A/CCD imagery in coastal waters,” Opt. Express 21(5), 5803–5821 (2013).
[CrossRef] [PubMed]

J. Chen, W. Quan, “An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS Imagery,” Environ. Monit. Assess. 185(3), 2243–2255 (2013).
[CrossRef] [PubMed]

Querry, M. R.

Ramon, D.

Reinersman, P. N.

Rhea, W. J.

Z. Lee, M. Darecki, K. L. Carder, C. Davis, D. Stramski, W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005).

Rijkeboer, M.

K. G. Ruddick, F. Ovidio, M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39(6), 897–912 (2000).
[CrossRef] [PubMed]

M. Rijkeboer, A. G. Dekker, H. J. Gons, “Subsurface irradiance reflectance spectra of inland waters differing in morphometry and hydrology,” Aquat. Ecol. 31(3), 313–323 (1998).
[CrossRef]

Robinson, W.

Robinson, W. D.

Rodríguez-Guzmán, V.

V. Rodríguez-Guzmán, F. Gilbes-Santaella, “Using MODIS 250 m imagery to estimate total suspended sediment in a tropical open bay,” Int. J. Syst. Appl. Eng. Dev. 3, 36–44 (2009).

Ruddick, K.

B. Nechad, K. Ruddick, Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ. 114(4), 854–866 (2010).
[CrossRef]

G. Neukermans, K. Ruddick, E. Bernard, D. Ramon, B. Nechad, P. Y. Deschamps, “Mapping total suspended matter from geostationary satellites: a feasibility study with SEVIRI in the Southern North Sea,” Opt. Express 17(16), 14029–14052 (2009).
[CrossRef] [PubMed]

Ruddick, K. G.

Schaale, M.

T. Schroeder, I. Behnert, M. Schaale, J. Fischer, R. Doerffer, “Atmospheric correction algorithm for MERIS above case-2 waters,” Int. J. Remote Sens. 28(7), 1469–1486 (2007).
[CrossRef]

Schroeder, T.

T. Schroeder, I. Behnert, M. Schaale, J. Fischer, R. Doerffer, “Atmospheric correction algorithm for MERIS above case-2 waters,” Int. J. Remote Sens. 28(7), 1469–1486 (2007).
[CrossRef]

Shen, Q.

J. Li, B. Zhang, Z. Chen, Q. Shen, “Atmospheric correction of CBERS CCD images with MODIS data,” Sci. China Ser. E 49, 149–158 (2006).

Shi, W.

M. Wang, W. Shi, J. Tang, “Water property monitoring and assessment for China’s inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ. 115(3), 841–854 (2011).
[CrossRef]

M. Wang, S. Son, W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[CrossRef]

M. Wang, W. Shi, “Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005).
[CrossRef]

Siegel, D. A.

Son, S.

M. Wang, S. Son, W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[CrossRef]

Song, Q.

M. Zhang, J. Tang, Q. Dong, Q. Song, J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[CrossRef]

R. Ma, J. Tang, J. Dai, Y. Zhang, Q. Song, “Absorption and scattering properties of water body in Taihu Lake, China: absorption,” Int. J. Remote Sens. 27(19), 4277–4304 (2006).
[CrossRef]

J. Ding, J. Tang, Q. Song, X. Wang, “Atmospheric correction for Chinese coastal turbid waters using iteration and optimization method,” J. Remote Sens. 10, 732–741 (2006).

Stramski, D.

Z. Lee, M. Darecki, K. L. Carder, C. Davis, D. Stramski, W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005).

Sun, D.

C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, H. Lu, “A four-band semi-analytical model for estimation chlorophyll a in highly turbid lakes: the case of Taihu Lake, China,” Remote Sens. Environ. 113(6), 1175–1182 (2009).
[CrossRef]

Swarzenski, P.

C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, Florida,” Remote Sens. Environ. 93(3), 423–441 (2004).
[CrossRef]

Sydor, M.

R. A. Arnone, M. Sydor, R. W. Gould., “Remote sensing reflectance of case 2 waters,” Ocean Optics XIII 2963, 222–227 (1996).
[CrossRef]

Tang, J.

