Abstract

Strong modification of spontaneous emission of Eu3+ ions placed in close vicinity to thin and thick gold and silver films was clearly demonstrated in a microscope setup separately for electric and magnetic dipole transitions. We have shown that the magnetic transition was very sensitive to the thickness of the gold substrate and behaved distinctly different from the electric transition. The observations were described theoretically based on the dyadic Green’s function approach for layered media and explained through modified image models for the near and far-field emissions. We established that there exists a “near-field event horizon”, which demarcates the distance from the metal at which the dipole emission is taken up exclusively in the near field.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  2. K. H. Drexhage, “Interaction of light with monomolecular dye layers,” Progress in Optics XII, 162–231 (1974).
  3. R. R. Chance, A. Prock, R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60(7), 2744–2748 (1974).
    [CrossRef]
  4. W. Lukosz, R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” JOSA 67(12), 1607–1615 (1977).
    [CrossRef]
  5. W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation,” JOSA 69(11), 1495–1503 (1979).
    [CrossRef]
  6. R. R. Chance, A. H. Miller, A. Prock, R. Silbey, “Fluorescence and energy transfer near interfaces: The complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys. 63(4), 1589–1595 (1975).
    [CrossRef]
  7. L. Novotny and B. Hetcht, Principles of Nano-optics, (Cambridge University, 2007).
  8. Z. Xi, Y. Lu, P. Yao, W. Yu, P. Wang, H. Ming, “Controllable directive radiation of a circularly polarized dipole above planar metal surface,” Opt. Express 21(25), 30327–30335 (2013).
    [CrossRef] [PubMed]
  9. P. T. Worthing, R. M. Amos, W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A 59(1), 865–872 (1999).
    [CrossRef]
  10. N. Noginova, R. Hussain, M. A. Noginov, J. Vella, A. Urbas, “Modification of electric and magnetic dipole emission in anisotropic plasmonic systems,” Opt. Express 21(20), 23087–23096 (2013).
    [CrossRef] [PubMed]
  11. T. H. Taminiau, S. Karaveli, N. F. van Hulst, R. Zia, “Quantifying the magnetic nature of light emission,” Nat Commun 3, 979 (2012).
    [CrossRef] [PubMed]
  12. S. Karaveli, R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
    [CrossRef] [PubMed]
  13. S. Karaveli, R. Zia, “Strong enhancement of magnetic dipole emission in a multilevel electronic system,” Opt. Lett. 35(20), 3318–3320 (2010).
    [CrossRef] [PubMed]
  14. S. Karaveli, A. J. Weinstein, R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano Lett. 13(5), 2264–2269 (2013).
    [CrossRef] [PubMed]
  15. X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011).
    [CrossRef]
  16. N. Noginova, G. Zhu, M. Mavy, M. A. Noginov, “Magnetic dipole based systems for probing optical magnetism,” J. Appl. Phys. 103(7), 07E901 (2008).
    [CrossRef]
  17. N. Noginova, Yu. Barnakov, H. Li, M. A. Noginov, “Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu3+ doped polymeric film,” Opt. Express 17(13), 10767–10772 (2009).
    [CrossRef] [PubMed]
  18. R. Hussain, C. Whitefield, C. Carroll, J. Vella, A. Urbas, and N. Noginova, “Emission of electric and magnetic dipoles in plasmonic systems,” in CLEO Technical Digest, paper QM4H.7 (2012).
  19. S. N. Sheikholeslami, A. García-Etxarri, J. A. Dionne, “Controlling the Interplay of Electric and Magnetic Modes via Fano-Like Plasmon Resonances,” Nano Lett. 11(9), 3927–3934 (2011).
    [CrossRef] [PubMed]
  20. K. Wang, L. Gao, C. Huang, “Optical properties of the highly ordered Langmuir-Blodgett film of a strongly luminescent Eu(III) complex,” J. Photochem. Photobiol. Chem. 156(1-3), 39–43 (2003).
    [CrossRef]
  21. J. G. Reifenberger, G. E. Snyder, G. Baym, P. R. Selvin, “Emission polarization of europium and terbium chelates,” J. Phys. Chem. B 107(46), 12862–12873 (2003).
    [CrossRef]
  22. F. Monroy, F. Ortega, R. G. Rubio, “Dilatational rheology of insoluble polymer monolayers: Poly(vinylacetate),” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7629–7641 (1998).
    [CrossRef]
  23. J. E. Sipe, “The dipole antenna problem in surface physics: a new approach,” Surf. Sci. 105(2-3), 489–504 (1981).
    [CrossRef]
  24. G. W. Ford, W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
    [CrossRef]
  25. M. Durach, A. Rusina, V. I. Klimov, M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
    [CrossRef]
  26. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  27. R. M. A. Azzam, “Transformation of Fresnel’s interface reflection and transmission coefficients between normal and oblique incidence,” JOSA 69(4), 590–596 (1979).
    [CrossRef]
  28. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

