Abstract

Having in mind parametric amplification of surface plasmon polaritons (SPPs) as the final goal, we took the first step and studied in the Kretschmann geometry a simpler nonlinear optical process – second harmonic generation (SHG) enhanced by SPPs propagating at the interface between gold film and 2-methyl-4-nitroaniline (MNA). The experimentally demonstrated SHG efficiency was nearly 106 times larger than the one reported previously in the SPP system with different nonlinear optical material. The experimentally measured nonlinear conversion efficiency is estimated to be sufficient for parametric amplification of surface plasmon polaritons at ultra-short laser pumping.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [CrossRef]
  2. M. Moskovits, “Surface–enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
    [CrossRef]
  3. M. L. Brongersma, V. M. Shalaev, “The case for plasmonics,” Science 328(5977), 440–441 (2010).
    [CrossRef] [PubMed]
  4. Z. Gryczynski, E. G. Matveeva, N. Calander, J. Zhang, J. R. Lakowicz, and I. Gryczynski, “Surface plasmon coupled emission,” in Surface Plasmon Nanophotonics, M. L. Brongersma and P. G. Kik, eds. (Springer, 2007).
  5. H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” (Springer-Verlag, 1988)
  6. A. N. Sudarkin, P. A. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764–766 (1989).
  7. M. A. Noginov and V. A. Podolskiy, eds., Tutorials in metamaterials, (CRC press, Taylor & Francis, 2011).
  8. N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85(21), 5040–5042 (2004).
    [CrossRef]
  9. M. Nezhad, K. Tetz, Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004).
    [CrossRef] [PubMed]
  10. I. Avrutsky, “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain,” Phys. Rev. B 70(15), 155416 (2004).
    [CrossRef]
  11. D. J. Bergman, M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
    [CrossRef] [PubMed]
  12. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006).
    [CrossRef] [PubMed]
  13. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B 86(3), 455–460 (2007).
    [CrossRef]
  14. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008).
    [CrossRef] [PubMed]
  15. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
    [CrossRef] [PubMed]
  16. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [CrossRef] [PubMed]
  17. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
    [CrossRef] [PubMed]
  18. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [CrossRef] [PubMed]
  19. A. K. Popov, V. M. Shalaev, “Negative-index metamaterials: second-harmonic generation, Manley–Rowe relations and parametric amplification,” Appl. Phys. B 84(1-2), 131–137 (2006).
    [CrossRef]
  20. R. Paschotta, Encyclopedia of laser physics and technology, (Wiley-VCH, 2008).
  21. W. Koechner and M. Bass, Solid–State lasers engineering, (Springer–Verlag, 2003).
  22. M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Observation of Stimulated Emission of Surface Plasmon Polaritons,” Nano Lett. 8(11), 3998–4001 (2008).
    [CrossRef] [PubMed]
  23. G. F. Lipscomb, “An exceptionally large linear electro-optic effect in the organic solid MNA,” J. Chem. Phys. 75(3), 1509 (1981).
    [CrossRef]
  24. B. F. Levine, C. G. Bethea, C. D. Thurmond, R. T. Lynch, J. L. Bernstein, “An organic crystal with an exceptionally large optical second-harmonic coefficient: 2-methyl-4-nitroaniline,” J. Appl. Phys. 50(4), 2523–2527 (1979).
    [CrossRef]
  25. J. Jerphagnon, S. K. Kurtz, “Maker fringes: A detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41(4), 1667–1681 (1970).
    [CrossRef]
  26. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  27. S. R. Marder, J. E. Sohn, and G. D. Stucky, eds., “Materials for nonlinear optics: Chemical perspectives,” ACS symposium series no. 455. (American Chemical Society,1991).
  28. H. Itoh, K. Hotta, H. Takara, K. Sasaki, “Frequency doubling of a Nd:YAG laser by a MNA single crystal thin film on a slab-type optical glass waveguide,” Appl. Opt. 25(9), 1491–1494 (1986).
    [CrossRef] [PubMed]
  29. G. Zhang, K. Sasaki, “Measuring anisotropic refractive indices and film thicknesses of thin organic crystals using the prism coupling method,” Appl. Opt. 27(7), 1358–1362 (1988).
    [CrossRef] [PubMed]
  30. M. W. Ribarsky, “Titanium Oxide” in Handbook of Optical Constants of Solids, edited by E. D. Palik and G. Ghosh, volume 2. (Academic Press, 1998)
  31. I. R. Girling, N. A. Cade, P. V. Kolinsky, G. H. Cross, I. R. Peterson, “Surface plasmon enhanced SHG from a hemicyanine monolayer,” J. Phys. D 19(11), 2065–2075 (1986).
    [CrossRef]
  32. N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, M. Wegener, “Second-harmonic generation from complementary split-ring resonators,” Opt. Lett. 33(17), 1975–1977 (2008).
    [CrossRef] [PubMed]
  33. P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
    [CrossRef]
  34. D. Cho, W. Wu, F. Wang, X. Zhang, Y.-R. Shen, “Nonlinear Optics in Metamaterials,” Conference Paper, Laser Science, San Jose, CA USA, October 11–15, 2009.
  35. G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
    [CrossRef] [PubMed]
  36. S. Palomba, H. Harutyunyan, J. Renger, R. Quidant, N. F. van Hulst, L. Novotny, “Nonlinear plasmonics at planar metal surfaces,” Philos Trans A Math Phys Eng Sci 369(1950), 3497–3509 (2011).
    [CrossRef] [PubMed]

