Abstract

It is well known that spectroscopic measurements suffer from an interference known as stray light, causing spectral distortion that reduces measurement accuracy. In severe situations, stray light may even obscure the existence of spectral lines. Here a novel general method is presented, named Periodic Shadowing, that enables effective stray light elimination in spectroscopy and experimental results are provided to demonstrate its capabilities and versatility. Besides its efficiency, implementing it in a spectroscopic arrangement comes at virtually no added experimental complexity.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008).
    [CrossRef] [PubMed]
  2. H. Karttunen, P. Kröger, H. Oja, M. Poutanan, and K. J. Donner, Fundamental Astronomy, 5th ed. (Springer, 2007).
  3. G. A. Kriss, J. M. Shull, W. Oegerle, W. Zheng, A. F. Davidsen, A. Songaila, J. Tumlinson, L. L. Cowie, J.-M. Deharveng, S. D. Friedman, M. L. Giroux, R. F. Green, J. B. Hutchings, E. B. Jenkins, J. W. Kruk, H. W. Moos, D. C. Morton, K. R. Sembach, T. M. Tripp, “Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer,” Science 293(5532), 1112–1116 (2001).
    [CrossRef] [PubMed]
  4. D. Charbonneau, T. M. Brown, R. W. Noyes, R. L. Gilliland, “Detection of an extrasolar planet atmosphere,” Astrophys. J. 568(1), 377–384 (2002).
    [CrossRef]
  5. D. Sudarsky, A. Burrows, P. Pinto, “Albedo and reflection spectra of extrasolar giant planets,” Astrophys. J. 538(2), 885–903 (2000).
    [CrossRef]
  6. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 3rd ed. (Taylor and Francis, 1996).
  7. C. N. Banwell, Fundamentals of Molecular Spectroscopy, 4th ed. (McGraw-Hill, 1994).
  8. D. A. Long, The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules (John Wiley, 2002).
  9. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
    [CrossRef] [PubMed]
  10. J. M. Hollas, Modern Spectroscopy, 4th ed. (John Wiley, 2004).
  11. V. A. Fassel, J. M. Katzenberger, R. K. Winge, “Effectiveness of interference filters for reduction of stray light effects in atomic emission spectrometry,” Appl. Spectrosc. 33(1), 1–5 (1979).
    [CrossRef]
  12. P. W. J. M. Boumans, “A century of spectral interferences in atomic emission spectroscopy - Can we master them with modern apparatus and approaches?” J. Anal. Chem. 324(5), 397–425 (1986).
    [CrossRef]
  13. G. F. Larson, V. A. Fassel, “Line broadening and radiative recombination background interferences in inductively coupled plasma-atomic emission spectroscopy,” Appl. Spectrosc. 33(6), 592–599 (1979).
    [CrossRef]
  14. R. Donaldson, “Stray light in monochromators,” J. Sci. Instrum. 29(5), 150–153 (1952).
    [CrossRef]
  15. S. Bykov, I. Lednev, A. Ianoul, A. Mikhonin, C. Munro, S. A. Asher, “Steady-state and transient ultraviolet resonance Raman spectrometer for the 193-270 nm spectral region,” Appl. Spectrosc. 59(12), 1541–1552 (2005).
    [CrossRef] [PubMed]
  16. V. A. Fassel, “Quantitative elemental analyses by plasma emission spectroscopy,” Science 202(4364), 183–191 (1978).
    [CrossRef] [PubMed]
  17. S. Nie, S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [CrossRef] [PubMed]
  18. P. W. J. M. Boumans, “Inductively coupled plasma-atomic emission spectroscopy: Its present and future position in analytical chemistry,” Fresenius J. Anal. Chem. 299(5), 337–361 (1979).
    [CrossRef]
  19. G. Larson, V. Fassel, R. Winge, R. Kniseley, “Ultratrace analyses by optical emission spectroscopy: The stray light problem,” Appl. Spectrosc. 30(4), 384–391 (1976).
    [CrossRef]
  20. R. E. Poulson, “Test methods in spectrophotometry: Stray-light determination,” Appl. Opt. 3(1), 99–104 (1964).
    [CrossRef]
  21. D. Landon, S. P. S. Porto, “A tandem spectrometer to detect laser-excited Raman radiation,” Appl. Opt. 4(6), 762–763 (1965).
    [CrossRef]
  22. G. Mestl, “In situ Raman spectroscopy – a valuable tool to understand operating catalysts,” J. Mol. Catal. Chem. 158(1), 45–65 (2000).
    [CrossRef]
  23. F. Tuinstra, J. L. Koenig, “Raman spectrum of graphite,” J. Chem. Phys. 53(3), 1126–1130 (1970).
    [CrossRef]
  24. D. G. Cameron, D. J. Moffatt, “A generalized approach to derivative spectroscopy,” Appl. Spectrosc. 41(4), 539–544 (1987).
    [CrossRef]
  25. M. L. Meade, “Advances in lock-in amplifiers,” J. Phys. E Sci. Instrum. 15(4), 395–403 (1982).
    [CrossRef]
  26. M. A. A. Neil, R. Jûskaitis, T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22(24), 1905–1907 (1997).
    [CrossRef] [PubMed]
  27. H. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(9), 3809–3814 (2011).
    [CrossRef] [PubMed]
  28. S. Roy, J. R. Gord, A. K. Patnik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci. 36(2), 280–306 (2010).
    [CrossRef]
  29. M. Müller, A. Zumbusch, “Coherent anti-Stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2156–2170 (2007).
    [CrossRef] [PubMed]
  30. B. von Vacano, L. Meyer, M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
    [CrossRef]
  31. A. Bohlin, B. D. Patterson, C. J. Kliewer, “Communication: Simplified two-beam rotational CARS signal generation demonstrated in 1D,” J. Chem. Phys. 138(8), 081102 (2013).
    [CrossRef] [PubMed]

