Abstract

We develop a novel model of the probability density of the orbital angular momentum (OAM) modes for Hankel-Bessel beams in paraxial turbulence channel based on the Rytov approximation. The results show that there are multi-peaks of the mode probability density along the radial direction. The peak position of the mode probability density moves to beam center with the increasing of non-Kolmogorov turbulence-parameters and the generalized refractive-index structure parameters and with the decreasing of OAM quantum number, propagation distance and wavelength of the beams. Additionally, larger OAM quantum number and smaller non-Kolmogorov turbulence-parameter can be selected in order to obtain larger mode probability density. The probability density of the OAM mode crosstalk is increasing with the decreasing of the quantum number deviation and the wavelength. Because of the focusing properties of Hankel-Bessel beams in turbulence channel, compared with the Laguerre-Gaussian beams, Hankel-Bessel beams are a good light source for weakening turbulence spreading of the beams and mitigating the effects of turbulence on the probability density of the OAM mode.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94(15), 153901 (2005).
    [CrossRef] [PubMed]
  2. F. E. S. Vetelino, R. J. Morgana, “Model validation of turbulence effects on orbital angular momentum of single photons for optical communication,” Proc. SPIE 7685, 76850R (2010).
    [CrossRef]
  3. Y. Jiang, S. Wang, J. Zhang, J. Ou, H. Tang, “Spiral spectrum of Laguerre-Gaussian beams propagation in non-Kolmogorov turbulence,” Opt. Commun. 303, 38–41 (2013).
    [CrossRef]
  4. X. Sheng, Y. Zhang, X. Wang, Z. Wang, Y. Zhu, “The effects of non-Kolmogorov turbulence on the orbital angular momentum of photon-beam propagation in a slant channel,” Opt. Quantum Electron. 43(6–10), 121–127 (2012).
    [CrossRef]
  5. J. A. Anguita, M. A. Neifeld, B. V. Vasic, “Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link,” Appl. Opt. 47(13), 2414–2429 (2008).
    [CrossRef] [PubMed]
  6. G. A. Tyler, R. W. Boyd, “Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum,” Opt. Lett. 34(2), 142–144 (2009).
    [CrossRef] [PubMed]
  7. B. Rodenburg, M. P. J. Lavery, M. Malik, M. N. O’Sullivan, M. Mirhosseini, D. J. Robertson, M. Padgett, R. W. Boyd, “Influence of atmospheric turbulence on states of light carrying orbital angular momentum,” Opt. Lett. 37(17), 3735–3737 (2012).
    [CrossRef] [PubMed]
  8. Y. Zhang, Y. Wang, J. Xu, J. Wang, J. Jia, “Orbital angular momentum crosstalk of single photons propagation in a slant non-Kolmogorov turbulence channel,” Opt. Commun. 284(5), 1132–1138 (2011).
    [CrossRef]
  9. J. Wang, J. Jia, J. Xu, Y. Wang, Y. Zhang, “The probability of orbital angular momentum states of single photons with Z-tilt corrected residual aberration in a slant path turbulent atmosphere,” Optik 122(11), 996–999 (2011).
    [CrossRef]
  10. S. M. Zhao, J. Leach, L. Y. Gong, J. Ding, B. Y. Zheng, “Aberration corrections for free-space optical communications in atmosphere turbulence using orbital angular momentum states,” Opt. Express 20(1), 452–461 (2012).
    [CrossRef] [PubMed]
  11. V. V. Kotlyar, A. A. Kovalev, V. A. Soifer, “Hankel-Bessel laser beams,” J. Opt. Soc. Am. A 29(5), 741–747 (2012).
    [CrossRef] [PubMed]
  12. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 6th ed. (Academic, 2000).
  13. X. Sheng, Y. Zhang, F. Zhao, L. Zhang, Y. Zhu, “Effects of low-order atmosphere-turbulence aberrations on the entangled orbital angular momentum states,” Opt. Lett. 37(13), 2607–2609 (2012).
    [CrossRef] [PubMed]
  14. F. Li, H. Tang, Y. Jiang, J. Ou, “Spiral spectrum of Laguerre-Gaussian beams propagating in turbulent atmosphere,” Acta Phys. Sin. 60(1), 014204 (2011).

