Abstract

Flame-enhanced laser-induced breakdown spectroscopy (LIBS) was investigated to improve the sensitivity of LIBS. It was realized by generating laser-induced plasmas in the blue outer envelope of a neutral oxy-acetylene flame. Fast imaging and temporally resolved spectroscopy of the plasmas were carried out. Enhanced intensity of up to 4 times and narrowed full width at half maximum (FWHM) down to 60% for emission lines were observed. Electron temperatures and densities were calculated to investigate the flame effects on plasma evolution. These calculated electron temperatures and densities showed that high-temperature and low-density plasmas were achieved before 4 µs in the flame environment, which has the potential to improve LIBS sensitivity and spectral resolution.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. M. Andrzej, P. Vincenzo, and S. Israel, Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications (Cambridge University, 2006).
  2. J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 56(6), 851–864 (2001).
    [CrossRef]
  3. A. Kumar, F. Y. Yueh, J. P. Singh, S. Burgess, “Characterization of malignant tissue cells by laser-induced breakdown spectroscopy,” Appl. Opt. 43(28), 5399–5403 (2004).
    [CrossRef] [PubMed]
  4. M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28(5), 935–943 (2002).
    [CrossRef] [PubMed]
  5. K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50(2), 222–233 (1996).
    [CrossRef]
  6. J. L. Gottfried, F. C. De Lucia, C. A. Munson, A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
    [CrossRef] [PubMed]
  7. S. Tzortzakis, D. Anglos, D. Gray, “Ultraviolet laser filaments for remote laser-induced breakdown spectroscopy (LIBS) analysis: applications in cultural heritage monitoring,” Opt. Lett. 31(8), 1139–1141 (2006).
    [CrossRef] [PubMed]
  8. V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
    [CrossRef]
  9. D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Lett. 15(20), 12905–12915 (2007).
  10. J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B. W. Colston, J. C. Carter, S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Opt. 42(30), 6099–6106 (2003).
    [CrossRef] [PubMed]
  11. X. K. Shen, J. Sun, H. Ling, Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
    [CrossRef]
  12. A. M. Popov, F. Colao, R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
    [CrossRef]
  13. L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
    [CrossRef]
  14. X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, Y. X. Han, “Optical emission in magnetically confined laser-induced breakdown spectroscopy,” J. Appl. Phys. 100(5), 053303 (2006).
    [CrossRef]
  15. Y. A. Liu, M. Baudelet, M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
    [CrossRef]
  16. W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, J. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18(3), 2573–2578 (2010).
    [CrossRef] [PubMed]
  17. X. N. He, W. Hu, C. M. Li, L. B. Guo, Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19(11), 10997–11006 (2011).
    [CrossRef] [PubMed]
  18. D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55(10), 1297–1303 (2001).
    [CrossRef]
  19. R. Sanginés, H. Sobral, E. Alvarez-Zauco, “The effect of sample temperature on the emission line intensification mechanism in orthogonal double-pulse laser induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 68, 40–45 (2012).
    [CrossRef]
  20. S. Eschlböck-Fuchs, M. J. Haslinger, A. Hinterreiter, P. Kolmhofer, N. Huber, R. Rössler, J. Heitz, J. D. Pedarnig, “Influence of sample temperature on the expansion dynamics and the optical emission of laser-induced plasma,” Spectrochim. Acta, B At. Spectrosc. 87, 36–42 (2013).
    [CrossRef]
  21. S. H. Tavassoli, A. Gragossian, “Effect of sample temperature on laser-induced breakdown spectroscopy,” Opt. Laser Technol. 41(4), 481–485 (2009).
    [CrossRef]
  22. M. A. Hafez, M. A. Khedr, F. F. Elaksher, Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid tartget,” Plasma Sources Sci. Technol. 12(2), 185–198 (2003).
    [CrossRef]
  23. D. H. Lee, S. C. Han, T. H. Kim, J. I. Yun, “Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy,” Anal. Chem. 83(24), 9456–9461 (2011).
    [CrossRef] [PubMed]
  24. H. R. Griem, Spectral Line Broadening by Plasma (Academic, 1974).