2013 (1)

A. Bohlin, B. D. Patterson, C. J. Kliewer, “Communication: Simplified two-beam rotational CARS signal generation demonstrated in 1D,” J. Chem. Phys. 138(8), 081102 (2013).
[CrossRef] [PubMed]

2011 (1)

H. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(9), 3809–3814 (2011).
[CrossRef] [PubMed]

2010 (1)

S. Roy, J. R. Gord, A. K. Patnik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci. 36(2), 280–306 (2010).
[CrossRef]

2008 (1)

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008).
[CrossRef] [PubMed]

2007 (2)

M. Müller, A. Zumbusch, “Coherent anti-Stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2156–2170 (2007).
[CrossRef] [PubMed]

B. von Vacano, L. Meyer, M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
[CrossRef]

2006 (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

2005 (1)

2002 (1)

D. Charbonneau, T. M. Brown, R. W. Noyes, R. L. Gilliland, “Detection of an extrasolar planet atmosphere,” Astrophys. J. 568(1), 377–384 (2002).
[CrossRef]

2001 (1)

G. A. Kriss, J. M. Shull, W. Oegerle, W. Zheng, A. F. Davidsen, A. Songaila, J. Tumlinson, L. L. Cowie, J.-M. Deharveng, S. D. Friedman, M. L. Giroux, R. F. Green, J. B. Hutchings, E. B. Jenkins, J. W. Kruk, H. W. Moos, D. C. Morton, K. R. Sembach, T. M. Tripp, “Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer,” Science 293(5532), 1112–1116 (2001).
[CrossRef] [PubMed]

2000 (2)

D. Sudarsky, A. Burrows, P. Pinto, “Albedo and reflection spectra of extrasolar giant planets,” Astrophys. J. 538(2), 885–903 (2000).
[CrossRef]

G. Mestl, “In situ Raman spectroscopy – a valuable tool to understand operating catalysts,” J. Mol. Catal. Chem. 158(1), 45–65 (2000).
[CrossRef]

1997 (2)

S. Nie, S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

M. A. A. Neil, R. Jûskaitis, T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22(24), 1905–1907 (1997).
[CrossRef] [PubMed]

1987 (1)

1986 (1)

P. W. J. M. Boumans, “A century of spectral interferences in atomic emission spectroscopy - Can we master them with modern apparatus and approaches?” J. Anal. Chem. 324(5), 397–425 (1986).
[CrossRef]

1982 (1)

M. L. Meade, “Advances in lock-in amplifiers,” J. Phys. E Sci. Instrum. 15(4), 395–403 (1982).
[CrossRef]

1979 (3)

1978 (1)

V. A. Fassel, “Quantitative elemental analyses by plasma emission spectroscopy,” Science 202(4364), 183–191 (1978).
[CrossRef] [PubMed]

1976 (1)

1970 (1)

F. Tuinstra, J. L. Koenig, “Raman spectrum of graphite,” J. Chem. Phys. 53(3), 1126–1130 (1970).
[CrossRef]

1965 (1)

1964 (1)

1952 (1)

R. Donaldson, “Stray light in monochromators,” J. Sci. Instrum. 29(5), 150–153 (1952).
[CrossRef]

Ansari, D. O.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008).
[CrossRef] [PubMed]

Asher, S. A.