M. Wang, W. Shi, J. Tang, “Water property monitoring and assessment for China’s inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ. 115(3), 841–854 (2011).
[CrossRef]

M. Zhang, J. Tang, Q. Dong, Q. Song, J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[CrossRef]

R. Ma, J. Tang, J. Dai, Y. Zhang, Q. Song, “Absorption and scattering properties of water body in Taihu Lake, China: absorption,” Int. J. Remote Sens. 27(19), 4277–4304 (2006).
[CrossRef]

J. Ding, J. Tang, Q. Song, X. Wang, “Atmospheric correction for Chinese coastal turbid waters using iteration and optimization method,” J. Remote Sens. 10, 732–741 (2006).

Tian, G.

G. Zhou, Q. Liu, R. Ma, G. Tian, “Inversion of chlorophyll-a concentration in turbid water of lake Taihu based on optimized multi-spectral combination,” J. Lake Sci. 20, 153–159 (2008).

Tian, L.

Z. Yu, X. Chen, L. Tian, B. Zhou, “Atmospheric correction method for Poyang lake HJ-1A/B CCD image,” Geomatics Info. Sci. Wuhan U. 37, 1078–1082 (2012).

L. Tian, J. Lu, X. Chen, Z. Yu, J. Xiao, F. Qiu, X. Zhao, “Atmospheric correction of HJ-1A/B CCD images over Chinese coastal waters using MODIS-Terra aerosol data,” Sci. China Ser. E 53(S1), 191–195 (2010).
[CrossRef]

Vermote, E.

D. Wang, D. Morton, J. Masek, A. Wu, J. Nagol, X. Xiong, R. Levy, E. Vermote, R. Wolfe, “Impact of sensor degradation on the MODIS NDVI time series,” Remote Sens. Environ. 119, 55–61 (2012).
[CrossRef]

Vos, R. J.

A. G. Dekker, R. J. Vos, S. W. Peters, “Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes,” Sci. Total Environ. 268(1–3), 197–214 (2001).
[CrossRef] [PubMed]

Walker, N.

P. Dash, N. Walker, D. Mishra, E. d’Sa, S. Ladner, “Atmospheric correction and vicarious calibration of Oceansat-1 Ocean Color Monitor(OCM) data in coastal case 2 waters,” Remote Sens. 4(12), 1716–1740 (2012).
[CrossRef]

Wang, D.

D. Wang, D. Morton, J. Masek, A. Wu, J. Nagol, X. Xiong, R. Levy, E. Vermote, R. Wolfe, “Impact of sensor degradation on the MODIS NDVI time series,” Remote Sens. Environ. 119, 55–61 (2012).
[CrossRef]

Wang, M.

M. Wang, W. Shi, J. Tang, “Water property monitoring and assessment for China’s inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ. 115(3), 841–854 (2011).
[CrossRef]

M. Wang, S. Son, W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[CrossRef]

M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).
[CrossRef] [PubMed]

M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sens. 26(24), 5651–5663 (2005).
[CrossRef]

M. Wang, W. Shi, “Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005).
[CrossRef]

M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: accounting for the effects of ocean surface roughness,” Int. J. Remote Sens. 23(13), 2693–2702 (2002).
[CrossRef]

M. Wang, S. W. Bailey, “Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40(27), 4790–4798 (2001).
[CrossRef] [PubMed]

R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, C. R. McClain, “Calibration of SeaWiFS. II. vicarious techniques,” Appl. Opt. 40(36), 6701–6718 (2001).
[CrossRef] [PubMed]

D. A. Siegel, M. Wang, S. Maritorena, W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39(21), 3582–3591 (2000).
[CrossRef] [PubMed]

H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[CrossRef] [PubMed]

H. R. Gordon, M. Wang, “Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors,” Appl. Opt. 33(33), 7754–7763 (1994).
[CrossRef] [PubMed]

Wang, P. C.

X. A. Xia, H. B. Chen, P. C. Wang, “Validation of MODIS aerosol retrievals and evaluation of potential cloud contamination in east Asia,” J. Environ. Sci. China 16(5), 832–837 (2004).
[PubMed]

Wang, X.