2013 (1)

S. Eschlböck-Fuchs, M. J. Haslinger, A. Hinterreiter, P. Kolmhofer, N. Huber, R. Rössler, J. Heitz, J. D. Pedarnig, “Influence of sample temperature on the expansion dynamics and the optical emission of laser-induced plasma,” Spectrochim. Acta, B At. Spectrosc. 87, 36–42 (2013).
[CrossRef]

2012 (1)

R. Sanginés, H. Sobral, E. Alvarez-Zauco, “The effect of sample temperature on the emission line intensification mechanism in orthogonal double-pulse laser induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 68, 40–45 (2012).
[CrossRef]

2011 (3)

D. H. Lee, S. C. Han, T. H. Kim, J. I. Yun, “Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy,” Anal. Chem. 83(24), 9456–9461 (2011).
[CrossRef] [PubMed]

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[CrossRef]

X. N. He, W. Hu, C. M. Li, L. B. Guo, Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19(11), 10997–11006 (2011).
[CrossRef] [PubMed]

2010 (3)

W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, J. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18(3), 2573–2578 (2010).
[CrossRef] [PubMed]

A. M. Popov, F. Colao, R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[CrossRef]

Y. A. Liu, M. Baudelet, M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[CrossRef]

2009 (2)

S. H. Tavassoli, A. Gragossian, “Effect of sample temperature on laser-induced breakdown spectroscopy,” Opt. Laser Technol. 41(4), 481–485 (2009).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
[CrossRef] [PubMed]

2007 (2)

D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Lett. 15(20), 12905–12915 (2007).

X. K. Shen, J. Sun, H. Ling, Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[CrossRef]

2006 (3)

X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, Y. X. Han, “Optical emission in magnetically confined laser-induced breakdown spectroscopy,” J. Appl. Phys. 100(5), 053303 (2006).
[CrossRef]

V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[CrossRef]

S. Tzortzakis, D. Anglos, D. Gray, “Ultraviolet laser filaments for remote laser-induced breakdown spectroscopy (LIBS) analysis: applications in cultural heritage monitoring,” Opt. Lett. 31(8), 1139–1141 (2006).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B. W. Colston, J. C. Carter, S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Opt. 42(30), 6099–6106 (2003).
[CrossRef] [PubMed]

M. A. Hafez, M. A. Khedr, F. F. Elaksher, Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid tartget,” Plasma Sources Sci. Technol. 12(2), 185–198 (2003).
[CrossRef]

2002 (1)

M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28(5), 935–943 (2002).
[CrossRef] [PubMed]

2001 (2)

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 56(6), 851–864 (2001).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55(10), 1297–1303 (2001).
[CrossRef]

1996 (1)

Allen, S. D.

D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Lett. 15(20), 12905–12915 (2007).

Alvarez-Zauco, E.

R. Sanginés, H. Sobral, E. Alvarez-Zauco, “The effect of sample temperature on the emission line intensification mechanism in orthogonal double-pulse laser induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 68, 40–45 (2012).
[CrossRef]

Angel, S. M.

Anglos, D.

Babushok, V. I.

V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[CrossRef]

Baudelet, M.

Y. A. Liu, M. Baudelet, M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[CrossRef]

Béchard, S.

M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28(5), 935–943 (2002).
[CrossRef] [PubMed]

Burgess, S.

Cai, Z. X.

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[CrossRef]

Carranza, J. E.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 56(6), 851–864 (2001).
[CrossRef]

Carter, J. C.

Chen, Q. L.

Colao, F.

A. M. Popov, F. Colao, R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[CrossRef]

Colston, B. W.

Cremers, D. A.

De Lucia, F. C.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
[CrossRef] [PubMed]

V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[CrossRef]

Elaksher, F. F.

M. A. Hafez, M. A. Khedr, F. F. Elaksher, Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid tartget,” Plasma Sources Sci. Technol. 12(2), 185–198 (2003).
[CrossRef]

Eland, K. L.

Eschlböck-Fuchs, S.

S. Eschlböck-Fuchs, M. J. Haslinger, A. Hinterreiter, P. Kolmhofer, N. Huber, R. Rössler, J. Heitz, J. D. Pedarnig, “Influence of sample temperature on the expansion dynamics and the optical emission of laser-induced plasma,” Spectrochim. Acta, B At. Spectrosc. 87, 36–42 (2013).
[CrossRef]

Fantoni, R.