Bohlin, A.

A. Bohlin, B. D. Patterson, C. J. Kliewer, “Communication: Simplified two-beam rotational CARS signal generation demonstrated in 1D,” J. Chem. Phys. 138(8), 081102 (2013).
[CrossRef] [PubMed]

Boumans, P. W. J. M.

P. W. J. M. Boumans, “A century of spectral interferences in atomic emission spectroscopy - Can we master them with modern apparatus and approaches?” J. Anal. Chem. 324(5), 397–425 (1986).
[CrossRef]

P. W. J. M. Boumans, “Inductively coupled plasma-atomic emission spectroscopy: Its present and future position in analytical chemistry,” Fresenius J. Anal. Chem. 299(5), 337–361 (1979).
[CrossRef]

Brown, T. M.

D. Charbonneau, T. M. Brown, R. W. Noyes, R. L. Gilliland, “Detection of an extrasolar planet atmosphere,” Astrophys. J. 568(1), 377–384 (2002).
[CrossRef]

Burrows, A.

D. Sudarsky, A. Burrows, P. Pinto, “Albedo and reflection spectra of extrasolar giant planets,” Astrophys. J. 538(2), 885–903 (2000).
[CrossRef]

Bykov, S.

Cameron, D. G.

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Charbonneau, D.

D. Charbonneau, T. M. Brown, R. W. Noyes, R. L. Gilliland, “Detection of an extrasolar planet atmosphere,” Astrophys. J. 568(1), 377–384 (2002).
[CrossRef]

Chen, G. Z.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008).
[CrossRef] [PubMed]

Cowie, L. L.

G. A. Kriss, J. M. Shull, W. Oegerle, W. Zheng, A. F. Davidsen, A. Songaila, J. Tumlinson, L. L. Cowie, J.-M. Deharveng, S. D. Friedman, M. L. Giroux, R. F. Green, J. B. Hutchings, E. B. Jenkins, J. W. Kruk, H. W. Moos, D. C. Morton, K. R. Sembach, T. M. Tripp, “Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer,” Science 293(5532), 1112–1116 (2001).
[CrossRef] [PubMed]

Davidsen, A. F.

G. A. Kriss, J. M. Shull, W. Oegerle, W. Zheng, A. F. Davidsen, A. Songaila, J. Tumlinson, L. L. Cowie, J.-M. Deharveng, S. D. Friedman, M. L. Giroux, R. F. Green, J. B. Hutchings, E. B. Jenkins, J. W. Kruk, H. W. Moos, D. C. Morton, K. R. Sembach, T. M. Tripp, “Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer,” Science 293(5532), 1112–1116 (2001).
[CrossRef] [PubMed]

Deharveng, J.-M.

G. A. Kriss, J. M. Shull, W. Oegerle, W. Zheng, A. F. Davidsen, A. Songaila, J. Tumlinson, L. L. Cowie, J.-M. Deharveng, S. D. Friedman, M. L. Giroux, R. F. Green, J. B. Hutchings, E. B. Jenkins, J. W. Kruk, H. W. Moos, D. C. Morton, K. R. Sembach, T. M. Tripp, “Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer,” Science 293(5532), 1112–1116 (2001).
[CrossRef] [PubMed]

Donaldson, R.

R. Donaldson, “Stray light in monochromators,” J. Sci. Instrum. 29(5), 150–153 (1952).
[CrossRef]

Emory, S. R.

S. Nie, S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Fassel, V.

Fassel, V. A.

Ferrari, A. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Friedman, S. D.

G. A. Kriss, J. M. Shull, W. Oegerle, W. Zheng, A. F. Davidsen, A. Songaila, J. Tumlinson, L. L. Cowie, J.-M. Deharveng, S. D. Friedman, M. L. Giroux, R. F. Green, J. B. Hutchings, E. B. Jenkins, J. W. Kruk, H. W. Moos, D. C. Morton, K. R. Sembach, T. M. Tripp, “Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer,” Science 293(5532), 1112–1116 (2001).
[CrossRef] [PubMed]

Geim, A. K.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Gilliland, R. L.

D. Charbonneau, T. M. Brown, R. W. Noyes, R. L. Gilliland, “Detection of an extrasolar planet atmosphere,” Astrophys. J. 568(1), 377–384 (2002).
[CrossRef]

Giroux, M. L.

