Abstract

Systematic study of Yb doping concentration in the Yb:YLF cryocoolers by means of optical and mass spectroscopies has identified iron ions as the main source of the background absorption. Parasitic absorption was observed to decrease with Yb doping, resulting in optical cooling of a 10% Yb:YLF sample to 114K ± 1K, with room temperature cooling power of 750 mW and calculated minimum achievable temperature of 93 K.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Pringsheim, “Zwei bemerkungen uber den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys. 57(11–12), 739–746 (1929).
    [CrossRef]
  2. M. Sheik-Bahae, R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1(12), 693–699 (2007).
    [CrossRef]
  3. M. Sheik-Bahae, R. I. Epstein, “Laser cooling of solids,” Laser Photonics Rev. 3(1–2), 67–84 (2009).
    [CrossRef]
  4. L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. 10, 503–506 (1946).
  5. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
    [CrossRef]
  6. M. P. Hehlen, “Design and fabrication of rare-earth-doped laser cooling materials,” in Optical Refrigeration: Science and Applications of Laser Cooling of Solids, R. I. Epstein and M. Sheik-Bahae, eds. (Wiley-VCH, 2009).
  7. C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20(5), 1066–1074 (2003).
    [CrossRef]
  8. J. Thiede, J. Distel, S. R. Greenfield, R. I. Epstein, “Cooling to 208k by optical refrigeration,” Appl. Phys. Lett. 86(15), 154107 (2005).
    [CrossRef]
  9. C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85(17), 3600–3603 (2000).
    [CrossRef] [PubMed]
  10. J. Fernandez, A. J. Garcia-Adeva, R. Balda, “Anti-stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97(3), 033001 (2006).
    [CrossRef] [PubMed]
  11. N. J. Condon, S. R. Bowman, S. P. O’Connor, R. S. Quimby, C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5.,” Opt. Express 17(7), 5466–5472 (2009).
    [CrossRef] [PubMed]
  12. G. Nemova, R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73(8), 086501 (2010).
    [CrossRef]
  13. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
    [CrossRef]
  14. S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38(9), 1588–1590 (2013).
    [CrossRef] [PubMed]
  15. R. Epstein and M. Sheik-Bahae, Optical Refrigeration: Science and Applications of Laser Cooling of Solids (Wiley-VCH, 2009).
  16. D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19(19), 18229–18236 (2011).
    [CrossRef] [PubMed]
  17. M. P. Hehlen, R. I. Epstein, H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
    [CrossRef]
  18. W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94(9), 2896–2901 (2011).
    [CrossRef]
  19. D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photonics 4(1), 78–107 (2012).
    [CrossRef]
  20. N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, P. Laporta, “Diode-pumped passively mode-locked Yb:YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
    [CrossRef] [PubMed]
  21. G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, J. C. Gâcon, “From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals,” Mol. Phys. 102, 1119–1132 (2004).
    [CrossRef]
  22. I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
    [CrossRef]
  23. S. D. Melgaard, “Cryogenic Optical Refrigeration: Laser cooling of solids below 123K,” Ph. D. Dissertation, University of New Mexico, Albuquerque, NM (2013).
  24. G. Cowan, Statistical Data Analysis (Clarendon, 1998).
  25. L.-S. Huang, K.-C. Lin, “Detection of iron species using inductively coupled plasma mass spectrometry under cold plasma temperature conditions,” Spectrochim. Acta, B At. Spectrosc. 56(1), 123–128 (2001).
    [CrossRef]

2013 (1)

2012 (1)

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photonics 4(1), 78–107 (2012).
[CrossRef]

2011 (2)

W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94(9), 2896–2901 (2011).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19(19), 18229–18236 (2011).
[CrossRef] [PubMed]

2010 (2)

G. Nemova, R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73(8), 086501 (2010).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

2009 (2)

2008 (1)

2007 (2)

M. Sheik-Bahae, R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1(12), 693–699 (2007).
[CrossRef]

M. P. Hehlen, R. I. Epstein, H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[CrossRef]

2006 (1)