A. M. Popov, F. Colao, R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[CrossRef]

Ferris, M. J.

Fisher, B. T.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 56(6), 851–864 (2001).
[CrossRef]

Foster, L. E.

Gamal, Y. E.

M. A. Hafez, M. A. Khedr, F. F. Elaksher, Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid tartget,” Plasma Sources Sci. Technol. 12(2), 185–198 (2003).
[CrossRef]

Gebre, T.

X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, Y. X. Han, “Optical emission in magnetically confined laser-induced breakdown spectroscopy,” J. Appl. Phys. 100(5), 053303 (2006).
[CrossRef]

Goode, S. R.

Gottfried, J. L.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
[CrossRef] [PubMed]

V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[CrossRef]

Gragossian, A.

S. H. Tavassoli, A. Gragossian, “Effect of sample temperature on laser-induced breakdown spectroscopy,” Opt. Laser Technol. 41(4), 481–485 (2009).
[CrossRef]

Gray, D.

Guo, L. B.

X. N. He, W. Hu, C. M. Li, L. B. Guo, Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19(11), 10997–11006 (2011).
[CrossRef] [PubMed]

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[CrossRef]

Hafez, M. A.

M. A. Hafez, M. A. Khedr, F. F. Elaksher, Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid tartget,” Plasma Sources Sci. Technol. 12(2), 185–198 (2003).
[CrossRef]

Hahn, D. W.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 56(6), 851–864 (2001).
[CrossRef]

Han, S. C.

D. H. Lee, S. C. Han, T. H. Kim, J. I. Yun, “Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy,” Anal. Chem. 83(24), 9456–9461 (2011).
[CrossRef] [PubMed]

Han, Y. X.

X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, Y. X. Han, “Optical emission in magnetically confined laser-induced breakdown spectroscopy,” J. Appl. Phys. 100(5), 053303 (2006).
[CrossRef]

Haslinger, M. J.

S. Eschlböck-Fuchs, M. J. Haslinger, A. Hinterreiter, P. Kolmhofer, N. Huber, R. Rössler, J. Heitz, J. D. Pedarnig, “Influence of sample temperature on the expansion dynamics and the optical emission of laser-induced plasma,” Spectrochim. Acta, B At. Spectrosc. 87, 36–42 (2013).
[CrossRef]

He, X. N.

Heitz, J.

S. Eschlböck-Fuchs, M. J. Haslinger, A. Hinterreiter, P. Kolmhofer, N. Huber, R. Rössler, J. Heitz, J. D. Pedarnig, “Influence of sample temperature on the expansion dynamics and the optical emission of laser-induced plasma,” Spectrochim. Acta, B At. Spectrosc. 87, 36–42 (2013).
[CrossRef]

Hinterreiter, A.

S. Eschlböck-Fuchs, M. J. Haslinger, A. Hinterreiter, P. Kolmhofer, N. Huber, R. Rössler, J. Heitz, J. D. Pedarnig, “Influence of sample temperature on the expansion dynamics and the optical emission of laser-induced plasma,” Spectrochim. Acta, B At. Spectrosc. 87, 36–42 (2013).
[CrossRef]

Hu, W.

X. N. He, W. Hu, C. M. Li, L. B. Guo, Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19(11), 10997–11006 (2011).
[CrossRef] [PubMed]

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[CrossRef]

Huber, N.

S. Eschlböck-Fuchs, M. J. Haslinger, A. Hinterreiter, P. Kolmhofer, N. Huber, R. Rössler, J. Heitz, J. D. Pedarnig, “Influence of sample temperature on the expansion dynamics and the optical emission of laser-induced plasma,” Spectrochim. Acta, B At. Spectrosc. 87, 36–42 (2013).
[CrossRef]

Khedr, M. A.

M. A. Hafez, M. A. Khedr, F. F. Elaksher, Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid tartget,” Plasma Sources Sci. Technol. 12(2), 185–198 (2003).
[CrossRef]

Killinger, D. K.

D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Lett. 15(20), 12905–12915 (2007).