2013 (3)

2012 (1)

T. H. Taminiau, S. Karaveli, N. F. van Hulst, R. Zia, “Quantifying the magnetic nature of light emission,” Nat Commun 3, 979 (2012).
[CrossRef] [PubMed]

2011 (3)

S. Karaveli, R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
[CrossRef] [PubMed]

S. N. Sheikholeslami, A. García-Etxarri, J. A. Dionne, “Controlling the Interplay of Electric and Magnetic Modes via Fano-Like Plasmon Resonances,” Nano Lett. 11(9), 3927–3934 (2011).
[CrossRef] [PubMed]

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011).
[CrossRef]

2010 (1)

2009 (1)

2008 (2)

N. Noginova, G. Zhu, M. Mavy, M. A. Noginov, “Magnetic dipole based systems for probing optical magnetism,” J. Appl. Phys. 103(7), 07E901 (2008).
[CrossRef]

M. Durach, A. Rusina, V. I. Klimov, M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
[CrossRef]

2003 (2)

K. Wang, L. Gao, C. Huang, “Optical properties of the highly ordered Langmuir-Blodgett film of a strongly luminescent Eu(III) complex,” J. Photochem. Photobiol. Chem. 156(1-3), 39–43 (2003).
[CrossRef]

J. G. Reifenberger, G. E. Snyder, G. Baym, P. R. Selvin, “Emission polarization of europium and terbium chelates,” J. Phys. Chem. B 107(46), 12862–12873 (2003).
[CrossRef]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1999 (1)

P. T. Worthing, R. M. Amos, W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A 59(1), 865–872 (1999).
[CrossRef]

1998 (1)

F. Monroy, F. Ortega, R. G. Rubio, “Dilatational rheology of insoluble polymer monolayers: Poly(vinylacetate),” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7629–7641 (1998).
[CrossRef]

1984 (1)

G. W. Ford, W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

1981 (1)

J. E. Sipe, “The dipole antenna problem in surface physics: a new approach,” Surf. Sci. 105(2-3), 489–504 (1981).
[CrossRef]

1979 (2)

W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation,” JOSA 69(11), 1495–1503 (1979).
[CrossRef]

R. M. A. Azzam, “Transformation of Fresnel’s interface reflection and transmission coefficients between normal and oblique incidence,” JOSA 69(4), 590–596 (1979).
[CrossRef]

1977 (1)

W. Lukosz, R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” JOSA 67(12), 1607–1615 (1977).
[CrossRef]

1975 (1)

R. R. Chance, A. H. Miller, A. Prock, R. Silbey, “Fluorescence and energy transfer near interfaces: The complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys. 63(4), 1589–1595 (1975).
[CrossRef]

1974 (2)

K. H. Drexhage, “Interaction of light with monomolecular dye layers,” Progress in Optics XII, 162–231 (1974).

R. R. Chance, A. Prock, R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60(7), 2744–2748 (1974).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Amos, R. M.

P. T. Worthing, R. M. Amos, W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A 59(1), 865–872 (1999).
[CrossRef]

Azzam, R. M. A.

R. M. A. Azzam, “Transformation of Fresnel’s interface reflection and transmission coefficients between normal and oblique incidence,” JOSA 69(4), 590–596 (1979).
[CrossRef]

Barnakov, Y.

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011).
[CrossRef]

Barnakov, Yu.

Barnes, W. L.

P. T. Worthing, R. M. Amos, W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A 59(1), 865–872 (1999).
[CrossRef]

Baym, G.