2011

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[CrossRef] [PubMed]

S. Palomba, H. Harutyunyan, J. Renger, R. Quidant, N. F. van Hulst, L. Novotny, “Nonlinear plasmonics at planar metal surfaces,” Philos Trans A Math Phys Eng Sci 369(1950), 3497–3509 (2011).
[CrossRef] [PubMed]

2010

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

M. L. Brongersma, V. M. Shalaev, “The case for plasmonics,” Science 328(5977), 440–441 (2010).
[CrossRef] [PubMed]

2009

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

2008

2007

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B 86(3), 455–460 (2007).
[CrossRef]

2006

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006).
[CrossRef] [PubMed]

A. K. Popov, V. M. Shalaev, “Negative-index metamaterials: second-harmonic generation, Manley–Rowe relations and parametric amplification,” Appl. Phys. B 84(1-2), 131–137 (2006).
[CrossRef]

2004

N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85(21), 5040–5042 (2004).
[CrossRef]

M. Nezhad, K. Tetz, Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004).
[CrossRef] [PubMed]

I. Avrutsky, “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain,” Phys. Rev. B 70(15), 155416 (2004).
[CrossRef]

2003

D. J. Bergman, M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[CrossRef] [PubMed]

1997

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

1989

A. N. Sudarkin, P. A. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764–766 (1989).

1988

1986

I. R. Girling, N. A. Cade, P. V. Kolinsky, G. H. Cross, I. R. Peterson, “Surface plasmon enhanced SHG from a hemicyanine monolayer,” J. Phys. D 19(11), 2065–2075 (1986).
[CrossRef]

H. Itoh, K. Hotta, H. Takara, K. Sasaki, “Frequency doubling of a Nd:YAG laser by a MNA single crystal thin film on a slab-type optical glass waveguide,” Appl. Opt. 25(9), 1491–1494 (1986).
[CrossRef] [PubMed]

1985

M. Moskovits, “Surface–enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

1981

G. F. Lipscomb, “An exceptionally large linear electro-optic effect in the organic solid MNA,” J. Chem. Phys. 75(3), 1509 (1981).
[CrossRef]

1979

B. F. Levine, C. G. Bethea, C. D. Thurmond, R. T. Lynch, J. L. Bernstein, “An organic crystal with an exceptionally large optical second-harmonic coefficient: 2-methyl-4-nitroaniline,” J. Appl. Phys. 50(4), 2523–2527 (1979).
[CrossRef]

1972

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1970

J. Jerphagnon, S. K. Kurtz, “Maker fringes: A detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41(4), 1667–1681 (1970).
[CrossRef]

1961

P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

Adegoke, J.

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B 86(3), 455–460 (2007).
[CrossRef]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006).
[CrossRef] [PubMed]

Adegoke, J. A.

Ambati, M.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Observation of Stimulated Emission of Surface Plasmon Polaritons,” Nano Lett. 8(11), 3998–4001 (2008).
[CrossRef] [PubMed]

Avrutsky, I.

I. Avrutsky, “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain,” Phys. Rev. B 70(15), 155416 (2004).
[CrossRef]

Bahoura, M.

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Observation of Stimulated Emission of Surface Plasmon Polaritons,” Nano Lett. 8(11), 3998–4001 (2008).
[CrossRef] [PubMed]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Bergman, D. J.

D. J. Bergman, M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[CrossRef] [PubMed]

Bernstein, J. L.