J. Ding, J. Tang, Q. Song, X. Wang, “Atmospheric correction for Chinese coastal turbid waters using iteration and optimization method,” J. Remote Sens. 10, 732–741 (2006).

Werdell, P. J.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[CrossRef]

S. W. Bailey, P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102(1–2), 12–23 (2006).
[CrossRef]

R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, C. R. McClain, “Calibration of SeaWiFS. II. vicarious techniques,” Appl. Opt. 40(36), 6701–6718 (2001).
[CrossRef] [PubMed]

Wolfe, R.

D. Wang, D. Morton, J. Masek, A. Wu, J. Nagol, X. Xiong, R. Levy, E. Vermote, R. Wolfe, “Impact of sensor degradation on the MODIS NDVI time series,” Remote Sens. Environ. 119, 55–61 (2012).
[CrossRef]

Wu, A.

D. Wang, D. Morton, J. Masek, A. Wu, J. Nagol, X. Xiong, R. Levy, E. Vermote, R. Wolfe, “Impact of sensor degradation on the MODIS NDVI time series,” Remote Sens. Environ. 119, 55–61 (2012).
[CrossRef]

Xia, X. A.

X. A. Xia, H. B. Chen, P. C. Wang, “Validation of MODIS aerosol retrievals and evaluation of potential cloud contamination in east Asia,” J. Environ. Sci. China 16(5), 832–837 (2004).
[PubMed]

Xiao, J.

L. Tian, J. Lu, X. Chen, Z. Yu, J. Xiao, F. Qiu, X. Zhao, “Atmospheric correction of HJ-1A/B CCD images over Chinese coastal waters using MODIS-Terra aerosol data,” Sci. China Ser. E 53(S1), 191–195 (2010).
[CrossRef]

Xie, P.

L. Guo, P. Xie, L. Ni, W. Hu, H. Li, “The status of fishery resources of lake Chaohu and its response to eutrophication,” Acta Hydrobiol. Sin. 31, 700–705 (2007).

Xiong, X.

D. Wang, D. Morton, J. Masek, A. Wu, J. Nagol, X. Xiong, R. Levy, E. Vermote, R. Wolfe, “Impact of sensor degradation on the MODIS NDVI time series,” Remote Sens. Environ. 119, 55–61 (2012).
[CrossRef]

Xu, D.

Q. Li, S. Niu, D. Xu, “Remote sensing of aerosol optical properties and air pollution with MFRSR measurements in Taihu region,” T. Atmos. Sci. 35, 364–371 (2012).

Xue, Y.

Y. Li, Y. Xue, X. He, J. Guang, “High-resolution aerosol remote sensing retrieval over urban areas by synergetic use of HJ-1 CCD and MODIS data,” Atmos. Environ. 46, 173–180 (2012).

Yao, G.

Yin, Y.

Y. Zhang, L. Feng, J. Li, L. Luo, Y. Yin, M. Liu, Y. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res. 32(7), 1023–1037 (2010).
[CrossRef]

Yu, Z.

Z. Yu, X. Chen, L. Tian, B. Zhou, “Atmospheric correction method for Poyang lake HJ-1A/B CCD image,” Geomatics Info. Sci. Wuhan U. 37, 1078–1082 (2012).

L. Tian, J. Lu, X. Chen, Z. Yu, J. Xiao, F. Qiu, X. Zhao, “Atmospheric correction of HJ-1A/B CCD images over Chinese coastal waters using MODIS-Terra aerosol data,” Sci. China Ser. E 53(S1), 191–195 (2010).
[CrossRef]

Zha, Y.

C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, H. Lu, “A four-band semi-analytical model for estimation chlorophyll a in highly turbid lakes: the case of Taihu Lake, China,” Remote Sens. Environ. 113(6), 1175–1182 (2009).
[CrossRef]

Zhang, B.

M. Zhang, R. Ma, J. Li, B. Zhang, H. Duan, “A validation study of an improved SWIR iterative atmospheric correction algorithm for MODIS-Aqua measurements in Lake Taihu, China,” IEEE Trans. Geosci. Remote Sens. 52, 4686–4695 (2014).