2013 (1)

Y. Jiang, S. Wang, J. Zhang, J. Ou, H. Tang, “Spiral spectrum of Laguerre-Gaussian beams propagation in non-Kolmogorov turbulence,” Opt. Commun. 303, 38–41 (2013).
[CrossRef]

2012 (5)

2011 (3)

Y. Zhang, Y. Wang, J. Xu, J. Wang, J. Jia, “Orbital angular momentum crosstalk of single photons propagation in a slant non-Kolmogorov turbulence channel,” Opt. Commun. 284(5), 1132–1138 (2011).
[CrossRef]

J. Wang, J. Jia, J. Xu, Y. Wang, Y. Zhang, “The probability of orbital angular momentum states of single photons with Z-tilt corrected residual aberration in a slant path turbulent atmosphere,” Optik 122(11), 996–999 (2011).
[CrossRef]

F. Li, H. Tang, Y. Jiang, J. Ou, “Spiral spectrum of Laguerre-Gaussian beams propagating in turbulent atmosphere,” Acta Phys. Sin. 60(1), 014204 (2011).

2010 (1)

F. E. S. Vetelino, R. J. Morgana, “Model validation of turbulence effects on orbital angular momentum of single photons for optical communication,” Proc. SPIE 7685, 76850R (2010).
[CrossRef]

2009 (1)

2008 (1)

2005 (1)

C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94(15), 153901 (2005).
[CrossRef] [PubMed]

Anguita, J. A.

Boyd, R. W.

Ding, J.

Gong, L. Y.

Jia, J.

J. Wang, J. Jia, J. Xu, Y. Wang, Y. Zhang, “The probability of orbital angular momentum states of single photons with Z-tilt corrected residual aberration in a slant path turbulent atmosphere,” Optik 122(11), 996–999 (2011).
[CrossRef]

Y. Zhang, Y. Wang, J. Xu, J. Wang, J. Jia, “Orbital angular momentum crosstalk of single photons propagation in a slant non-Kolmogorov turbulence channel,” Opt. Commun. 284(5), 1132–1138 (2011).
[CrossRef]

Jiang, Y.

Y. Jiang, S. Wang, J. Zhang, J. Ou, H. Tang, “Spiral spectrum of Laguerre-Gaussian beams propagation in non-Kolmogorov turbulence,” Opt. Commun. 303, 38–41 (2013).
[CrossRef]

F. Li, H. Tang, Y. Jiang, J. Ou, “Spiral spectrum of Laguerre-Gaussian beams propagating in turbulent atmosphere,” Acta Phys. Sin. 60(1), 014204 (2011).

Kotlyar, V. V.

Kovalev, A. A.

Lavery, M. P. J.

Leach, J.

Li, F.

F. Li, H. Tang, Y. Jiang, J. Ou, “Spiral spectrum of Laguerre-Gaussian beams propagating in turbulent atmosphere,” Acta Phys. Sin. 60(1), 014204 (2011).

Malik, M.

Mirhosseini, M.

Morgana, R. J.

F. E. S. Vetelino, R. J. Morgana, “Model validation of turbulence effects on orbital angular momentum of single photons for optical communication,” Proc. SPIE 7685, 76850R (2010).
[CrossRef]

Neifeld, M. A.

O’Sullivan, M. N.

Ou, J.

Y. Jiang, S. Wang, J. Zhang, J. Ou, H. Tang, “Spiral spectrum of Laguerre-Gaussian beams propagation in non-Kolmogorov turbulence,” Opt. Commun. 303, 38–41 (2013).
[CrossRef]

F. Li, H. Tang, Y. Jiang, J. Ou, “Spiral spectrum of Laguerre-Gaussian beams propagating in turbulent atmosphere,” Acta Phys. Sin. 60(1), 014204 (2011).

Padgett, M.

Paterson, C.

C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94(15), 153901 (2005).
[CrossRef] [PubMed]

Robertson, D. J.

Rodenburg, B.

Sheng, X.

X. Sheng, Y. Zhang, X. Wang, Z. Wang, Y. Zhu, “The effects of non-Kolmogorov turbulence on the orbital angular momentum of photon-beam propagation in a slant channel,” Opt. Quantum Electron. 43(6–10), 121–127 (2012).
[CrossRef]

X. Sheng, Y. Zhang, F. Zhao, L. Zhang, Y. Zhu, “Effects of low-order atmosphere-turbulence aberrations on the entangled orbital angular momentum states,” Opt. Lett. 37(13), 2607–2609 (2012).
[CrossRef] [PubMed]

Soifer, V. A.

Tang, H.

Y. Jiang, S. Wang, J. Zhang, J. Ou, H. Tang, “Spiral spectrum of Laguerre-Gaussian beams propagation in non-Kolmogorov turbulence,” Opt. Commun. 303, 38–41 (2013).
[CrossRef]

F. Li, H. Tang, Y. Jiang, J. Ou, “Spiral spectrum of Laguerre-Gaussian beams propagating in turbulent atmosphere,” Acta Phys. Sin. 60(1), 014204 (2011).

