Abstract

In this paper, an improved multi-carrier generation scheme based on single-side-band recirculating frequency shifter with optical finite impulse response (FIR) filter for amplified spontaneous emission (ASE) noise suppression is proposed and experimentally demonstrated. The carrier-to-noise-ratio (CNR) instead of tone-to-noise-ratio (TNR) is introduced to more reasonably and exactly evaluate the signal-to-noise-ratio of a multi-carrier source with non-flat noise floor. We have experimentally attain the worst case CNR of 22.5dB and 19.1dB for generated 50 and 69 flat low noise carriers, which has shown significant improvement than the previous cited works based on recirculating frequency shifter.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Tian, X. Zhang, L. Xi, A. Stark, S. E. Ralph, G. K. Chang, “Experiment of 2.56-Tb/s, polarization division multiplexing return-to-zero 16-ary quadrature amplitude modulation, 25 GHz grid coherent optical wavelength division multiplexing, 800 km transmission based on optical comb in standard single-mode fiber,” Opt. Eng. 52(11), 116103 (2013).
    [CrossRef]
  2. D. Hillerkuss, R. Schmogrow, M. Meyer, S. Wolf, M. Jordan, P. Kleinow, J. Leuthold, “Single-laser 32.5 Tbit/s Nyquist WDM transmission,” J. Opt. Commun. Netw. 4(10), 715–723 (2012).
    [CrossRef]
  3. Y. Ma, Q. Yang, Y. Tang, S. Chen, W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
    [CrossRef] [PubMed]
  4. S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” European Conference on Optical Communications, paper PD2.6, Vienna, Austria (2009).
  5. X. Liu, S. Chandrasekhar, X. Chen, P. J. Winzer, Y. Pan, T. F. Taunay, B. Zhu, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, F. V. Dimarcello, “1.12-Tb/s 32-QAM-OFDM superchannel with 8.6-b/s/Hz intrachannel spectral efficiency and space-division multiplexed transmission with 60-b/s/Hz aggregate spectral efficiency,” Opt. Express 19(26), B958–B964 (2011).
    [CrossRef] [PubMed]
  6. G. Bosco, V. Curri, A. Carena, P. Poggiolini, F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
    [CrossRef]
  7. N. K. Fontaine, “Spectrally-sliced coherent receivers for THz bandwidth optical communications.” European Conference on Optical Communications, paper Mo.3.C.1, London, UK (2012).
    [CrossRef]
  8. M. A. Mirza, G. Stewart, “Multi-wavelength operation of erbiumdoped fiber lasers by periodic filtering and phase modulation,” J. Lightwave Technol. 27(8), 1034–1044 (2009).
    [CrossRef]
  9. J. Zhang, J. Yu, N. Chi, Z. Dong, X. Li, Y. Shao, J. Yu, L. Tao, “Flattened comb generation using only phase modulators driven by fundamental frequency sinusoidal sources with small frequency offset,” Opt. Lett. 38(4), 552–554 (2013).
    [CrossRef] [PubMed]
  10. X. Zhou, X. Zheng, H. Wen, H. Zhang, B. Zhou, “Generation of broadband optical frequency comb with rectangular envelope using cascaded intensity and dual-parallel modulators,” Opt. Commun. 313, 356–359 (2014).
    [CrossRef]
  11. J. Zhang, N. Chi, J. Yu, Y. Shao, J. Zhu, B. Huang, L. Tao, “Generation of coherent and frequency-lock multi-carriers using cascaded phase modulators and recirculating frequency shifter for Tb/s optical communication,” Opt. Express 19(14), 12891–12902 (2011).
    [CrossRef] [PubMed]
  12. J. Li, X. Zhang, F. Tian, L. Xi, “Theoretical and experimental study on generation of stable and high-quality multi-carrier source based on re-circulating frequency shifter used for Tb/s optical transmission,” Opt. Express 19(2), 848–860 (2011).
    [CrossRef] [PubMed]
  13. F. Tian, X. Zhang, J. Li, L. Xi, “Generation of 50 stable frequency-locked optical carriers for Tb/s multicarrier optical transmission using a recirculating frequency shifter,” J. Lightwave Technol. 29(8), 1085–1091 (2011).
    [CrossRef]
  14. J. Zhang, J. Yu, N. Chi, Z. Dong, Y. Shao, L. Tao, X. Li, “Theoretical and experimental study on improved frequency-locked multi-carrier generation by using recirculating loop based on multi-frequency shifting single-side band modulation,” IEEE Photon. J. 4(6), 2249–2261 (2012).
    [CrossRef]
  15. J. Zhang, J. Yu, N. Chi, Y. Shao, L. Tao, J. Zhu, Y. Wang, “Stable Optical Frequency-Locked Multicarriers Generation by Double Recirculating Frequency Shifter Loops for Tb/s Communication,” J. Lightwave Technol. 30(24), 3938–3945 (2012).
    [CrossRef]
  16. J. Li, Z. Li, “Frequency-locked multicarrier generator based on a complementary frequency shifter with double recirculating frequency-shifting loops,” Opt. Lett. 38(3), 359–361 (2013).
    [CrossRef] [PubMed]
  17. J. Li, C. Yu, Z. Li, “Complementary frequency shifter based on polarization modulator used for generation of a high-quality frequency-locked multicarrier,” Opt. Lett. 39(6), 1513–1516 (2014).
    [CrossRef]
  18. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2001), Chap. 4.