J. Li, B. Zhang, Z. Chen, Q. Shen, “Atmospheric correction of CBERS CCD images with MODIS data,” Sci. China Ser. E 49, 149–158 (2006).

Zhang, M.

M. Zhang, R. Ma, J. Li, B. Zhang, H. Duan, “A validation study of an improved SWIR iterative atmospheric correction algorithm for MODIS-Aqua measurements in Lake Taihu, China,” IEEE Trans. Geosci. Remote Sens. 52, 4686–4695 (2014).

J. Chen, J. Fu, M. Zhang, “An atmospheric correction algorithm for Landsat/TM imagery basing on inverse distance spatial interpolation algorithm: a case study in Taihu Lake,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 4(4), 882–889 (2011).
[CrossRef]

M. Zhang, J. Tang, Q. Dong, Q. Song, J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[CrossRef]

Zhang, S.

R. Ma, H. Duan, X. Gu, S. Zhang, “Detecting aquatic vegetation changes in Taihu Lake, China using multi-temporal satellite imagery,” Sensors 8(6), 3988–4005 (2008).
[CrossRef]

Zhang, Y.

Y. Zhang, L. Feng, J. Li, L. Luo, Y. Yin, M. Liu, Y. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res. 32(7), 1023–1037 (2010).
[CrossRef]

R. Ma, J. Tang, J. Dai, Y. Zhang, Q. Song, “Absorption and scattering properties of water body in Taihu Lake, China: absorption,” Int. J. Remote Sens. 27(19), 4277–4304 (2006).
[CrossRef]

Zhao, X.

L. Tian, J. Lu, X. Chen, Z. Yu, J. Xiao, F. Qiu, X. Zhao, “Atmospheric correction of HJ-1A/B CCD images over Chinese coastal waters using MODIS-Terra aerosol data,” Sci. China Ser. E 53(S1), 191–195 (2010).
[CrossRef]

Zhou, B.

Z. Yu, X. Chen, L. Tian, B. Zhou, “Atmospheric correction method for Poyang lake HJ-1A/B CCD image,” Geomatics Info. Sci. Wuhan U. 37, 1078–1082 (2012).

Zhou, G.

G. Zhou, Q. Liu, R. Ma, G. Tian, “Inversion of chlorophyll-a concentration in turbid water of lake Taihu based on optimized multi-spectral combination,” J. Lake Sci. 20, 153–159 (2008).

Acta Hydrobiol. Sin. (1)

L. Guo, P. Xie, L. Ni, W. Hu, H. Li, “The status of fishery resources of lake Chaohu and its response to eutrophication,” Acta Hydrobiol. Sin. 31, 700–705 (2007).

Appl. Opt. (15)

G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-micrometer wavelength region,” Appl. Opt. 12(3), 555–563 (1973).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22(1), 20–36 (1983).
[CrossRef] [PubMed]

H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[CrossRef] [PubMed]

H. R. Gordon, M. Wang, “Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors,” Appl. Opt. 33(33), 7754–7763 (1994).
[CrossRef] [PubMed]

C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38(36), 7442–7455 (1999).
[CrossRef] [PubMed]

P. N. Reinersman, K. L. Carder, “Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect,” Appl. Opt. 34(21), 4453–4471 (1995).
[CrossRef] [PubMed]

H. R. Gordon, “Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response,” Appl. Opt. 34(36), 8363–8374 (1995).
[CrossRef] [PubMed]

K. G. Ruddick, F. Ovidio, M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39(6), 897–912 (2000).
[CrossRef] [PubMed]

H. R. Gordon, D. J. Castaño, “Coastal zone color scanner atmospheric correction algorithm: multiple scattering effects,” Appl. Opt. 26(11), 2111–2122 (1987).
[CrossRef] [PubMed]

H. R. Gordon, D. J. Castaño, “Aerosol analysis with the Coastal zone color scanner: A simple method for including multiple scattering effects,” Appl. Opt. 28(7), 1320–1326 (1989).
[CrossRef] [PubMed]

D. A. Siegel, M. Wang, S. Maritorena, W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39(21), 3582–3591 (2000).
[CrossRef] [PubMed]