B. F. Levine, C. G. Bethea, C. D. Thurmond, R. T. Lynch, J. L. Bernstein, “An organic crystal with an exceptionally large optical second-harmonic coefficient: 2-methyl-4-nitroaniline,” J. Appl. Phys. 50(4), 2523–2527 (1979).
[CrossRef]

Bethea, C. G.

B. F. Levine, C. G. Bethea, C. D. Thurmond, R. T. Lynch, J. L. Bernstein, “An organic crystal with an exceptionally large optical second-harmonic coefficient: 2-methyl-4-nitroaniline,” J. Appl. Phys. 50(4), 2523–2527 (1979).
[CrossRef]

Brongersma, M. L.

M. L. Brongersma, V. M. Shalaev, “The case for plasmonics,” Science 328(5977), 440–441 (2010).
[CrossRef] [PubMed]

Cade, N. A.

I. R. Girling, N. A. Cade, P. V. Kolinsky, G. H. Cross, I. R. Peterson, “Surface plasmon enhanced SHG from a hemicyanine monolayer,” J. Phys. D 19(11), 2065–2075 (1986).
[CrossRef]

Chettiar, U. K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Cho, D.

D. Cho, W. Wu, F. Wang, X. Zhang, Y.-R. Shen, “Nonlinear Optics in Metamaterials,” Conference Paper, Laser Science, San Jose, CA USA, October 11–15, 2009.

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Cross, G. H.

I. R. Girling, N. A. Cade, P. V. Kolinsky, G. H. Cross, I. R. Peterson, “Surface plasmon enhanced SHG from a hemicyanine monolayer,” J. Phys. D 19(11), 2065–2075 (1986).
[CrossRef]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Decker, M.

Demkovich, P. A.

A. N. Sudarkin, P. A. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764–766 (1989).

Drachev, V. P.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B 86(3), 455–460 (2007).
[CrossRef]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006).
[CrossRef] [PubMed]

Fainman, Y.

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Feth, N.

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

Genov, D. A.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Observation of Stimulated Emission of Surface Plasmon Polaritons,” Nano Lett. 8(11), 3998–4001 (2008).
[CrossRef] [PubMed]

Girling, I. R.

I. R. Girling, N. A. Cade, P. V. Kolinsky, G. H. Cross, I. R. Peterson, “Surface plasmon enhanced SHG from a hemicyanine monolayer,” J. Phys. D 19(11), 2065–2075 (1986).
[CrossRef]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Gosztola, D. J.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[CrossRef] [PubMed]

Harutyunyan, H.

S. Palomba, H. Harutyunyan, J. Renger, R. Quidant, N. F. van Hulst, L. Novotny, “Nonlinear plasmonics at planar metal surfaces,” Philos Trans A Math Phys Eng Sci 369(1950), 3497–3509 (2011).
[CrossRef] [PubMed]

Hendren, W.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[CrossRef] [PubMed]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

Hotta, K.

Hoyer, W.

Itoh, H.

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Jerphagnon, J.

J. Jerphagnon, S. K. Kurtz, “Maker fringes: A detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41(4), 1667–1681 (1970).
[CrossRef]

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kildishev, A. V.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Klein, M. W.

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Koch, S. W.

Kolinsky, P. V.

I. R. Girling, N. A. Cade, P. V. Kolinsky, G. H. Cross, I. R. Peterson, “Surface plasmon enhanced SHG from a hemicyanine monolayer,” J. Phys. D 19(11), 2065–2075 (1986).
[CrossRef]

Kurtz, S. K.

J. Jerphagnon, S. K. Kurtz, “Maker fringes: A detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41(4), 1667–1681 (1970).
[CrossRef]

Lawandy, N. M.

N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85(21), 5040–5042 (2004).
[CrossRef]

Levine, B. F.

B. F. Levine, C. G. Bethea, C. D. Thurmond, R. T. Lynch, J. L. Bernstein, “An organic crystal with an exceptionally large optical second-harmonic coefficient: 2-methyl-4-nitroaniline,” J. Appl. Phys. 50(4), 2523–2527 (1979).
[CrossRef]

Linden, S.

Lipscomb, G. F.

G. F. Lipscomb, “An exceptionally large linear electro-optic effect in the organic solid MNA,” J. Chem. Phys. 75(3), 1509 (1981).
[CrossRef]

Liu, J.

Lynch, R. T.