G. A. Kriss, J. M. Shull, W. Oegerle, W. Zheng, A. F. Davidsen, A. Songaila, J. Tumlinson, L. L. Cowie, J.-M. Deharveng, S. D. Friedman, M. L. Giroux, R. F. Green, J. B. Hutchings, E. B. Jenkins, J. W. Kruk, H. W. Moos, D. C. Morton, K. R. Sembach, T. M. Tripp, “Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer,” Science 293(5532), 1112–1116 (2001).
[CrossRef] [PubMed]

Gord, J. R.

S. Roy, J. R. Gord, A. K. Patnik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci. 36(2), 280–306 (2010).
[CrossRef]

Green, R. F.

G. A. Kriss, J. M. Shull, W. Oegerle, W. Zheng, A. F. Davidsen, A. Songaila, J. Tumlinson, L. L. Cowie, J.-M. Deharveng, S. D. Friedman, M. L. Giroux, R. F. Green, J. B. Hutchings, E. B. Jenkins, J. W. Kruk, H. W. Moos, D. C. Morton, K. R. Sembach, T. M. Tripp, “Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer,” Science 293(5532), 1112–1116 (2001).
[CrossRef] [PubMed]

Hutchings, J. B.

G. A. Kriss, J. M. Shull, W. Oegerle, W. Zheng, A. F. Davidsen, A. Songaila, J. Tumlinson, L. L. Cowie, J.-M. Deharveng, S. D. Friedman, M. L. Giroux, R. F. Green, J. B. Hutchings, E. B. Jenkins, J. W. Kruk, H. W. Moos, D. C. Morton, K. R. Sembach, T. M. Tripp, “Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer,” Science 293(5532), 1112–1116 (2001).
[CrossRef] [PubMed]

Ianoul, A.

Jenkins, E. B.

G. A. Kriss, J. M. Shull, W. Oegerle, W. Zheng, A. F. Davidsen, A. Songaila, J. Tumlinson, L. L. Cowie, J.-M. Deharveng, S. D. Friedman, M. L. Giroux, R. F. Green, J. B. Hutchings, E. B. Jenkins, J. W. Kruk, H. W. Moos, D. C. Morton, K. R. Sembach, T. M. Tripp, “Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer,” Science 293(5532), 1112–1116 (2001).
[CrossRef] [PubMed]

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Jûskaitis, R.

Katzenberger, J. M.

Kliewer, C. J.

A. Bohlin, B. D. Patterson, C. J. Kliewer, “Communication: Simplified two-beam rotational CARS signal generation demonstrated in 1D,” J. Chem. Phys. 138(8), 081102 (2013).
[CrossRef] [PubMed]

Kniseley, R.

Koenig, J. L.

F. Tuinstra, J. L. Koenig, “Raman spectrum of graphite,” J. Chem. Phys. 53(3), 1126–1130 (1970).
[CrossRef]

Kriss, G. A.

G. A. Kriss, J. M. Shull, W. Oegerle, W. Zheng, A. F. Davidsen, A. Songaila, J. Tumlinson, L. L. Cowie, J.-M. Deharveng, S. D. Friedman, M. L. Giroux, R. F. Green, J. B. Hutchings, E. B. Jenkins, J. W. Kruk, H. W. Moos, D. C. Morton, K. R. Sembach, T. M. Tripp, “Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer,” Science 293(5532), 1112–1116 (2001).
[CrossRef] [PubMed]

Kruk, J. W.

G. A. Kriss, J. M. Shull, W. Oegerle, W. Zheng, A. F. Davidsen, A. Songaila, J. Tumlinson, L. L. Cowie, J.-M. Deharveng, S. D. Friedman, M. L. Giroux, R. F. Green, J. B. Hutchings, E. B. Jenkins, J. W. Kruk, H. W. Moos, D. C. Morton, K. R. Sembach, T. M. Tripp, “Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer,” Science 293(5532), 1112–1116 (2001).
[CrossRef] [PubMed]

Landon, D.

Larson, G.

Larson, G. F.

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Lednev, I.

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Meade, M. L.

M. L. Meade, “Advances in lock-in amplifiers,” J. Phys. E Sci. Instrum. 15(4), 395–403 (1982).
[CrossRef]

Mestl, G.

G. Mestl, “In situ Raman spectroscopy – a valuable tool to understand operating catalysts,” J. Mol. Catal. Chem. 158(1), 45–65 (2000).
[CrossRef]

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Meyer, L.