2014 (2)

X. Zhou, X. Zheng, H. Wen, H. Zhang, B. Zhou, “Generation of broadband optical frequency comb with rectangular envelope using cascaded intensity and dual-parallel modulators,” Opt. Commun. 313, 356–359 (2014).
[CrossRef]

J. Li, C. Yu, Z. Li, “Complementary frequency shifter based on polarization modulator used for generation of a high-quality frequency-locked multicarrier,” Opt. Lett. 39(6), 1513–1516 (2014).
[CrossRef]

2013 (3)

F. Tian, X. Zhang, L. Xi, A. Stark, S. E. Ralph, G. K. Chang, “Experiment of 2.56-Tb/s, polarization division multiplexing return-to-zero 16-ary quadrature amplitude modulation, 25 GHz grid coherent optical wavelength division multiplexing, 800 km transmission based on optical comb in standard single-mode fiber,” Opt. Eng. 52(11), 116103 (2013).
[CrossRef]

J. Li, Z. Li, “Frequency-locked multicarrier generator based on a complementary frequency shifter with double recirculating frequency-shifting loops,” Opt. Lett. 38(3), 359–361 (2013).
[CrossRef] [PubMed]

J. Zhang, J. Yu, N. Chi, Z. Dong, X. Li, Y. Shao, J. Yu, L. Tao, “Flattened comb generation using only phase modulators driven by fundamental frequency sinusoidal sources with small frequency offset,” Opt. Lett. 38(4), 552–554 (2013).
[CrossRef] [PubMed]

2012 (3)

2011 (5)

2009 (2)

Bosco, G.

Carena, A.

Chandrasekhar, S.

Chang, G. K.

F. Tian, X. Zhang, L. Xi, A. Stark, S. E. Ralph, G. K. Chang, “Experiment of 2.56-Tb/s, polarization division multiplexing return-to-zero 16-ary quadrature amplitude modulation, 25 GHz grid coherent optical wavelength division multiplexing, 800 km transmission based on optical comb in standard single-mode fiber,” Opt. Eng. 52(11), 116103 (2013).
[CrossRef]

Chen, S.

Chen, X.

Chi, N.

Curri, V.

Dimarcello, F. V.

Dong, Z.

J. Zhang, J. Yu, N. Chi, Z. Dong, X. Li, Y. Shao, J. Yu, L. Tao, “Flattened comb generation using only phase modulators driven by fundamental frequency sinusoidal sources with small frequency offset,” Opt. Lett. 38(4), 552–554 (2013).
[CrossRef] [PubMed]

J. Zhang, J. Yu, N. Chi, Z. Dong, Y. Shao, L. Tao, X. Li, “Theoretical and experimental study on improved frequency-locked multi-carrier generation by using recirculating loop based on multi-frequency shifting single-side band modulation,” IEEE Photon. J. 4(6), 2249–2261 (2012).
[CrossRef]

Fini, J. M.

Fishteyn, M.

Forghieri, F.

Hillerkuss, D.

Huang, B.

Jordan, M.

Kleinow, P.

Leuthold, J.

Li, J.

Li, X.