Kim, T. H.

D. H. Lee, S. C. Han, T. H. Kim, J. I. Yun, “Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy,” Anal. Chem. 83(24), 9456–9461 (2011).
[CrossRef] [PubMed]

Kirsch, J.

M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28(5), 935–943 (2002).
[CrossRef] [PubMed]

Kolmhofer, P.

S. Eschlböck-Fuchs, M. J. Haslinger, A. Hinterreiter, P. Kolmhofer, N. Huber, R. Rössler, J. Heitz, J. D. Pedarnig, “Influence of sample temperature on the expansion dynamics and the optical emission of laser-induced plasma,” Spectrochim. Acta, B At. Spectrosc. 87, 36–42 (2013).
[CrossRef]

Kumar, A.

Lee, D. H.

D. H. Lee, S. C. Han, T. H. Kim, J. I. Yun, “Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy,” Anal. Chem. 83(24), 9456–9461 (2011).
[CrossRef] [PubMed]

Li, C. M.

X. N. He, W. Hu, C. M. Li, L. B. Guo, Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19(11), 10997–11006 (2011).
[CrossRef] [PubMed]

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[CrossRef]

Li, K. X.

Ling, H.

X. K. Shen, J. Sun, H. Ling, Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[CrossRef]

X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, Y. X. Han, “Optical emission in magnetically confined laser-induced breakdown spectroscopy,” J. Appl. Phys. 100(5), 053303 (2006).
[CrossRef]

Liu, Y. A.

Y. A. Liu, M. Baudelet, M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[CrossRef]

Long, J.

Lu, Y. F.

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[CrossRef]

X. N. He, W. Hu, C. M. Li, L. B. Guo, Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19(11), 10997–11006 (2011).
[CrossRef] [PubMed]

X. K. Shen, J. Sun, H. Ling, Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[CrossRef]

X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, Y. X. Han, “Optical emission in magnetically confined laser-induced breakdown spectroscopy,” J. Appl. Phys. 100(5), 053303 (2006).
[CrossRef]

Miziolek, A. W.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
[CrossRef] [PubMed]

V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[CrossRef]

Mowery, M. D.

M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28(5), 935–943 (2002).
[CrossRef] [PubMed]

Munson, C. A.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
[CrossRef] [PubMed]

V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[CrossRef]

Pearman, W.

Pedarnig, J. D.

S. Eschlböck-Fuchs, M. J. Haslinger, A. Hinterreiter, P. Kolmhofer, N. Huber, R. Rössler, J. Heitz, J. D. Pedarnig, “Influence of sample temperature on the expansion dynamics and the optical emission of laser-induced plasma,” Spectrochim. Acta, B At. Spectrosc. 87, 36–42 (2013).
[CrossRef]

Pender, J.

Popov, A. M.

A. M. Popov, F. Colao, R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[CrossRef]

Razaghi, A.

M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28(5), 935–943 (2002).
[CrossRef] [PubMed]

Reed, R. A.

M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28(5), 935–943 (2002).
[CrossRef] [PubMed]

Richardson, M.

Y. A. Liu, M. Baudelet, M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[CrossRef]

Rössler, R.

S. Eschlböck-Fuchs, M. J. Haslinger, A. Hinterreiter, P. Kolmhofer, N. Huber, R. Rössler, J. Heitz, J. D. Pedarnig, “Influence of sample temperature on the expansion dynamics and the optical emission of laser-induced plasma,” Spectrochim. Acta, B At. Spectrosc. 87, 36–42 (2013).
[CrossRef]

Sanginés, R.

R. Sanginés, H. Sobral, E. Alvarez-Zauco, “The effect of sample temperature on the emission line intensification mechanism in orthogonal double-pulse laser induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 68, 40–45 (2012).
[CrossRef]

Scaffidi, J.

Shen, Q. M.

Shen, X. K.

X. K. Shen, J. Sun, H. Ling, Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[CrossRef]

X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, Y. X. Han, “Optical emission in magnetically confined laser-induced breakdown spectroscopy,” J. Appl. Phys. 100(5), 053303 (2006).
[CrossRef]

Sing, R.

M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28(5), 935–943 (2002).
[CrossRef] [PubMed]

Singh, J. P.