B. von Vacano, L. Meyer, M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
[CrossRef]

Mikhonin, A.

Moffatt, D. J.

Moos, H. W.

G. A. Kriss, J. M. Shull, W. Oegerle, W. Zheng, A. F. Davidsen, A. Songaila, J. Tumlinson, L. L. Cowie, J.-M. Deharveng, S. D. Friedman, M. L. Giroux, R. F. Green, J. B. Hutchings, E. B. Jenkins, J. W. Kruk, H. W. Moos, D. C. Morton, K. R. Sembach, T. M. Tripp, “Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer,” Science 293(5532), 1112–1116 (2001).
[CrossRef] [PubMed]

Morton, D. C.

G. A. Kriss, J. M. Shull, W. Oegerle, W. Zheng, A. F. Davidsen, A. Songaila, J. Tumlinson, L. L. Cowie, J.-M. Deharveng, S. D. Friedman, M. L. Giroux, R. F. Green, J. B. Hutchings, E. B. Jenkins, J. W. Kruk, H. W. Moos, D. C. Morton, K. R. Sembach, T. M. Tripp, “Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer,” Science 293(5532), 1112–1116 (2001).
[CrossRef] [PubMed]

Motzkus, M.

B. von Vacano, L. Meyer, M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
[CrossRef]

Müller, M.

M. Müller, A. Zumbusch, “Coherent anti-Stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2156–2170 (2007).
[CrossRef] [PubMed]

Munro, C.

Neil, M. A. A.

Nie, S.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008).
[CrossRef] [PubMed]

S. Nie, S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Novoselov, K. S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Noyes, R. W.

D. Charbonneau, T. M. Brown, R. W. Noyes, R. L. Gilliland, “Detection of an extrasolar planet atmosphere,” Astrophys. J. 568(1), 377–384 (2002).
[CrossRef]

Oegerle, W.

G. A. Kriss, J. M. Shull, W. Oegerle, W. Zheng, A. F. Davidsen, A. Songaila, J. Tumlinson, L. L. Cowie, J.-M. Deharveng, S. D. Friedman, M. L. Giroux, R. F. Green, J. B. Hutchings, E. B. Jenkins, J. W. Kruk, H. W. Moos, D. C. Morton, K. R. Sembach, T. M. Tripp, “Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer,” Science 293(5532), 1112–1116 (2001).
[CrossRef] [PubMed]

Oliver, A. E.

H. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(9), 3809–3814 (2011).
[CrossRef] [PubMed]

Parikh, A. N.

H. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(9), 3809–3814 (2011).
[CrossRef] [PubMed]

Patnik, A. K.

S. Roy, J. R. Gord, A. K. Patnik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci. 36(2), 280–306 (2010).
[CrossRef]

Patterson, B. D.

A. Bohlin, B. D. Patterson, C. J. Kliewer, “Communication: Simplified two-beam rotational CARS signal generation demonstrated in 1D,” J. Chem. Phys. 138(8), 081102 (2013).
[CrossRef] [PubMed]

Peng, X.-H.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008).
[CrossRef] [PubMed]

Pinto, P.

D. Sudarsky, A. Burrows, P. Pinto, “Albedo and reflection spectra of extrasolar giant planets,” Astrophys. J. 538(2), 885–903 (2000).
[CrossRef]

Piscanec, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Porto, S. P. S.

Poulson, R. E.

Qian, X.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008).
[CrossRef] [PubMed]

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Roy, S.

S. Roy, J. R. Gord, A. K. Patnik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci. 36(2), 280–306 (2010).
[CrossRef]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Sembach, K. R.

G. A. Kriss, J. M. Shull, W. Oegerle, W. Zheng, A. F. Davidsen, A. Songaila, J. Tumlinson, L. L. Cowie, J.-M. Deharveng, S. D. Friedman, M. L. Giroux, R. F. Green, J. B. Hutchings, E. B. Jenkins, J. W. Kruk, H. W. Moos, D. C. Morton, K. R. Sembach, T. M. Tripp, “Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer,” Science 293(5532), 1112–1116 (2001).
[CrossRef] [PubMed]

Shin, D. M.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008).
[CrossRef] [PubMed]

Shull, J. M.

G. A. Kriss, J. M. Shull, W. Oegerle, W. Zheng, A. F. Davidsen, A. Songaila, J. Tumlinson, L. L. Cowie, J.-M. Deharveng, S. D. Friedman, M. L. Giroux, R. F. Green, J. B. Hutchings, E. B. Jenkins, J. W. Kruk, H. W. Moos, D. C. Morton, K. R. Sembach, T. M. Tripp, “Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer,” Science 293(5532), 1112–1116 (2001).
[CrossRef] [PubMed]

Simmons, B. A.

H. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(9), 3809–3814 (2011).
[CrossRef] [PubMed]

Singh, S.

H. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(9), 3809–3814 (2011).
[CrossRef] [PubMed]

Songaila, A.

G. A. Kriss, J. M. Shull, W. Oegerle, W. Zheng, A. F. Davidsen, A. Songaila, J. Tumlinson, L. L. Cowie, J.-M. Deharveng, S. D. Friedman, M. L. Giroux, R. F. Green, J. B. Hutchings, E. B. Jenkins, J. W. Kruk, H. W. Moos, D. C. Morton, K. R. Sembach, T. M. Tripp, “Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer,” Science 293(5532), 1112–1116 (2001).
[CrossRef] [PubMed]

Sudarsky, D.

D. Sudarsky, A. Burrows, P. Pinto, “Albedo and reflection spectra of extrasolar giant planets,” Astrophys. J. 538(2), 885–903 (2000).
[CrossRef]

Tripp, T. M.

G. A. Kriss, J. M. Shull, W. Oegerle, W. Zheng, A. F. Davidsen, A. Songaila, J. Tumlinson, L. L. Cowie, J.-M. Deharveng, S. D. Friedman, M. L. Giroux, R. F. Green, J. B. Hutchings, E. B. Jenkins, J. W. Kruk, H. W. Moos, D. C. Morton, K. R. Sembach, T. M. Tripp, “Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer,” Science 293(5532), 1112–1116 (2001).
[CrossRef] [PubMed]

Tuinstra, F.

F. Tuinstra, J. L. Koenig, “Raman spectrum of graphite,” J. Chem. Phys. 53(3), 1126–1130 (1970).
[CrossRef]

Tumlinson, J.

G. A. Kriss, J. M. Shull, W. Oegerle, W. Zheng, A. F. Davidsen, A. Songaila, J. Tumlinson, L. L. Cowie, J.-M. Deharveng, S. D. Friedman, M. L. Giroux, R. F. Green, J. B. Hutchings, E. B. Jenkins, J. W. Kruk, H. W. Moos, D. C. Morton, K. R. Sembach, T. M. Tripp, “Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer,” Science 293(5532), 1112–1116 (2001).
[CrossRef] [PubMed]

Volponi, J. V.

H. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(9), 3809–3814 (2011).
[CrossRef] [PubMed]

von Vacano, B.

B. von Vacano, L. Meyer, M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
[CrossRef]

Wang, M. D.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008).
[CrossRef] [PubMed]

Wilson, T.

Winge, R.

Winge, R. K.

Wu, H.

H. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(9), 3809–3814 (2011).
[CrossRef] [PubMed]

Yang, L.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008).
[CrossRef] [PubMed]

Yin-Goen, Q.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008).
[CrossRef] [PubMed]

Young, A. N.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008).
[CrossRef] [PubMed]

Zheng, W.

G. A. Kriss, J. M. Shull, W. Oegerle, W. Zheng, A. F. Davidsen, A. Songaila, J. Tumlinson, L. L. Cowie, J.-M. Deharveng, S. D. Friedman, M. L. Giroux, R. F. Green, J. B. Hutchings, E. B. Jenkins, J. W. Kruk, H. W. Moos, D. C. Morton, K. R. Sembach, T. M. Tripp, “Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer,” Science 293(5532), 1112–1116 (2001).
[CrossRef] [PubMed]

Zumbusch, A.

M. Müller, A. Zumbusch, “Coherent anti-Stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2156–2170 (2007).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Spectrosc. (5)

Astrophys. J. (2)

D. Charbonneau, T. M. Brown, R. W. Noyes, R. L. Gilliland, “Detection of an extrasolar planet atmosphere,” Astrophys. J. 568(1), 377–384 (2002).
[CrossRef]

D. Sudarsky, A. Burrows, P. Pinto, “Albedo and reflection spectra of extrasolar giant planets,” Astrophys. J. 538(2), 885–903 (2000).
[CrossRef]

ChemPhysChem (1)

M. Müller, A. Zumbusch, “Coherent anti-Stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2156–2170 (2007).
[CrossRef] [PubMed]

Fresenius J. Anal. Chem. (1)