J. Zhang, J. Yu, N. Chi, Z. Dong, X. Li, Y. Shao, J. Yu, L. Tao, “Flattened comb generation using only phase modulators driven by fundamental frequency sinusoidal sources with small frequency offset,” Opt. Lett. 38(4), 552–554 (2013).
[CrossRef] [PubMed]

J. Zhang, J. Yu, N. Chi, Z. Dong, Y. Shao, L. Tao, X. Li, “Theoretical and experimental study on improved frequency-locked multi-carrier generation by using recirculating loop based on multi-frequency shifting single-side band modulation,” IEEE Photon. J. 4(6), 2249–2261 (2012).
[CrossRef]

Li, Z.

Liu, X.

Ma, Y.

Meyer, M.

Mirza, M. A.

Monberg, E. M.

Pan, Y.

Poggiolini, P.

Ralph, S. E.

F. Tian, X. Zhang, L. Xi, A. Stark, S. E. Ralph, G. K. Chang, “Experiment of 2.56-Tb/s, polarization division multiplexing return-to-zero 16-ary quadrature amplitude modulation, 25 GHz grid coherent optical wavelength division multiplexing, 800 km transmission based on optical comb in standard single-mode fiber,” Opt. Eng. 52(11), 116103 (2013).
[CrossRef]

Schmogrow, R.

Shao, Y.

Shieh, W.

Stark, A.

F. Tian, X. Zhang, L. Xi, A. Stark, S. E. Ralph, G. K. Chang, “Experiment of 2.56-Tb/s, polarization division multiplexing return-to-zero 16-ary quadrature amplitude modulation, 25 GHz grid coherent optical wavelength division multiplexing, 800 km transmission based on optical comb in standard single-mode fiber,” Opt. Eng. 52(11), 116103 (2013).
[CrossRef]

Stewart, G.

Tang, Y.

Tao, L.

Taunay, T. F.

Tian, F.

F. Tian, X. Zhang, L. Xi, A. Stark, S. E. Ralph, G. K. Chang, “Experiment of 2.56-Tb/s, polarization division multiplexing return-to-zero 16-ary quadrature amplitude modulation, 25 GHz grid coherent optical wavelength division multiplexing, 800 km transmission based on optical comb in standard single-mode fiber,” Opt. Eng. 52(11), 116103 (2013).
[CrossRef]

J. Li, X. Zhang, F. Tian, L. Xi, “Theoretical and experimental study on generation of stable and high-quality multi-carrier source based on re-circulating frequency shifter used for Tb/s optical transmission,” Opt. Express 19(2), 848–860 (2011).
[CrossRef] [PubMed]

F. Tian, X. Zhang, J. Li, L. Xi, “Generation of 50 stable frequency-locked optical carriers for Tb/s multicarrier optical transmission using a recirculating frequency shifter,” J. Lightwave Technol. 29(8), 1085–1091 (2011).
[CrossRef]

Wang, Y.

Wen, H.

X. Zhou, X. Zheng, H. Wen, H. Zhang, B. Zhou, “Generation of broadband optical frequency comb with rectangular envelope using cascaded intensity and dual-parallel modulators,” Opt. Commun. 313, 356–359 (2014).
[CrossRef]

Winzer, P. J.

Wolf, S.

Xi, L.

F. Tian, X. Zhang, L. Xi, A. Stark, S. E. Ralph, G. K. Chang, “Experiment of 2.56-Tb/s, polarization division multiplexing return-to-zero 16-ary quadrature amplitude modulation, 25 GHz grid coherent optical wavelength division multiplexing, 800 km transmission based on optical comb in standard single-mode fiber,” Opt. Eng. 52(11), 116103 (2013).
[CrossRef]

J. Li, X. Zhang, F. Tian, L. Xi, “Theoretical and experimental study on generation of stable and high-quality multi-carrier source based on re-circulating frequency shifter used for Tb/s optical transmission,” Opt. Express 19(2), 848–860 (2011).
[CrossRef] [PubMed]

F. Tian, X. Zhang, J. Li, L. Xi, “Generation of 50 stable frequency-locked optical carriers for Tb/s multicarrier optical transmission using a recirculating frequency shifter,” J. Lightwave Technol. 29(8), 1085–1091 (2011).
[CrossRef]

Yan, M. F.

Yang, Q.

Yu, C.

Yu, J.

Zhang, H.

X. Zhou, X. Zheng, H. Wen, H. Zhang, B. Zhou, “Generation of broadband optical frequency comb with rectangular envelope using cascaded intensity and dual-parallel modulators,” Opt. Commun. 313, 356–359 (2014).
[CrossRef]

Zhang, J.