M. Wang, S. W. Bailey, “Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40(27), 4790–4798 (2001).
[CrossRef] [PubMed]

R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, C. R. McClain, “Calibration of SeaWiFS. II. vicarious techniques,” Appl. Opt. 40(36), 6701–6718 (2001).
[CrossRef] [PubMed]

G. Dall’Olmo, A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt. 44(3), 412–422 (2005).
[CrossRef] [PubMed]

M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).
[CrossRef] [PubMed]

Aquat. Ecol. (1)

M. Rijkeboer, A. G. Dekker, H. J. Gons, “Subsurface irradiance reflectance spectra of inland waters differing in morphometry and hydrology,” Aquat. Ecol. 31(3), 313–323 (1998).
[CrossRef]

Atmos. Environ. (1)

Y. Li, Y. Xue, X. He, J. Guang, “High-resolution aerosol remote sensing retrieval over urban areas by synergetic use of HJ-1 CCD and MODIS data,” Atmos. Environ. 46, 173–180 (2012).

Cont. Shelf Res. (1)

S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean color images over turbid waters,” Cont. Shelf Res. 25(4), 539–555 (2005).
[CrossRef]

Environ. Monit. Assess. (1)

J. Chen, W. Quan, “An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS Imagery,” Environ. Monit. Assess. 185(3), 2243–2255 (2013).
[CrossRef] [PubMed]

Geomatics Info. Sci. Wuhan U. (1)

Z. Yu, X. Chen, L. Tian, B. Zhou, “Atmospheric correction method for Poyang lake HJ-1A/B CCD image,” Geomatics Info. Sci. Wuhan U. 37, 1078–1082 (2012).

Geophys. Res. Lett. (1)

M. Wang, W. Shi, “Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005).
[CrossRef]

IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. (1)

J. Chen, J. Fu, M. Zhang, “An atmospheric correction algorithm for Landsat/TM imagery basing on inverse distance spatial interpolation algorithm: a case study in Taihu Lake,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 4(4), 882–889 (2011).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

M. Zhang, R. Ma, J. Li, B. Zhang, H. Duan, “A validation study of an improved SWIR iterative atmospheric correction algorithm for MODIS-Aqua measurements in Lake Taihu, China,” IEEE Trans. Geosci. Remote Sens. 52, 4686–4695 (2014).

Int. J. Remote Sens. (4)

R. Ma, J. Tang, J. Dai, Y. Zhang, Q. Song, “Absorption and scattering properties of water body in Taihu Lake, China: absorption,” Int. J. Remote Sens. 27(19), 4277–4304 (2006).
[CrossRef]

M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: accounting for the effects of ocean surface roughness,” Int. J. Remote Sens. 23(13), 2693–2702 (2002).
[CrossRef]

M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sens. 26(24), 5651–5663 (2005).
[CrossRef]

T. Schroeder, I. Behnert, M. Schaale, J. Fischer, R. Doerffer, “Atmospheric correction algorithm for MERIS above case-2 waters,” Int. J. Remote Sens. 28(7), 1469–1486 (2007).
[CrossRef]

Int. J. Syst. Appl. Eng. Dev. (1)

V. Rodríguez-Guzmán, F. Gilbes-Santaella, “Using MODIS 250 m imagery to estimate total suspended sediment in a tropical open bay,” Int. J. Syst. Appl. Eng. Dev. 3, 36–44 (2009).

J. Environ. Sci. China (1)

X. A. Xia, H. B. Chen, P. C. Wang, “Validation of MODIS aerosol retrievals and evaluation of potential cloud contamination in east Asia,” J. Environ. Sci. China 16(5), 832–837 (2004).
[PubMed]

J. Geophys. Res. (1)

Z. Lee, M. Darecki, K. L. Carder, C. Davis, D. Stramski, W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005).

J. Lake Sci. (1)

G. Zhou, Q. Liu, R. Ma, G. Tian, “Inversion of chlorophyll-a concentration in turbid water of lake Taihu based on optimized multi-spectral combination,” J. Lake Sci. 20, 153–159 (2008).