J. G. Reifenberger, G. E. Snyder, G. Baym, P. R. Selvin, “Emission polarization of europium and terbium chelates,” J. Phys. Chem. B 107(46), 12862–12873 (2003).
[CrossRef]

Boltasseva, A.

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011).
[CrossRef]

Chance, R. R.

R. R. Chance, A. H. Miller, A. Prock, R. Silbey, “Fluorescence and energy transfer near interfaces: The complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys. 63(4), 1589–1595 (1975).
[CrossRef]

R. R. Chance, A. Prock, R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60(7), 2744–2748 (1974).
[CrossRef]

Dionne, J. A.

S. N. Sheikholeslami, A. García-Etxarri, J. A. Dionne, “Controlling the Interplay of Electric and Magnetic Modes via Fano-Like Plasmon Resonances,” Nano Lett. 11(9), 3927–3934 (2011).
[CrossRef] [PubMed]

Drexhage, K. H.

K. H. Drexhage, “Interaction of light with monomolecular dye layers,” Progress in Optics XII, 162–231 (1974).

Durach, M.

M. Durach, A. Rusina, V. I. Klimov, M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
[CrossRef]

Ford, G. W.

G. W. Ford, W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Gao, L.

K. Wang, L. Gao, C. Huang, “Optical properties of the highly ordered Langmuir-Blodgett film of a strongly luminescent Eu(III) complex,” J. Photochem. Photobiol. Chem. 156(1-3), 39–43 (2003).
[CrossRef]

García-Etxarri, A.

S. N. Sheikholeslami, A. García-Etxarri, J. A. Dionne, “Controlling the Interplay of Electric and Magnetic Modes via Fano-Like Plasmon Resonances,” Nano Lett. 11(9), 3927–3934 (2011).
[CrossRef] [PubMed]

Huang, C.

K. Wang, L. Gao, C. Huang, “Optical properties of the highly ordered Langmuir-Blodgett film of a strongly luminescent Eu(III) complex,” J. Photochem. Photobiol. Chem. 156(1-3), 39–43 (2003).
[CrossRef]

Hussain, R.

Karaveli, S.

S. Karaveli, A. J. Weinstein, R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano Lett. 13(5), 2264–2269 (2013).
[CrossRef] [PubMed]

T. H. Taminiau, S. Karaveli, N. F. van Hulst, R. Zia, “Quantifying the magnetic nature of light emission,” Nat Commun 3, 979 (2012).
[CrossRef] [PubMed]

S. Karaveli, R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
[CrossRef] [PubMed]

S. Karaveli, R. Zia, “Strong enhancement of magnetic dipole emission in a multilevel electronic system,” Opt. Lett. 35(20), 3318–3320 (2010).
[CrossRef] [PubMed]

Kildishev, A. V.

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011).
[CrossRef]

Klimov, V. I.

M. Durach, A. Rusina, V. I. Klimov, M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
[CrossRef]

Kunz, R. E.

W. Lukosz, R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” JOSA 67(12), 1607–1615 (1977).
[CrossRef]

Li, H.

Lu, Y.

Lukosz, W.

W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation,” JOSA 69(11), 1495–1503 (1979).
[CrossRef]

W. Lukosz, R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” JOSA 67(12), 1607–1615 (1977).
[CrossRef]

Mavy, M.

N. Noginova, G. Zhu, M. Mavy, M. A. Noginov, “Magnetic dipole based systems for probing optical magnetism,” J. Appl. Phys. 103(7), 07E901 (2008).
[CrossRef]

Miller, A. H.

R. R. Chance, A. H. Miller, A. Prock, R. Silbey, “Fluorescence and energy transfer near interfaces: The complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys. 63(4), 1589–1595 (1975).
[CrossRef]

Ming, H.

Monroy, F.

F. Monroy, F. Ortega, R. G. Rubio, “Dilatational rheology of insoluble polymer monolayers: Poly(vinylacetate),” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7629–7641 (1998).
[CrossRef]

Naik, G. V.

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011).
[CrossRef]

Ni, X.

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011).
[CrossRef]

Noginov, M. A.

Noginova, N.

Ortega, F.

F. Monroy, F. Ortega, R. G. Rubio, “Dilatational rheology of insoluble polymer monolayers: Poly(vinylacetate),” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7629–7641 (1998).
[CrossRef]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Prock, A.