B. F. Levine, C. G. Bethea, C. D. Thurmond, R. T. Lynch, J. L. Bernstein, “An organic crystal with an exceptionally large optical second-harmonic coefficient: 2-methyl-4-nitroaniline,” J. Appl. Phys. 50(4), 2523–2527 (1979).
[CrossRef]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Mayy, M.

Moloney, J. V.

Moskovits, M.

M. Moskovits, “Surface–enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

Nam, S. H.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Observation of Stimulated Emission of Surface Plasmon Polaritons,” Nano Lett. 8(11), 3998–4001 (2008).
[CrossRef] [PubMed]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Nezhad, M.

Ni, X.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Niesler, F. B. P.

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B 86(3), 455–460 (2007).
[CrossRef]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006).
[CrossRef] [PubMed]

Noginova, N.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[CrossRef] [PubMed]

Novotny, L.

S. Palomba, H. Harutyunyan, J. Renger, R. Quidant, N. F. van Hulst, L. Novotny, “Nonlinear plasmonics at planar metal surfaces,” Philos Trans A Math Phys Eng Sci 369(1950), 3497–3509 (2011).
[CrossRef] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Palomba, S.

S. Palomba, H. Harutyunyan, J. Renger, R. Quidant, N. F. van Hulst, L. Novotny, “Nonlinear plasmonics at planar metal surfaces,” Philos Trans A Math Phys Eng Sci 369(1950), 3497–3509 (2011).
[CrossRef] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

Peterson, I. R.

I. R. Girling, N. A. Cade, P. V. Kolinsky, G. H. Cross, I. R. Peterson, “Surface plasmon enhanced SHG from a hemicyanine monolayer,” J. Phys. D 19(11), 2065–2075 (1986).
[CrossRef]

Podolskiy, V. A.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[CrossRef] [PubMed]

M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008).
[CrossRef] [PubMed]

Pollard, R.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[CrossRef] [PubMed]

Popov, A. K.

A. K. Popov, V. M. Shalaev, “Negative-index metamaterials: second-harmonic generation, Manley–Rowe relations and parametric amplification,” Appl. Phys. B 84(1-2), 131–137 (2006).
[CrossRef]

Quidant, R.

S. Palomba, H. Harutyunyan, J. Renger, R. Quidant, N. F. van Hulst, L. Novotny, “Nonlinear plasmonics at planar metal surfaces,” Philos Trans A Math Phys Eng Sci 369(1950), 3497–3509 (2011).
[CrossRef] [PubMed]

Renger, J.

S. Palomba, H. Harutyunyan, J. Renger, R. Quidant, N. F. van Hulst, L. Novotny, “Nonlinear plasmonics at planar metal surfaces,” Philos Trans A Math Phys Eng Sci 369(1950), 3497–3509 (2011).
[CrossRef] [PubMed]

Reynolds, K.

Ritzo, B. A.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[CrossRef] [PubMed]

M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B 86(3), 455–460 (2007).
[CrossRef]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006).
[CrossRef] [PubMed]

Sasaki, K.

Shalaev, V. M.

M. L. Brongersma, V. M. Shalaev, “The case for plasmonics,” Science 328(5977), 440–441 (2010).
[CrossRef] [PubMed]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B 86(3), 455–460 (2007).
[CrossRef]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006).
[CrossRef] [PubMed]

A. K. Popov, V. M. Shalaev, “Negative-index metamaterials: second-harmonic generation, Manley–Rowe relations and parametric amplification,” Appl. Phys. B 84(1-2), 131–137 (2006).
[CrossRef]

Shen, Y.-R.

D. Cho, W. Wu, F. Wang, X. Zhang, Y.-R. Shen, “Nonlinear Optics in Metamaterials,” Conference Paper, Laser Science, San Jose, CA USA, October 11–15, 2009.

Small, C.

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B 86(3), 455–460 (2007).
[CrossRef]

Small, C. E.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Stockman, M. I.

D. J. Bergman, M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[CrossRef] [PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Sudarkin, A. N.

A. N. Sudarkin, P. A. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764–766 (1989).

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Takara, H.

Tetz, K.

Thurmond, C. D.

B. F. Levine, C. G. Bethea, C. D. Thurmond, R. T. Lynch, J. L. Bernstein, “An organic crystal with an exceptionally large optical second-harmonic coefficient: 2-methyl-4-nitroaniline,” J. Appl. Phys. 50(4), 2523–2527 (1979).
[CrossRef]

Ulin-Avila, E.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Observation of Stimulated Emission of Surface Plasmon Polaritons,” Nano Lett. 8(11), 3998–4001 (2008).
[CrossRef] [PubMed]

van Hulst, N. F.