J. Opt. Soc. Am. (1)

J. Plankton Res. (1)

Y. Zhang, L. Feng, J. Li, L. Luo, Y. Yin, M. Liu, Y. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res. 32(7), 1023–1037 (2010).
[CrossRef]

J. Remote Sens. (1)

J. Ding, J. Tang, Q. Song, X. Wang, “Atmospheric correction for Chinese coastal turbid waters using iteration and optimization method,” J. Remote Sens. 10, 732–741 (2006).

Limnol. Oceanogr. (2)

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[CrossRef]

W. W. Gregg, K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35(8), 1657–1675 (1990).
[CrossRef]

Ocean Optics XIII (1)

R. A. Arnone, M. Sydor, R. W. Gould., “Remote sensing reflectance of case 2 waters,” Ocean Optics XIII 2963, 222–227 (1996).
[CrossRef]

Opt. Express (2)

Proc. SPIE (2)

X. He, D. Pan, “A practical method of atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Proc. SPIE 4892, 494–505 (2003).
[CrossRef]

L. Gross-Colzy, S. Colzy, R. Frouin, P. Henry, “A general ocean color atmospheric correction scheme based on principal components analysis: Part I. performance on Case 1 and Case 2 waters,” Proc. SPIE 6680, 668002 (2007).
[CrossRef]

Remote Sens. (1)

P. Dash, N. Walker, D. Mishra, E. d’Sa, S. Ladner, “Atmospheric correction and vicarious calibration of Oceansat-1 Ocean Color Monitor(OCM) data in coastal case 2 waters,” Remote Sens. 4(12), 1716–1740 (2012).
[CrossRef]

Remote Sens. Environ. (14)

M. Wang, W. Shi, J. Tang, “Water property monitoring and assessment for China’s inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ. 115(3), 841–854 (2011).
[CrossRef]

C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, Florida,” Remote Sens. Environ. 93(3), 423–441 (2004).
[CrossRef]

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[CrossRef]

M. Zhang, J. Tang, Q. Dong, Q. Song, J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[CrossRef]

C. Hu, K. L. Carder, F. E. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
[CrossRef]

C. Hu, F. E. Muller-Karger, S. Andrefouet, K. L. Carder, “Atmospheric correction and cross-calibration of LANDSAT-7/ETM+ imagery over aquatic environments: A multiplatform approach using SeaWiFS/MODIS,” Remote Sens. Environ. 78(1–2), 99–107 (2001).
[CrossRef]

D. Gurlin, A. A. Gitelson, W. J. Moses, “Remote estimation of chl-a concentration in turbid productive waters - Return to a simple two-band NIR-red model?” Remote Sens. Environ. 115(12), 3479–3490 (2011).
[CrossRef]

R. L. Miller, B. A. McKee, “Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters,” Remote Sens. Environ. 93(1–2), 259–266 (2004).
[CrossRef]

M. Wang, S. Son, W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[CrossRef]

S. W. Bailey, P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102(1–2), 12–23 (2006).
[CrossRef]

D. Wang, D. Morton, J. Masek, A. Wu, J. Nagol, X. Xiong, R. Levy, E. Vermote, R. Wolfe, “Impact of sensor degradation on the MODIS NDVI time series,” Remote Sens. Environ. 119, 55–61 (2012).
[CrossRef]

C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, H. Lu, “A four-band semi-analytical model for estimation chlorophyll a in highly turbid lakes: the case of Taihu Lake, China,” Remote Sens. Environ. 113(6), 1175–1182 (2009).
[CrossRef]

B. Nechad, K. Ruddick, Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ. 114(4), 854–866 (2010).
[CrossRef]

Z. Chen, C. Hu, F. Muller-Karger, “Monitoring turbidity in Tampa bay using MODIS/Aqua 250 m imagery,” Remote Sens. Environ. 109(2), 207–220 (2007).
[CrossRef]

Sci. China Ser. E (2)

L. Tian, J. Lu, X. Chen, Z. Yu, J. Xiao, F. Qiu, X. Zhao, “Atmospheric correction of HJ-1A/B CCD images over Chinese coastal waters using MODIS-Terra aerosol data,” Sci. China Ser. E 53(S1), 191–195 (2010).
[CrossRef]

J. Li, B. Zhang, Z. Chen, Q. Shen, “Atmospheric correction of CBERS CCD images with MODIS data,” Sci. China Ser. E 49, 149–158 (2006).