Tyler, G. A.

Vasic, B. V.

Vetelino, F. E. S.

F. E. S. Vetelino, R. J. Morgana, “Model validation of turbulence effects on orbital angular momentum of single photons for optical communication,” Proc. SPIE 7685, 76850R (2010).
[CrossRef]

Wang, J.

Y. Zhang, Y. Wang, J. Xu, J. Wang, J. Jia, “Orbital angular momentum crosstalk of single photons propagation in a slant non-Kolmogorov turbulence channel,” Opt. Commun. 284(5), 1132–1138 (2011).
[CrossRef]

J. Wang, J. Jia, J. Xu, Y. Wang, Y. Zhang, “The probability of orbital angular momentum states of single photons with Z-tilt corrected residual aberration in a slant path turbulent atmosphere,” Optik 122(11), 996–999 (2011).
[CrossRef]

Wang, S.

Y. Jiang, S. Wang, J. Zhang, J. Ou, H. Tang, “Spiral spectrum of Laguerre-Gaussian beams propagation in non-Kolmogorov turbulence,” Opt. Commun. 303, 38–41 (2013).
[CrossRef]

Wang, X.

X. Sheng, Y. Zhang, X. Wang, Z. Wang, Y. Zhu, “The effects of non-Kolmogorov turbulence on the orbital angular momentum of photon-beam propagation in a slant channel,” Opt. Quantum Electron. 43(6–10), 121–127 (2012).
[CrossRef]

Wang, Y.

J. Wang, J. Jia, J. Xu, Y. Wang, Y. Zhang, “The probability of orbital angular momentum states of single photons with Z-tilt corrected residual aberration in a slant path turbulent atmosphere,” Optik 122(11), 996–999 (2011).
[CrossRef]

Y. Zhang, Y. Wang, J. Xu, J. Wang, J. Jia, “Orbital angular momentum crosstalk of single photons propagation in a slant non-Kolmogorov turbulence channel,” Opt. Commun. 284(5), 1132–1138 (2011).
[CrossRef]

Wang, Z.

X. Sheng, Y. Zhang, X. Wang, Z. Wang, Y. Zhu, “The effects of non-Kolmogorov turbulence on the orbital angular momentum of photon-beam propagation in a slant channel,” Opt. Quantum Electron. 43(6–10), 121–127 (2012).
[CrossRef]

Xu, J.

Y. Zhang, Y. Wang, J. Xu, J. Wang, J. Jia, “Orbital angular momentum crosstalk of single photons propagation in a slant non-Kolmogorov turbulence channel,” Opt. Commun. 284(5), 1132–1138 (2011).
[CrossRef]

J. Wang, J. Jia, J. Xu, Y. Wang, Y. Zhang, “The probability of orbital angular momentum states of single photons with Z-tilt corrected residual aberration in a slant path turbulent atmosphere,” Optik 122(11), 996–999 (2011).
[CrossRef]

Zhang, J.

Y. Jiang, S. Wang, J. Zhang, J. Ou, H. Tang, “Spiral spectrum of Laguerre-Gaussian beams propagation in non-Kolmogorov turbulence,” Opt. Commun. 303, 38–41 (2013).
[CrossRef]

Zhang, L.

Zhang, Y.

X. Sheng, Y. Zhang, F. Zhao, L. Zhang, Y. Zhu, “Effects of low-order atmosphere-turbulence aberrations on the entangled orbital angular momentum states,” Opt. Lett. 37(13), 2607–2609 (2012).
[CrossRef] [PubMed]

X. Sheng, Y. Zhang, X. Wang, Z. Wang, Y. Zhu, “The effects of non-Kolmogorov turbulence on the orbital angular momentum of photon-beam propagation in a slant channel,” Opt. Quantum Electron. 43(6–10), 121–127 (2012).
[CrossRef]

J. Wang, J. Jia, J. Xu, Y. Wang, Y. Zhang, “The probability of orbital angular momentum states of single photons with Z-tilt corrected residual aberration in a slant path turbulent atmosphere,” Optik 122(11), 996–999 (2011).
[CrossRef]

Y. Zhang, Y. Wang, J. Xu, J. Wang, J. Jia, “Orbital angular momentum crosstalk of single photons propagation in a slant non-Kolmogorov turbulence channel,” Opt. Commun. 284(5), 1132–1138 (2011).
[CrossRef]

Zhao, F.

Zhao, S. M.