Zhang, X.

F. Tian, X. Zhang, L. Xi, A. Stark, S. E. Ralph, G. K. Chang, “Experiment of 2.56-Tb/s, polarization division multiplexing return-to-zero 16-ary quadrature amplitude modulation, 25 GHz grid coherent optical wavelength division multiplexing, 800 km transmission based on optical comb in standard single-mode fiber,” Opt. Eng. 52(11), 116103 (2013).
[CrossRef]

J. Li, X. Zhang, F. Tian, L. Xi, “Theoretical and experimental study on generation of stable and high-quality multi-carrier source based on re-circulating frequency shifter used for Tb/s optical transmission,” Opt. Express 19(2), 848–860 (2011).
[CrossRef] [PubMed]

F. Tian, X. Zhang, J. Li, L. Xi, “Generation of 50 stable frequency-locked optical carriers for Tb/s multicarrier optical transmission using a recirculating frequency shifter,” J. Lightwave Technol. 29(8), 1085–1091 (2011).
[CrossRef]

Zheng, X.

X. Zhou, X. Zheng, H. Wen, H. Zhang, B. Zhou, “Generation of broadband optical frequency comb with rectangular envelope using cascaded intensity and dual-parallel modulators,” Opt. Commun. 313, 356–359 (2014).
[CrossRef]

Zhou, B.

X. Zhou, X. Zheng, H. Wen, H. Zhang, B. Zhou, “Generation of broadband optical frequency comb with rectangular envelope using cascaded intensity and dual-parallel modulators,” Opt. Commun. 313, 356–359 (2014).
[CrossRef]

Zhou, X.

X. Zhou, X. Zheng, H. Wen, H. Zhang, B. Zhou, “Generation of broadband optical frequency comb with rectangular envelope using cascaded intensity and dual-parallel modulators,” Opt. Commun. 313, 356–359 (2014).
[CrossRef]

Zhu, B.

Zhu, J.

IEEE Photon. J. (1)

J. Zhang, J. Yu, N. Chi, Z. Dong, Y. Shao, L. Tao, X. Li, “Theoretical and experimental study on improved frequency-locked multi-carrier generation by using recirculating loop based on multi-frequency shifting single-side band modulation,” IEEE Photon. J. 4(6), 2249–2261 (2012).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Commun. Netw. (1)

Opt. Commun. (1)

X. Zhou, X. Zheng, H. Wen, H. Zhang, B. Zhou, “Generation of broadband optical frequency comb with rectangular envelope using cascaded intensity and dual-parallel modulators,” Opt. Commun. 313, 356–359 (2014).
[CrossRef]

Opt. Eng. (1)

F. Tian, X. Zhang, L. Xi, A. Stark, S. E. Ralph, G. K. Chang, “Experiment of 2.56-Tb/s, polarization division multiplexing return-to-zero 16-ary quadrature amplitude modulation, 25 GHz grid coherent optical wavelength division multiplexing, 800 km transmission based on optical comb in standard single-mode fiber,” Opt. Eng. 52(11), 116103 (2013).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Other (3)

S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” European Conference on Optical Communications, paper PD2.6, Vienna, Austria (2009).

N. K. Fontaine, “Spectrally-sliced coherent receivers for THz bandwidth optical communications.” European Conference on Optical Communications, paper Mo.3.C.1, London, UK (2012).
[CrossRef]

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2001), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic of proposed low noise SSB-RFS multi-carrier generation scheme; (b) parallel implementation of optical FIR filter for ASE noise suppression; (c) serial implementation of optical FIR filter for ASE noise suppression. PC: polarization controller; BPF: band pass filter; EDFA: erbium doped fiber amplifier; OSA: optical spectrum analyzer; RF: radio frequency; PS: phase shifter; EA: electrical amplifier.

Fig. 2
Fig. 2

Illustration of ASE noise accumulation as circulating time increases.

Fig. 3
Fig. 3

(a) Carrier-to-noise-ratio per channel in SSB-RFS loop with/without optical FIR and constellations of loaded signal on different carriers; Output spectrum (b)without and (c)with 2-tap optical FIR filter applied in the loop (simulation resolution of 24.4MHz).

Fig. 4
Fig. 4

Power transfer function of optical FIR filter with different tap coefficients.