Sci. Total Environ. (1)

A. G. Dekker, R. J. Vos, S. W. Peters, “Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes,” Sci. Total Environ. 268(1–3), 197–214 (2001).
[CrossRef] [PubMed]

Sensors (1)

R. Ma, H. Duan, X. Gu, S. Zhang, “Detecting aquatic vegetation changes in Taihu Lake, China using multi-temporal satellite imagery,” Sensors 8(6), 3988–4005 (2008).
[CrossRef]

T. Atmos. Sci. (1)

Q. Li, S. Niu, D. Xu, “Remote sensing of aerosol optical properties and air pollution with MFRSR measurements in Taihu region,” T. Atmos. Sci. 35, 364–371 (2012).

Other (3)

J. L. Mueller, C. Davis, R. Arnone, R. Frouin, K. L. Carder, Z. Lee, R. G. Steward, S. Hooker, C. D. Mobley, and S. McLean, “Above-water radiance and remote sensing reflectance measurements and analysis protocols,” in Radiometric Measurements and Data Analysis Protocols, Vol. III in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, revision 4, (2003), Chap. 3, pp. 21–30.

C. C. Trees, R. R. Bidigare, D. M. Karl, L. V. Heukelem, and J. Dore, “Fluorometric chlorophyll a: sampling, laboratory methods, and data analysis protocols,” in Biogeochemical and Bio-optical Measurements and Data Analysis Protocols, Vol. V in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, revision 5 (2003), Chap. 3, pp. 15–25.

J. D. H. Strickland and T. R. Parsons, A Practical Handbook of Seawater Analysis, 2nd ed. (Board of Canada, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

(a) The geographical location of Lakes Taihu and Chaohu. (b) The geographical location of the observation stations for the field measurements in Lake Taihu. The black, red, green, and blue triangles are for the stations in Oct., 2008, Mar., 2009, Apr., 2009, Apr., 2010, respectively. The black, red, and blue circles are for the stations in Mar., 2011, May, 2011, and Aug., 2011, respectively. (c) As in (b) but for the field measurements in Lake Chaohu. The black circles and triangles are for the stations in June, 2009 and May, 2013, respectively.

Fig. 2
Fig. 2

Comparison of the RSR profile of CCD and MODIS. M_488 means (M)ODIS band at 488nm and A1_485 means HJ-1(A) CCD1 band at 485nm.

Fig. 3
Fig. 3

Rrs from field measurements taken in (a) Mar., 2009, (b) Mar., 2011, (c) Apr., 2009, (d) Apr., 2010, (e) May, 2011, (f) June, 2009, (g) May, 2013, (h) Aug., 2011, and (i) Oct., 2008. (j) The monthly mean spectra calculated using the in situ Rrs collected over Lake Taihu. Please note that the measurements in (f) and (g) are from Lake Chaohu and the others are from Lake Taihu.

Fig. 4
Fig. 4

The flowchart for deriving aerosol scattering radiance. λCCD and λMOD are the bands of CCD and MODIS, respectively.

Fig. 5
Fig. 5

Comparison between MODIS measured and in situ Rrs. The solid line is 1:1 line. The number of stations (N) and the correlation coefficient(R) are also shown.

Fig. 6
Fig. 6

(a) Rrs(500), (c) Rrs(560), and (e) Rrs(640) retrieved from HJ-1B CCD1 on Apr. 30, 2010. (b)Rrs(488), (d) Rrs(555), and Rrs(645) retrieved from MODIS imagery on Apr. 30, 2010.

Fig. 7
Fig. 7

Comparison between CCD and MODIS measured Rrs along (a) west-east, (b) south-north transects in Lake Taihu and (c) west-east, (d) south-north transects in Lake Chaohu. The overpass times are 02:52 and 02:45 (UTC time) Apr. 30, 2010, respectively for HJ-1B CCD1 and MODIS in (a) and (b). The times are 2:30 and 3:15 May 11, 2013, respectively for HJ-1B CCD2 and MODIS in (c) and (d).