P. W. J. M. Boumans, “Inductively coupled plasma-atomic emission spectroscopy: Its present and future position in analytical chemistry,” Fresenius J. Anal. Chem. 299(5), 337–361 (1979).
[CrossRef]

J. Anal. Chem. (1)

P. W. J. M. Boumans, “A century of spectral interferences in atomic emission spectroscopy - Can we master them with modern apparatus and approaches?” J. Anal. Chem. 324(5), 397–425 (1986).
[CrossRef]

J. Chem. Phys. (2)

F. Tuinstra, J. L. Koenig, “Raman spectrum of graphite,” J. Chem. Phys. 53(3), 1126–1130 (1970).
[CrossRef]

A. Bohlin, B. D. Patterson, C. J. Kliewer, “Communication: Simplified two-beam rotational CARS signal generation demonstrated in 1D,” J. Chem. Phys. 138(8), 081102 (2013).
[CrossRef] [PubMed]

J. Mol. Catal. Chem. (1)

G. Mestl, “In situ Raman spectroscopy – a valuable tool to understand operating catalysts,” J. Mol. Catal. Chem. 158(1), 45–65 (2000).
[CrossRef]

J. Phys. E Sci. Instrum. (1)

M. L. Meade, “Advances in lock-in amplifiers,” J. Phys. E Sci. Instrum. 15(4), 395–403 (1982).
[CrossRef]

J. Raman Spectrosc. (1)

B. von Vacano, L. Meyer, M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
[CrossRef]

J. Sci. Instrum. (1)

R. Donaldson, “Stray light in monochromators,” J. Sci. Instrum. 29(5), 150–153 (1952).
[CrossRef]

Nat. Biotechnol. (1)

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(9), 3809–3814 (2011).
[CrossRef] [PubMed]

Pror. Energy Combust. Sci. (1)

S. Roy, J. R. Gord, A. K. Patnik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci. 36(2), 280–306 (2010).
[CrossRef]

Science (3)

V. A. Fassel, “Quantitative elemental analyses by plasma emission spectroscopy,” Science 202(4364), 183–191 (1978).
[CrossRef] [PubMed]

S. Nie, S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

G. A. Kriss, J. M. Shull, W. Oegerle, W. Zheng, A. F. Davidsen, A. Songaila, J. Tumlinson, L. L. Cowie, J.-M. Deharveng, S. D. Friedman, M. L. Giroux, R. F. Green, J. B. Hutchings, E. B. Jenkins, J. W. Kruk, H. W. Moos, D. C. Morton, K. R. Sembach, T. M. Tripp, “Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer,” Science 293(5532), 1112–1116 (2001).
[CrossRef] [PubMed]

Other (5)

J. M. Hollas, Modern Spectroscopy, 4th ed. (John Wiley, 2004).

H. Karttunen, P. Kröger, H. Oja, M. Poutanan, and K. J. Donner, Fundamental Astronomy, 5th ed. (Springer, 2007).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 3rd ed. (Taylor and Francis, 1996).

C. N. Banwell, Fundamentals of Molecular Spectroscopy, 4th ed. (McGraw-Hill, 1994).

D. A. Long, The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules (John Wiley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic view of the experimental arrangement. (a) The inserted Ronchi pattern at the entrance slit is the only hardware modification to the spectrograph. (b) Unprocessed PS spectrum of an argon discharge lamp in which the superimposed periodic shadows can be observed.

Fig. 2
Fig. 2

Spectrum from a cadmium discharge lamp, acquired using both PS and conventional spectroscopy. (a) With its ability to distinguish between stray light and signal photons on a pixel level, PS generates a spectrum with line contrasts that greatly exceed the conventional ones (note the logarithmic scale). Both spectra are scaled between zero and unity. (b) Ratio between conventional and PS spectrum, revealing the complex structure of the stray light intensity, increasing nearby line-rich regions. This behavior demonstrates how the stray light level cannot be assessed indirectly by evaluating the baseline in vacant regions of the spectrum. (c)-(e) Weak spectral lines residing on the wings of strong emission lines are problematic to monitor accurately due to the locally elevated levels of stray light. PS significantly improves the signal-to-background values for such weak lines (indicated by the arrows).

Fig. 3
Fig. 3

Solar absorption spectrum, acquired using either conventional spectroscopy or PS. (a) Conventional spectrum of the sun. The significant amount of stray light is believed to arise from ruling deficiencies. (b) The corresponding PS spectrum, characterized by sharper, stronger absorption lines. The inset highlights the considerable difference in intensity for the prominent Fraunhofer lines of sodium at 5890 Å (D2) and 5896 Å (D1).