Zheng, B. Y.

Zhu, Y.

X. Sheng, Y. Zhang, F. Zhao, L. Zhang, Y. Zhu, “Effects of low-order atmosphere-turbulence aberrations on the entangled orbital angular momentum states,” Opt. Lett. 37(13), 2607–2609 (2012).
[CrossRef] [PubMed]

X. Sheng, Y. Zhang, X. Wang, Z. Wang, Y. Zhu, “The effects of non-Kolmogorov turbulence on the orbital angular momentum of photon-beam propagation in a slant channel,” Opt. Quantum Electron. 43(6–10), 121–127 (2012).
[CrossRef]

Acta Phys. Sin. (1)

F. Li, H. Tang, Y. Jiang, J. Ou, “Spiral spectrum of Laguerre-Gaussian beams propagating in turbulent atmosphere,” Acta Phys. Sin. 60(1), 014204 (2011).

Appl. Opt. (1)

J. Opt. Soc. Am. A (1)

Opt. Commun. (2)

Y. Zhang, Y. Wang, J. Xu, J. Wang, J. Jia, “Orbital angular momentum crosstalk of single photons propagation in a slant non-Kolmogorov turbulence channel,” Opt. Commun. 284(5), 1132–1138 (2011).
[CrossRef]

Y. Jiang, S. Wang, J. Zhang, J. Ou, H. Tang, “Spiral spectrum of Laguerre-Gaussian beams propagation in non-Kolmogorov turbulence,” Opt. Commun. 303, 38–41 (2013).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

X. Sheng, Y. Zhang, X. Wang, Z. Wang, Y. Zhu, “The effects of non-Kolmogorov turbulence on the orbital angular momentum of photon-beam propagation in a slant channel,” Opt. Quantum Electron. 43(6–10), 121–127 (2012).
[CrossRef]

Optik (1)

J. Wang, J. Jia, J. Xu, Y. Wang, Y. Zhang, “The probability of orbital angular momentum states of single photons with Z-tilt corrected residual aberration in a slant path turbulent atmosphere,” Optik 122(11), 996–999 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94(15), 153901 (2005).
[CrossRef] [PubMed]

Proc. SPIE (1)

F. E. S. Vetelino, R. J. Morgana, “Model validation of turbulence effects on orbital angular momentum of single photons for optical communication,” Proc. SPIE 7685, 76850R (2010).
[CrossRef]

Other (1)

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 6th ed. (Academic, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The mode probability densities | β l 0 (r,z) | 2 and the crosstalk probability densities | β l (r,z) | 2 of the HB beams and LG beams against r for l0.

Fig. 2
Fig. 2

The mode probability densities | β l 0 (r,z) | 2 and the crosstalk probability densities | β l (r,z) | 2 of the HB beams and LG beams against r for α.

Fig. 3
Fig. 3

The mode probability densities | β l 0 (r,z) | 2 and the crosstalk probability densities | β l (r,z) | 2 of the HB beams and LG beams against r for C n 2 .

Fig. 4
Fig. 4

The mode probability densities | β l 0 (r,z) | 2 and the crosstalk probability densities | β l (r,z) | 2 of the HB beams and LG beams against r for z.

Fig. 5
Fig. 5

The mode probability densities | β l 0 (r,z) | 2 and the crosstalk probability densities | β l (r,z) | 2 of the HB beams and LG beams against r for the wavelength λ.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

HB( r,φ,z )=H B l 0 ( r,φ,z )exp[ ψ 1 ( r,φ,z ) ]
H B para, l 0 ( r,φ,z )= i 3 l 0 +1 l 0 ! A 0 π 2kz exp[ i( kz π l 0 4 π 4 )+i l 0 φ ] J l 0 /2 [ k r 2 /4z ]
H B para ( r,φ,z )= l β l ( r,z )exp( ilφ )
β l ( r,z )= 1 2π 0 2π H B para ( r,φ,z ) exp[ ilφ ]dφ
0 2π exp[in φ 1 +ηcos( φ 1 φ 2 )] d φ 1 =2πexp(in φ 2 ) I n (η)
| β l (r,z) | 2 = π 2kz ( l 0 ! A 0 ) 2 | J l 0 /2 [ k r 2 /4z ] | 2 exp[ 2 r 2 / ρ 0 2 ] I l l 0 ( 2 r 2 / ρ 0 2 )
ρ 0 = { 2Γ[ ( 3α )/2 ]( α1 ) π 1/2 k 2 Γ( 1α/2 ) C n 2 z } 1/( α2 ) ,3<α<4.

Metrics