Fig. 8
Fig. 8

Rrs spectra ranging (a) from 480 to 560nm and (b) from 740 to 860nm collected during the cruise in Apr., 2009. The dotted lines in (a) are the fitted lines.

Fig. 9
Fig. 9

The response-averaged Rrs calculated using the in situ data and RSR for the bands of MODIS and CCD.

Fig. 10
Fig. 10

(a) Rrs collected during 0:45 to 7:45 with 1h time interval at the station located at (31.405°N, 120.034 °E). (b) The relative difference (RD) for Rrs at CCD bands, simulated by means of band-equivalent calculation using the spectra in (a) and the RSR. RD = (Rmax- Rmin)/ Rmax, where Rmax and Rmin mean the maximum and minimum values of Rrs among the 8 spectra.

Fig. 11
Fig. 11

Comparison between CCD measured Rrs and in situ data collected on (a) Apr. 30, 2010, (b) May 7, 2011, (c) May 2, 2010, and (d) June 15, 2009 for the observation stations within ± 1h time window of satellite overpass and field measurements. It is noted that CCD measured_A means that Rrs is derived using τa retrieved from Aqua MODIS and CCD measured_T means from Terra MODIS. Rayleigh corrected Rrs is also included.

Fig. 12
Fig. 12

Comparison between CCD measured and in situ Rrs for the observation stations within ± 1 hour time window of satellite overpass and field measurements. The solid circles mean that Rrs is retrieved using the algorithm developed in this study and the hollow circles are for Rrs retrieved using the Flaash model. The solid line is 1:1 line. The number of stations (N) and the correlation coefficient(R) are also shown. R_flsh means for the Flaash model.

Fig. 13
Fig. 13

The temporal variation of τa(869) in four seasons in 2011.

Fig. 14
Fig. 14

Relationship between Rrs at the red band of HJ-1A CCD1 and CTSM.

Fig. 15
Fig. 15

(a) CE-318 measured τa. (b) The fitting of binomial distribution for τa indicated as ´b´ in (a). (c) and (d) are the same as (b) but for the τa indicated as ´c´ and ´d´, respectively.

Fig. 16
Fig. 16

(a) The comparison between MODIS retrieved and CE-318 measured τa at 531 and 869nm. (b) As in (a) but for α calculated using τa(531) and τa(869).

Tables (7)

Tables Icon

Table 1 Band specifications for CCD1 and CCD2 aboard HJ-1A and HJ-1B

Tables Icon

Table 2 The information for the cruises over Lakes Taihu and Chaohu.

Tables Icon

Table 3 Matchup comparison between MODIS measured and in situ Rrs.

Tables Icon

Table 4 Matchup comparison between CCD measured and in situ Rrs.

Tables Icon

Table 5 Matchup comparison between CCD measured and in situ Rrs. The Flaash model in ENVI is used for deriving the Rrs.

Tables Icon

Table 6 Effects of uncertainties in τa(869) and α on CCD measured Rrs.

Tables Icon

Table 7 Matchup comparison between MODIS and CE-318 measurements.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

L t (λ)= L r (λ)+ L a (λ)+T(λ) L g (λ)+t(λ) L f (λ)+t(λ) L w (λ)
ρ x =π L x /( F 0 cos θ s )
F 0 = F exp[ τ oz (1/cos θ v +1/cos θ s )]
τ oz (λ)= k oz (λ) U oz
β= τ r ( λ 0 )/< τ r (λ) > MOD
< τ r ( λ ) > MOD = τ r ( λ )S ( λ ) F 0 ( λ )dλ/ S ( λ ) F 0 ( λ )dλ
τ r (λ)=0.008569 λ 4 (1+0.0113 λ 2 +0.00013 λ 4 ) λ in µm
L r (λ)= ρ r (λ) F 0 (λ)cos θ s /π
α= log e ( τ ˜ a (531) τ ˜ a (869) )/ log e ( 531 869 )
R rs (λ)= L w (λ)/( t s (λ)cos θ s F (λ))
t s (λ)=exp[( τ r (λ)/2+ τ oz (λ))/cos θ s ]

Metrics