R. R. Chance, A. H. Miller, A. Prock, R. Silbey, “Fluorescence and energy transfer near interfaces: The complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys. 63(4), 1589–1595 (1975).
[CrossRef]

R. R. Chance, A. Prock, R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60(7), 2744–2748 (1974).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Reifenberger, J. G.

J. G. Reifenberger, G. E. Snyder, G. Baym, P. R. Selvin, “Emission polarization of europium and terbium chelates,” J. Phys. Chem. B 107(46), 12862–12873 (2003).
[CrossRef]

Rubio, R. G.

F. Monroy, F. Ortega, R. G. Rubio, “Dilatational rheology of insoluble polymer monolayers: Poly(vinylacetate),” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7629–7641 (1998).
[CrossRef]

Rusina, A.

M. Durach, A. Rusina, V. I. Klimov, M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
[CrossRef]

Selvin, P. R.

J. G. Reifenberger, G. E. Snyder, G. Baym, P. R. Selvin, “Emission polarization of europium and terbium chelates,” J. Phys. Chem. B 107(46), 12862–12873 (2003).
[CrossRef]

Shalaev, V. M.

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011).
[CrossRef]

Sheikholeslami, S. N.

S. N. Sheikholeslami, A. García-Etxarri, J. A. Dionne, “Controlling the Interplay of Electric and Magnetic Modes via Fano-Like Plasmon Resonances,” Nano Lett. 11(9), 3927–3934 (2011).
[CrossRef] [PubMed]

Silbey, R.

R. R. Chance, A. H. Miller, A. Prock, R. Silbey, “Fluorescence and energy transfer near interfaces: The complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys. 63(4), 1589–1595 (1975).
[CrossRef]

R. R. Chance, A. Prock, R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60(7), 2744–2748 (1974).
[CrossRef]

Sipe, J. E.

J. E. Sipe, “The dipole antenna problem in surface physics: a new approach,” Surf. Sci. 105(2-3), 489–504 (1981).
[CrossRef]

Snyder, G. E.

J. G. Reifenberger, G. E. Snyder, G. Baym, P. R. Selvin, “Emission polarization of europium and terbium chelates,” J. Phys. Chem. B 107(46), 12862–12873 (2003).
[CrossRef]

Stockman, M. I.

M. Durach, A. Rusina, V. I. Klimov, M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
[CrossRef]

Taminiau, T. H.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, R. Zia, “Quantifying the magnetic nature of light emission,” Nat Commun 3, 979 (2012).
[CrossRef] [PubMed]

Urbas, A.

van Hulst, N. F.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, R. Zia, “Quantifying the magnetic nature of light emission,” Nat Commun 3, 979 (2012).
[CrossRef] [PubMed]

Vella, J.

Wang, K.

K. Wang, L. Gao, C. Huang, “Optical properties of the highly ordered Langmuir-Blodgett film of a strongly luminescent Eu(III) complex,” J. Photochem. Photobiol. Chem. 156(1-3), 39–43 (2003).
[CrossRef]

Wang, P.

Weber, W. H.

G. W. Ford, W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Weinstein, A. J.

S. Karaveli, A. J. Weinstein, R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano Lett. 13(5), 2264–2269 (2013).
[CrossRef] [PubMed]

Worthing, P. T.

P. T. Worthing, R. M. Amos, W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A 59(1), 865–872 (1999).
[CrossRef]

Xi, Z.

Yao, P.

Yu, W.

Zhu, G.

N. Noginova, G. Zhu, M. Mavy, M. A. Noginov, “Magnetic dipole based systems for probing optical magnetism,” J. Appl. Phys. 103(7), 07E901 (2008).
[CrossRef]

Zia, R.