Fig. 5
Fig. 5

EVM performances of loaded Nyquist-16QAM signal when applying proposed ASE noise scheme with different tap number.

Fig. 6
Fig. 6

Required EDFA saturation output power when different tap number employed.

Fig. 7
Fig. 7

(a) Experiment setup for proposed low noise multi-carrier generation scheme; (b) The optical spectrum of first tone generation when the loop is open.

Fig. 8
Fig. 8

Generated 50 tones without (a) and with (b) ASE noise suppression scheme and zoomed version of last carrier.

Fig. 9
Fig. 9

The generated 69 low noise flat carriers covering 6nm spectrum range and details of first five and last 5 carriers.

Fig. 10
Fig. 10

(a) Measured and theoretical CNR values of SSB-RFS with/without 2-tap optical-FIR filter for ASE noise suppression; (b) Theoretical and measured value of CNR increment by using SSB-RFS with 2-tap ASE suppression.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

E 1 ( f )= E 0 ( f )+[ g 1 lT( f ) E 0 ( f )+ n 1 ( f ) ] H BPF ( f ) E 2 ( f )= E 0 ( f )+[ g 2 lT( f ) E 1 ( f )+ n 2 ( f ) ] H BPF ( f ) , E n ( f )= E 0 ( f )+[ g n lT( f ) E n1 ( f )+ n n ( f ) ] H BPF ( f )
H rect ( f )={ 1 f 0 - f s /2 <f< f 0 +( N+1/2 ) f s 0 other .
S( f )=E[ | n( f ) | 2 ]= F n ( G1 )hf 2 .
n n ( f )= k= n Bs, n ( fk f s ) .
E N ( f ) k=0 N E 0 ( fk f s ) N discrect carrier lines + m=1 N k=Nm+1 N n Bs,m ( fk f s ) residual ASE noise induced in mth RT total ASE noise after Nth RT (a) = k=0 N E 0 ( fk f s ) N discrect carrier lines + k=1 N m=Nk+1 N n Bs,m ( fk f s ) ASE noise in kth channel total ASE noise after Nth RT (b) .
S tot,N ( f )=E[ | m=1 N n Bs, m ( fN f s ) | 2 ]= m=1 N E[ | n Bs, n ( fN f s ) | 2 ] = m=1 N S Bs,m ( f ) =N S Bs ( f ).
P ASEN = S tot,N ( f ) B s = N F n ( G1 )hf B s 2 =N P ASE, B s .
CN R n =10lg( P carrier / P ASE,n )+10lg( B s / B r ).
CN R n =TN R n +10lg( B res / B r ).
G FIRP ( f )= | F P ( f ) | 2 = | FFT( 1 N n=0 N1 δ( tnτ ) ) | 2 = 2 N 2 n=0 N1 ( Nn )cos( fnτ ) 1.
P out,ASE = 1 2π f f s /2 f+ f s /2 1 2 S in,ASE ( f ) G FIR ( f )df .
P out,ASE = 1 N P in,ASE .
G FIRS ( ω )= | F S ( ω ) | 2 = | ( 1 2 ) N [ 1+exp( jωτ ) ] N | 2 = ( 1 2 ) N [ m=0 N C N m cos m ( ωτ ) ].
P out,ASE = f f s /2 f+ f s /2 1 2 S in,ASE ( f ) G FIRS ( f )df = 1+ m=1 N/2 [ C N 2m ( 2m1 )( 2m3 )31 2m( 2m2 )42 ] 2 N P in,ASE .
E N ( f )= k=0 N E 0 ( fk f s ) N discrect carrier lines + k=1 N m=Nk+1 N n m,Bs ( fk f s ) F FIR Nm+1 ( f ) residual ASE noise in kth channel total residual ASE noise after Nth RT .
S ASEN ( f )=Ε[ | m=1 N n m,Bs ( fN f s ) F FIR Nm+1 ( f ) | 2 ]= m=1 N S ASEm ( f ) G FIR Nm+1 ( f ) .
P N,resASE = ω s S ASEN ( f )df = m=1 N ω s S ASEm ( f ) G FIR Nm+1 ( f )df .
CN R NFIR =10lg( P s / P N,resASE )+10lg( f s / B r ).
G= G 0 exp( ( G1 ) P in P s ).
CN R nFIR =10lg( P carrier_n / P noisefloor )+10lg( B res / B r )+ΔCN R ntheory .

Metrics