S. Palomba, H. Harutyunyan, J. Renger, R. Quidant, N. F. van Hulst, L. Novotny, “Nonlinear plasmonics at planar metal surfaces,” Philos Trans A Math Phys Eng Sci 369(1950), 3497–3509 (2011).
[CrossRef] [PubMed]

Wang, F.

D. Cho, W. Wu, F. Wang, X. Zhang, Y.-R. Shen, “Nonlinear Optics in Metamaterials,” Conference Paper, Laser Science, San Jose, CA USA, October 11–15, 2009.

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Wegener, M.

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

Wiederrecht, G. P.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[CrossRef] [PubMed]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Wu, W.

D. Cho, W. Wu, F. Wang, X. Zhang, Y.-R. Shen, “Nonlinear Optics in Metamaterials,” Conference Paper, Laser Science, San Jose, CA USA, October 11–15, 2009.

Wurtz, G. A.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[CrossRef] [PubMed]

Xiao, S.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Yuan, H.-K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Zayats, A. V.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[CrossRef] [PubMed]

Zeng, Y.

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhang, G.

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Observation of Stimulated Emission of Surface Plasmon Polaritons,” Nano Lett. 8(11), 3998–4001 (2008).
[CrossRef] [PubMed]

D. Cho, W. Wu, F. Wang, X. Zhang, Y.-R. Shen, “Nonlinear Optics in Metamaterials,” Conference Paper, Laser Science, San Jose, CA USA, October 11–15, 2009.

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[CrossRef] [PubMed]

M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B 86(3), 455–460 (2007).
[CrossRef]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B 86(3), 455–460 (2007).
[CrossRef]

A. K. Popov, V. M. Shalaev, “Negative-index metamaterials: second-harmonic generation, Manley–Rowe relations and parametric amplification,” Appl. Phys. B 84(1-2), 131–137 (2006).
[CrossRef]

Appl. Phys. Lett.

N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85(21), 5040–5042 (2004).
[CrossRef]

J. Appl. Phys.

B. F. Levine, C. G. Bethea, C. D. Thurmond, R. T. Lynch, J. L. Bernstein, “An organic crystal with an exceptionally large optical second-harmonic coefficient: 2-methyl-4-nitroaniline,” J. Appl. Phys. 50(4), 2523–2527 (1979).
[CrossRef]

J. Jerphagnon, S. K. Kurtz, “Maker fringes: A detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41(4), 1667–1681 (1970).
[CrossRef]

J. Chem. Phys.

G. F. Lipscomb, “An exceptionally large linear electro-optic effect in the organic solid MNA,” J. Chem. Phys. 75(3), 1509 (1981).
[CrossRef]

J. Phys. D

I. R. Girling, N. A. Cade, P. V. Kolinsky, G. H. Cross, I. R. Peterson, “Surface plasmon enhanced SHG from a hemicyanine monolayer,” J. Phys. D 19(11), 2065–2075 (1986).
[CrossRef]

Nano Lett.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Observation of Stimulated Emission of Surface Plasmon Polaritons,” Nano Lett. 8(11), 3998–4001 (2008).
[CrossRef] [PubMed]

Nat. Nanotechnol.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[CrossRef] [PubMed]

Nature

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Philos Trans A Math Phys Eng Sci

S. Palomba, H. Harutyunyan, J. Renger, R. Quidant, N. F. van Hulst, L. Novotny, “Nonlinear plasmonics at planar metal surfaces,” Philos Trans A Math Phys Eng Sci 369(1950), 3497–3509 (2011).
[CrossRef] [PubMed]

Phys. Rev. B

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

I. Avrutsky, “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain,” Phys. Rev. B 70(15), 155416 (2004).
[CrossRef]

Phys. Rev. Lett.

D. J. Bergman, M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[CrossRef] [PubMed]

P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

Rev. Mod. Phys.

M. Moskovits, “Surface–enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

Science

M. L. Brongersma, V. M. Shalaev, “The case for plasmonics,” Science 328(5977), 440–441 (2010).
[CrossRef] [PubMed]

Sov. Phys. Tech. Phys.