Fig. 4
Fig. 4

Comparison between PS and conventional laser-induced rotational Raman spectroscopy in a gaseous medium. (a) and (b) Raman spectra of pure nitrogen and oxygen, respectively. Since Raman scattering is considerably weaker than Rayleigh scattering, stray light suppression becomes a necessity for the detection of Raman transitions at low wavenumbers. Mie and Tyndall scattering as well as reflections are also contributing to the elastic light in most practical measurement situations. The PS data illustrates the prospect of increasing the operating range of Raman spectroscopy, to permit accurate monitoring of lines closer to the laser line. (c) and (d) Theoretical Raman spectra fitted against PS spectra, showing excellent agreement.

Fig. 5
Fig. 5

Comparison of rotational CARS spectra acquired using either PS or conventional spectroscopy. (a) CARS evaluation is commonly made on a signal spectrum from which a background spectrum (recorded while blocking the Stokes beam) is subtracted. By implementing PS, the requisite for such a second measurement is circumvented. (b) Residual plot, showing the close agreement between background-corrected CARS and PS, experimentally verifying a proper operation of PS for coherent signals. (c) Example of a spectrum from a two-beam CARS measurement, where the polarization of the spatially overlapping probe beam is perturbed as it passes through an optical window, in an attempt to mimic undesired effects commonly encountered in e.g. high-pressure measurements, where optical ports are a necessity. (d) Example of an instantaneously acquired CO2 spectrum, recorded under similar conditions. Due to temporal fluctuations of the conditions in the measurement volume, accurate background readings cannot be attained without PS.

Fig. 6
Fig. 6

Comparison of the noise levels for rotational CARS spectra of air. (a) Unprocessed CARS spectrum. (b) Background-corrected CARS spectrum. (c) Corresponding PS spectrum. The green frame indicates the region of interest (ROI) for the analysis, chosen for being free of spectral lines. Each spectrum is normalized prior to the statistical analysis, having values between zero and unity. The S/N can therefore be estimated directly from the noise level (being inversely proportional to the standard deviation). (d)-(f) Histograms of the ROI after full vertical binning (FVB), revealing a reduction of the noise by approximately a factor of 2 with PS. (g)-(i) Histograms of the ROI with no pixel binning, suggesting an even greater improvement in S/N.

Fig. 7
Fig. 7

Example of the processing steps of PS. Each graph is accompanied by its corresponding Fourier transforms, all shown in a logarithmic scale (x-axis truncated). (a) Unprocessed rotational CARS spectrum. (b) Corresponding PS spectrum. (c) Intensity variations along the columns “A” (blue). (d) Intensity variations along the columns “B” (red). (e) References signals, 90 degrees shifted in phase. (f) Product of the first reference signal and both “A” and “B”. (g) Product of second reference signal and both “A” and “B”. (h) Result of the PS algorithm, which extracts the envelope (AA) of column “A”. The low-pass filter (LPF) is shown in a linear scale. (i) Difference in noise level (column B) between PS (black) and conventional spectroscopy (red), where the latter is offset-adjusted, for reasons of clarity.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S C ( R ) = A C ( R ) sin ( 2 π f S i g R + φ C ) + B C ( R )
S X , R e f ( R ) = sin ( 2 π f S i g R + φ R e f )
S Y , R e f ( R ) = sin ( 2 π f S i g R + φ R e f + π / 2 )
S X , C ( R ) = S C ( R ) S X , R e f = 1 2 A C ( R ) [ cos ( φ C φ R e f ) cos ( 4 π f S i g R + φ C + φ R e f ) ] + B C ( R ) sin ( 2 π f S i g R + φ R e f )
S Y , C ( R ) = S C ( R ) S Y , R e f = 1 2 A C ( R ) [ sin ( φ C φ R e f ) sin ( 4 π f S i g R + φ C + φ R e f ) ] + B C ( R ) sin ( 2 π f S i g R + φ R e f + π / 2 )
X C ( R ) = 1 2 A ˜ C ( R ) cos ( φ C φ R e f )
Y C ( R ) = 1 2 A ˜ C ( R ) sin ( φ C φ R e f )
A ˜ C ( R ) = 2 X C ( R ) 2 + Y C ( R ) 2
PS= ( I 0 I 2π/3 ) 2 + ( I 0 I 4π/3 ) 2 + ( I 2π/3 I 4π/3 ) 2

Metrics