J. Fernandez, A. J. Garcia-Adeva, R. Balda, “Anti-stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97(3), 033001 (2006).
[CrossRef] [PubMed]

2005 (1)

J. Thiede, J. Distel, S. R. Greenfield, R. I. Epstein, “Cooling to 208k by optical refrigeration,” Appl. Phys. Lett. 86(15), 154107 (2005).
[CrossRef]

2004 (1)

G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, J. C. Gâcon, “From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals,” Mol. Phys. 102, 1119–1132 (2004).
[CrossRef]

2003 (1)

2001 (1)

L.-S. Huang, K.-C. Lin, “Detection of iron species using inductively coupled plasma mass spectrometry under cold plasma temperature conditions,” Spectrochim. Acta, B At. Spectrosc. 56(1), 123–128 (2001).
[CrossRef]

2000 (1)

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85(17), 3600–3603 (2000).
[CrossRef] [PubMed]

1996 (1)

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

1995 (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

1946 (1)

L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. 10, 503–506 (1946).

1929 (1)

P. Pringsheim, “Zwei bemerkungen uber den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys. 57(11–12), 739–746 (1929).
[CrossRef]

Anderson, J. E.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85(17), 3600–3603 (2000).
[CrossRef] [PubMed]

Balda, R.

J. Fernandez, A. J. Garcia-Adeva, R. Balda, “Anti-stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97(3), 033001 (2006).
[CrossRef] [PubMed]

Baldochi, S. L.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

Bensalah, A.

G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, J. C. Gâcon, “From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals,” Mol. Phys. 102, 1119–1132 (2004).
[CrossRef]

Berretta, J. R.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

Bigotta, S.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

Bonelli, L.

Boulon, G.

G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, J. C. Gâcon, “From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals,” Mol. Phys. 102, 1119–1132 (2004).
[CrossRef]

Bowman, S. R.

Buchwald, M. I.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

Coluccelli, N.

Condon, N. J.

Costa, F. E.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

Courrol, L. C.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

de Rossi, W.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

Di Lieto, A.

Distel, J.

Edwards, B. C.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85(17), 3600–3603 (2000).
[CrossRef] [PubMed]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

Epstein, R. I.

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photonics 4(1), 78–107 (2012).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19(19), 18229–18236 (2011).
[CrossRef] [PubMed]

M. Sheik-Bahae, R. I. Epstein, “Laser cooling of solids,” Laser Photonics Rev. 3(1–2), 67–84 (2009).
[CrossRef]

M. P. Hehlen, R. I. Epstein, H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[CrossRef]

M. Sheik-Bahae, R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1(12), 693–699 (2007).
[CrossRef]

J. Thiede, J. Distel, S. R. Greenfield, R. I. Epstein, “Cooling to 208k by optical refrigeration,” Appl. Phys. Lett. 86(15), 154107 (2005).
[CrossRef]

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20(5), 1066–1074 (2003).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85(17), 3600–3603 (2000).
[CrossRef] [PubMed]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

Fernandez, J.

J. Fernandez, A. J. Garcia-Adeva, R. Balda, “Anti-stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97(3), 033001 (2006).
[CrossRef] [PubMed]

Gâcon, J. C.

G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, J. C. Gâcon, “From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals,” Mol. Phys. 102, 1119–1132 (2004).
[CrossRef]

Galzerano, G.

Garcia-Adeva, A. J.

J. Fernandez, A. J. Garcia-Adeva, R. Balda, “Anti-stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97(3), 033001 (2006).
[CrossRef] [PubMed]

Gomes, L.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

Gosnell, T. R.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

Goutaudier, C.

G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, J. C. Gâcon, “From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals,” Mol. Phys. 102, 1119–1132 (2004).
[CrossRef]

Greenfield, S.

Greenfield, S. R.