A. N. Sudarkin, P. A. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764–766 (1989).

Other

M. A. Noginov and V. A. Podolskiy, eds., Tutorials in metamaterials, (CRC press, Taylor & Francis, 2011).

R. Paschotta, Encyclopedia of laser physics and technology, (Wiley-VCH, 2008).

W. Koechner and M. Bass, Solid–State lasers engineering, (Springer–Verlag, 2003).

Z. Gryczynski, E. G. Matveeva, N. Calander, J. Zhang, J. R. Lakowicz, and I. Gryczynski, “Surface plasmon coupled emission,” in Surface Plasmon Nanophotonics, M. L. Brongersma and P. G. Kik, eds. (Springer, 2007).

H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” (Springer-Verlag, 1988)

D. Cho, W. Wu, F. Wang, X. Zhang, Y.-R. Shen, “Nonlinear Optics in Metamaterials,” Conference Paper, Laser Science, San Jose, CA USA, October 11–15, 2009.

S. R. Marder, J. E. Sohn, and G. D. Stucky, eds., “Materials for nonlinear optics: Chemical perspectives,” ACS symposium series no. 455. (American Chemical Society,1991).

M. W. Ribarsky, “Titanium Oxide” in Handbook of Optical Constants of Solids, edited by E. D. Palik and G. Ghosh, volume 2. (Academic Press, 1998)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Left: Experimental setup. Red rays– fundamental frequency (1080 nm); green rays– SHG frequency (540 nm). Solid rays – horizontal (p) polarization; dashed rays – vertical (s) polarization. Right: Schematic of the gold and MNA layers deposited onto the hypotenuse side of the prism.

Fig. 2
Fig. 2

(a) X-ray diffraction (XRD) scan of the deposited MNA film, showing the crystallographic b axis (010) of the monoclinic MNA crystal to be oriented perpendicular to the film. (b) Time dependence of second harmonic generation in thin MNA film exposed to 100 fs laser pulses (peak power density = 30 GW/cm2, repetition rate = 250 kHz, λ = 800 nm).

Fig. 3
Fig. 3

(a) Angular reflection profiles measured (using Detector 1 in Fig. 1) on the half of the prism without gold (trace 1) and with gold (trace 2). Traces 3 and 4: the corresponding profiles calculated using known formula from Ref [5]. and material parameters described in the text. (b) Traces 1 and 2 are the same as in Fig. 3(a). Dependence of the scattered light intensity (measured with Detector 2) on the incidence angle at the fundamental frequency (trace 3) and the second harmonic frequency (trace 4). The error bars are shown on the right. Arrows I and II point at characteristic peaks, dips, and shoulders discussed in the text.

Fig. 4
Fig. 4

Efficiency of second harmonic generation in the Ag/MNA sample calculated based on the fundamental and second harmonic beam intensities at horizontal polarization (solid characters) and vertical polarization (open characters) measured at the incidence angle equal to 45° (squares) and 47° (diamonds). Triangles: efficiency of SHG in bare silver film [31] (open character) and silver film with a monolayer of hemicyanine molecules deposited on top [31] (closed character). Solid line: spectrum of the scattered second harmonic light detected from the back side of the prism (right vertical scale).

Fig. 5
Fig. 5

Angular directions and intensities of two horizontally polarized and two vertically polarized outgoing beams at the pumping intensity equal to 2 MW/cm2. Each peak is marked with the corresponding index of refraction, where ‘o’ stands for ordinary beam (horizontal polarization) and ‘e’ stands for extraordinary beam (vertical polarization). Two 1080 nm light intensities are in scale with each other and two 540 nm light intensities are in scale with each other. However, the intensities of the 540 nm beams are not in scale with the intensities of the 1080 nm beams. Dashed line indicates the incidence angle.

Fig. 6
Fig. 6

Schematics assumed at calculation of the angular reflectance profile.

Tables (1)

Tables Icon

Table 1 Indexes of refraction nx, ny and nz in MNA.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

g= κI
κ=8 π 2 d eff 2 / λ s λ i n s n i n p ε 0 c
L c = λ 4( n 2ω n ω ) ,
L p = [ ω c ( ε 1 , ε 2 , ε 1 , + ε 2 , ) 3/2 ( ε 1 ,, ε 1 , 2 + ε 2 ,, ε 2 , 2 ) ] 1 ,
n i sin θ i = n r sin θ r ,
R= | r 012 p | 2 = | E r p E 0 p | 2 = | r 01 p + r 12 p exp(2i k z1 d) 1+ r 01 p r 12 p exp(2i k z1 d) | 2 ,
r ik p = ( k zi ε k k zk ε i ) ( k zi ε k + k zk ε i )
k zi =± κ =± ε i ( ω c ) 2 k x 2 , i=0,1,2

Metrics