S. Karaveli, A. J. Weinstein, R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano Lett. 13(5), 2264–2269 (2013).
[CrossRef] [PubMed]

T. H. Taminiau, S. Karaveli, N. F. van Hulst, R. Zia, “Quantifying the magnetic nature of light emission,” Nat Commun 3, 979 (2012).
[CrossRef] [PubMed]

S. Karaveli, R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
[CrossRef] [PubMed]

S. Karaveli, R. Zia, “Strong enhancement of magnetic dipole emission in a multilevel electronic system,” Opt. Lett. 35(20), 3318–3320 (2010).
[CrossRef] [PubMed]

Appl. Phys. B (1)

X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011).
[CrossRef]

J. Appl. Phys. (1)

N. Noginova, G. Zhu, M. Mavy, M. A. Noginov, “Magnetic dipole based systems for probing optical magnetism,” J. Appl. Phys. 103(7), 07E901 (2008).
[CrossRef]

J. Chem. Phys. (2)

R. R. Chance, A. Prock, R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60(7), 2744–2748 (1974).
[CrossRef]

R. R. Chance, A. H. Miller, A. Prock, R. Silbey, “Fluorescence and energy transfer near interfaces: The complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys. 63(4), 1589–1595 (1975).
[CrossRef]

J. Photochem. Photobiol. Chem. (1)

K. Wang, L. Gao, C. Huang, “Optical properties of the highly ordered Langmuir-Blodgett film of a strongly luminescent Eu(III) complex,” J. Photochem. Photobiol. Chem. 156(1-3), 39–43 (2003).
[CrossRef]

J. Phys. Chem. B (1)

J. G. Reifenberger, G. E. Snyder, G. Baym, P. R. Selvin, “Emission polarization of europium and terbium chelates,” J. Phys. Chem. B 107(46), 12862–12873 (2003).
[CrossRef]

JOSA (3)

W. Lukosz, R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” JOSA 67(12), 1607–1615 (1977).
[CrossRef]

W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation,” JOSA 69(11), 1495–1503 (1979).
[CrossRef]

R. M. A. Azzam, “Transformation of Fresnel’s interface reflection and transmission coefficients between normal and oblique incidence,” JOSA 69(4), 590–596 (1979).
[CrossRef]

Nano Lett. (2)

S. N. Sheikholeslami, A. García-Etxarri, J. A. Dionne, “Controlling the Interplay of Electric and Magnetic Modes via Fano-Like Plasmon Resonances,” Nano Lett. 11(9), 3927–3934 (2011).
[CrossRef] [PubMed]

S. Karaveli, A. J. Weinstein, R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano Lett. 13(5), 2264–2269 (2013).
[CrossRef] [PubMed]

Nat Commun (1)

T. H. Taminiau, S. Karaveli, N. F. van Hulst, R. Zia, “Quantifying the magnetic nature of light emission,” Nat Commun 3, 979 (2012).
[CrossRef] [PubMed]

New J. Phys. (1)

M. Durach, A. Rusina, V. I. Klimov, M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rep. (1)

G. W. Ford, W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. A (1)

P. T. Worthing, R. M. Amos, W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A 59(1), 865–872 (1999).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

F. Monroy, F. Ortega, R. G. Rubio, “Dilatational rheology of insoluble polymer monolayers: Poly(vinylacetate),” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7629–7641 (1998).
[CrossRef]

Phys. Rev. Lett. (2)

S. Karaveli, R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Progress in Optics (1)

K. H. Drexhage, “Interaction of light with monomolecular dye layers,” Progress in Optics XII, 162–231 (1974).

Surf. Sci. (1)

J. E. Sipe, “The dipole antenna problem in surface physics: a new approach,” Surf. Sci. 105(2-3), 489–504 (1981).
[CrossRef]

Other (3)

R. Hussain, C. Whitefield, C. Carroll, J. Vella, A. Urbas, and N. Noginova, “Emission of electric and magnetic dipoles in plasmonic systems,” in CLEO Technical Digest, paper QM4H.7 (2012).

L. Novotny and B. Hetcht, Principles of Nano-optics, (Cambridge University, 2007).

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Emission spectrum of Eu(TTA)3(L18) amphiphilic complex. The excitation wavelength is 330 nm. Schematic of the levels is shown in insert.

Fig. 2
Fig. 2

(a) A substrate with thin gold squares in a standard reflection mode. Eu3+ luminescence: (b) total (c) at 610 nm and (d) at 590 nm.

Fig. 3
Fig. 3

(a) Thick and thin (as indicated with circles) patches of gold on glass in reflected light; (b) and (c) Eu3+ luminescence at 610 nm and 590 nm correspondingly.