J. Thiede, J. Distel, S. R. Greenfield, R. I. Epstein, “Cooling to 208k by optical refrigeration,” Appl. Phys. Lett. 86(15), 154107 (2005).
[CrossRef]

Guyot, Y.

G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, J. C. Gâcon, “From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals,” Mol. Phys. 102, 1119–1132 (2004).
[CrossRef]

Hasselbeck, M. P.

Hehlen, M. P.

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photonics 4(1), 78–107 (2012).
[CrossRef]

W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94(9), 2896–2901 (2011).
[CrossRef]

M. P. Hehlen, R. I. Epstein, H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[CrossRef]

Hoyt, C. W.

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20(5), 1066–1074 (2003).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85(17), 3600–3603 (2000).
[CrossRef] [PubMed]

Huang, L.-S.

L.-S. Huang, K.-C. Lin, “Detection of iron species using inductively coupled plasma mass spectrometry under cold plasma temperature conditions,” Spectrochim. Acta, B At. Spectrosc. 56(1), 123–128 (2001).
[CrossRef]

Inoue, H.

M. P. Hehlen, R. I. Epstein, H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[CrossRef]

Ito, M.

G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, J. C. Gâcon, “From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals,” Mol. Phys. 102, 1119–1132 (2004).
[CrossRef]

Kashyap, R.

G. Nemova, R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73(8), 086501 (2010).
[CrossRef]

Landau, L.

L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. 10, 503–506 (1946).

Laporta, P.

Lin, K.-C.

L.-S. Huang, K.-C. Lin, “Detection of iron species using inductively coupled plasma mass spectrometry under cold plasma temperature conditions,” Spectrochim. Acta, B At. Spectrosc. 56(1), 123–128 (2001).
[CrossRef]

Melgaard, S. D.

Morato, S. P.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

Mungan, C. E.

N. J. Condon, S. R. Bowman, S. P. O’Connor, R. S. Quimby, C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5.,” Opt. Express 17(7), 5466–5472 (2009).
[CrossRef] [PubMed]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

Nemova, G.

G. Nemova, R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73(8), 086501 (2010).
[CrossRef]

Nogueira, G. E. C.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

O’Connor, S. P.

Panczer, G.

G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, J. C. Gâcon, “From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals,” Mol. Phys. 102, 1119–1132 (2004).
[CrossRef]

Patterson, W. M.

W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94(9), 2896–2901 (2011).
[CrossRef]

Pringsheim, P.

P. Pringsheim, “Zwei bemerkungen uber den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys. 57(11–12), 739–746 (1929).
[CrossRef]

Quimby, R. S.

Ranieri, I. M.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

Santo, A. M. E.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

Seletskiy, D. V.

S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38(9), 1588–1590 (2013).
[CrossRef] [PubMed]

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photonics 4(1), 78–107 (2012).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19(19), 18229–18236 (2011).
[CrossRef] [PubMed]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

Sheik-Bahae, M.

S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38(9), 1588–1590 (2013).
[CrossRef] [PubMed]

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photonics 4(1), 78–107 (2012).
[CrossRef]

W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94(9), 2896–2901 (2011).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19(19), 18229–18236 (2011).
[CrossRef] [PubMed]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

M. Sheik-Bahae, R. I. Epstein, “Laser cooling of solids,” Laser Photonics Rev. 3(1–2), 67–84 (2009).
[CrossRef]

M. Sheik-Bahae, R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1(12), 693–699 (2007).
[CrossRef]

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20(5), 1066–1074 (2003).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85(17), 3600–3603 (2000).
[CrossRef] [PubMed]

Stark, P. C.

W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94(9), 2896–2901 (2011).
[CrossRef]

Tarelho, L. V. G.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

Thiede, J.

Tonelli, M.

Valencia, J.

Vieira, N. D.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

Wetter, N. U.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

Yoshida, T. M.