Fig. 4
Fig. 4

(a) Thick and thin (as indicated with circles) patches of silver on glass in reflected light; (b) and (c) Eu3+ luminescence at 610 nm and 590 nm correspondingly.

Fig. 5
Fig. 5

Schematic of the structure.

Fig. 6
Fig. 6

(a) Normalized total emission rates F e and F m of electric and magnetic dipoles placed into a polymer film with d = 40 nm next to a gold film with a = 50 nm averaged over dipole orientation; (b) Factor f as a function of the metal film thickness and separation of emitter from the metal film h color coded as shown to the right of the graph. The graph is made for d = 40 nm , β = 12 and Γ 0 e / Γ 0 m = 8 .

Fig. 7
Fig. 7

(a) The contrast ratios η and μ (see Eq. (7)) for electric and magnetic transitions for gold film as a function of film thickness; (b) The same for silver film.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

ε d ε m ε d + ε m = ( 1 + 2 i ε m ε m ) 2 i ε m ε m ,
d I e dΩ = P uv P e + P m + P nonem ω e Γ 0e ρ e (θ)= P uv ρ e (θ) F e +( Γ 0m / Γ 0e ) F m +β ,
d I m dΩ = P uv P e + P m + P nonem ω m Γ 0m ρ m (θ)= P uv ρ m (θ)( Γ 0m / Γ 0e ) F e +( Γ 0m / Γ 0e ) F m +β ,
f= ( F e +( Γ 0m / Γ 0e ) F m + β) | a0 ( F e +( Γ 0m / Γ 0e ) F m +β) .
d i =i d 0|| +i d 0 , m i =i m 0|| i m 0 ,
1iexp(2i φ h ),
| 1+itanh(a/ l s ) e 2i φ h | 2 1+tanh (a/ l s ) 2 2sin(2 φ h )tanh(a/ l s ).
η(a)= I e (a) I e (a=0) 1 and μ(a)= I m (a) I m (a=0) 1
ρ ˜ e (k)= 1 ω e Γ 0e d P e dk ,
d P e dk = c k 0 2 n p 2 Re[ k k z ( d e|| 2 k 0 2 n p 2 2 (1+ r 1s e 2i k z (dh) )(1+ r 2s e 2i k z h ) 1 r 1s r 2s e 2i k z d + d e|| 2 k z 2 2 (1 r 1p e 2i k z (dh) )(1 r 2p e 2i k z h ) 1 r 1p r 2p e 2i k z d + d e 2 k 2 (1+ r 1p e 2i k z (dh) )(1+ r 2p e 2i k z h ) 1 r 1p r 2p e 2i k z d ) ].
ρ ˜ m (k)= 1 ω m Γ 0m d P m dk ,
d P m dk = c k 0 2 Re[ k k z ( d m|| 2 k 0 2 n p 2 2 (1+ r 1p e 2i k z (dh) )(1+ r 2p e 2i k z h ) 1 r 1p r 2p e 2i k z d + d m|| 2 k z 2 2 (1 r 1s e 2i k z (dh) )(1 r 2x e 2i k z h ) 1 r 1s r 2s e 2i k z d + d m 2 k 2 (1+ r 1s e 2i k z (dh) )(1+ r 2s e 2i k z h ) 1 r 1s r 2s e 2i k z d ) ].
d I e dΩ = c 4π | E(θ) | 2 ¯ r 2 =ω Γ 0e ρ e (θ).
ρ e (θ)= 1 16π cos 2 θ ( n p 2 sin 2 θ) ( | t s+ | 2 + | t p+ | 2 sin 2 θ+ | t p | 2 ( n p 2 sin 2 θ ) ).
d I m dΩ = c 4π | H(θ) | 2 ¯ r 2 =ω Γ 0m ρ m (θ).
ρ m (θ)= 1 16π cos 2 θ ( n p 2 sin 2 θ ) ( n p 4 | t p+ | 2 + | t s+ | 2 sin 2 θ+ | t s | 2 ( n p 2 sin 2 θ) ).
t p,s± = t 21 e i φ dh [ 1±R(a) e 2i φ h ] 1+ r 12 R(a) e 2i φ d ,
R(a)= r 23 + r 34 e ϕ m (a) 1+ r 23 r 34 e ϕ m (a) ,

Metrics