W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94(9), 2896–2901 (2011).
[CrossRef]

Zezell, D. M.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

Adv. Opt. Photonics (1)

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photonics 4(1), 78–107 (2012).
[CrossRef]

Appl. Phys. Lett. (1)

J. Thiede, J. Distel, S. R. Greenfield, R. I. Epstein, “Cooling to 208k by optical refrigeration,” Appl. Phys. Lett. 86(15), 154107 (2005).
[CrossRef]

J. Am. Ceram. Soc. (1)

W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94(9), 2896–2901 (2011).
[CrossRef]

J. Cryst. Growth (1)

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. (1)

L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. 10, 503–506 (1946).

Laser Photonics Rev. (1)

M. Sheik-Bahae, R. I. Epstein, “Laser cooling of solids,” Laser Photonics Rev. 3(1–2), 67–84 (2009).
[CrossRef]

Mol. Phys. (1)

G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, J. C. Gâcon, “From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals,” Mol. Phys. 102, 1119–1132 (2004).
[CrossRef]

Nat. Photonics (2)

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

M. Sheik-Bahae, R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1(12), 693–699 (2007).
[CrossRef]

Nature (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

M. P. Hehlen, R. I. Epstein, H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85(17), 3600–3603 (2000).
[CrossRef] [PubMed]

J. Fernandez, A. J. Garcia-Adeva, R. Balda, “Anti-stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97(3), 033001 (2006).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

G. Nemova, R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73(8), 086501 (2010).
[CrossRef]

Spectrochim. Acta, B At. Spectrosc. (1)

L.-S. Huang, K.-C. Lin, “Detection of iron species using inductively coupled plasma mass spectrometry under cold plasma temperature conditions,” Spectrochim. Acta, B At. Spectrosc. 56(1), 123–128 (2001).
[CrossRef]

Z. Phys. (1)

P. Pringsheim, “Zwei bemerkungen uber den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys. 57(11–12), 739–746 (1929).
[CrossRef]

Other (4)

M. P. Hehlen, “Design and fabrication of rare-earth-doped laser cooling materials,” in Optical Refrigeration: Science and Applications of Laser Cooling of Solids, R. I. Epstein and M. Sheik-Bahae, eds. (Wiley-VCH, 2009).

R. Epstein and M. Sheik-Bahae, Optical Refrigeration: Science and Applications of Laser Cooling of Solids (Wiley-VCH, 2009).

S. D. Melgaard, “Cryogenic Optical Refrigeration: Laser cooling of solids below 123K,” Ph. D. Dissertation, University of New Mexico, Albuquerque, NM (2013).

G. Cowan, Statistical Data Analysis (Clarendon, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(A) Measurement and fitting (Eq. (1)) of the cooling efficiency for Y b3+:Y LF samples of variable doping and at 300 K (LITMoS test), yielding same ηext = (99.6 ± 0.1)% and varying αb; (B) background absorption coefficient obtained from the fits is plotted versus the Yb3+ doping concentration.

Fig. 2
Fig. 2

(A): Cooling efficiency (Eq. (1) for 10% Yb:YLF sample with ηext = (99.6 ± 0.1)% and αb 2-4 cm-1. Global minimum achievable temperature of 93 K is obtained at the E4-E5 transition of Yb3+ ion (red vertical arrow on inset). (B): Plot of temperature vs. time for 10% Yb:YLF pumped at 1020nm resulting in 114K ± 1K.

Fig. 3
Fig. 3

Statistical correlation coefficient r of elemental sample composition with the level of Yb3+ doping (top) and background absorption (bottom). Strong correlation of αb with 58Fe identifies the transition metal as potentially dominant impurity in current optical cryocoolers.

Fig. 4
Fig. 4

Plot of the iron concentration (in parts per million, ppm) versus the optically measured background absorption in 6 different Yb:YLF samples. Strong correlation between these quantities across multiple samples points to the iron as the main source of the parasitic background absorption in currently available optical cryocoolers.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η c ( λ,T )= P cool P abs = η ext [ 1 1+ α b / α r ( λ,T ) ] λ λ f ( T ) 1,

Metrics