Sobral, H.

R. Sanginés, H. Sobral, E. Alvarez-Zauco, “The effect of sample temperature on the emission line intensification mechanism in orthogonal double-pulse laser induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 68, 40–45 (2012).
[CrossRef]

Stefano, C.

D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Lett. 15(20), 12905–12915 (2007).

Stratis, D. N.

Sun, J.

X. K. Shen, J. Sun, H. Ling, Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[CrossRef]

Tavassoli, S. H.

S. H. Tavassoli, A. Gragossian, “Effect of sample temperature on laser-induced breakdown spectroscopy,” Opt. Laser Technol. 41(4), 481–485 (2009).
[CrossRef]

Tzortzakis, S.

Waterbury, R. D.

D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Lett. 15(20), 12905–12915 (2007).

Yamamoto, K. Y.

Yoder, G. D.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 56(6), 851–864 (2001).
[CrossRef]

Yueh, F. Y.

Yun, J. I.

D. H. Lee, S. C. Han, T. H. Kim, J. I. Yun, “Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy,” Anal. Chem. 83(24), 9456–9461 (2011).
[CrossRef] [PubMed]

Zeng, X. Y.

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[CrossRef]

Zhang, B. Y.

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[CrossRef]

Zhou, W. D.

Zhou, Y. S.

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[CrossRef]

Anal. Bioanal. Chem. (1)

J. L. Gottfried, F. C. De Lucia, C. A. Munson, A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
[CrossRef] [PubMed]

Anal. Chem. (1)

D. H. Lee, S. C. Han, T. H. Kim, J. I. Yun, “Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy,” Anal. Chem. 83(24), 9456–9461 (2011).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011).
[CrossRef]

X. K. Shen, J. Sun, H. Ling, Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[CrossRef]

Appl. Spectrosc. (2)

J. Anal. At. Spectrom. (2)

A. M. Popov, F. Colao, R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[CrossRef]

Y. A. Liu, M. Baudelet, M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[CrossRef]

J. Appl. Phys. (1)

X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, Y. X. Han, “Optical emission in magnetically confined laser-induced breakdown spectroscopy,” J. Appl. Phys. 100(5), 053303 (2006).
[CrossRef]

J. Pharm. Biomed. Anal. (1)

M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28(5), 935–943 (2002).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Laser Technol. (1)

S. H. Tavassoli, A. Gragossian, “Effect of sample temperature on laser-induced breakdown spectroscopy,” Opt. Laser Technol. 41(4), 481–485 (2009).
[CrossRef]

Opt. Lett. (2)

D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Lett. 15(20), 12905–12915 (2007).

S. Tzortzakis, D. Anglos, D. Gray, “Ultraviolet laser filaments for remote laser-induced breakdown spectroscopy (LIBS) analysis: applications in cultural heritage monitoring,” Opt. Lett. 31(8), 1139–1141 (2006).
[CrossRef] [PubMed]

Plasma Sources Sci. Technol. (1)

M. A. Hafez, M. A. Khedr, F. F. Elaksher, Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid tartget,” Plasma Sources Sci. Technol. 12(2), 185–198 (2003).
[CrossRef]

Spectrochim. Acta, B At. Spectrosc. (4)

R. Sanginés, H. Sobral, E. Alvarez-Zauco, “The effect of sample temperature on the emission line intensification mechanism in orthogonal double-pulse laser induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 68, 40–45 (2012).
[CrossRef]

S. Eschlböck-Fuchs, M. J. Haslinger, A. Hinterreiter, P. Kolmhofer, N. Huber, R. Rössler, J. Heitz, J. D. Pedarnig, “Influence of sample temperature on the expansion dynamics and the optical emission of laser-induced plasma,” Spectrochim. Acta, B At. Spectrosc. 87, 36–42 (2013).
[CrossRef]

V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006).
[CrossRef]

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 56(6), 851–864 (2001).
[CrossRef]

Other (2)

W. M. Andrzej, P. Vincenzo, and S. Israel, Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications (Cambridge University, 2006).

H. R. Griem, Spectral Line Broadening by Plasma (Academic, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic experimental setup for flame-enhanced assisted LIBS.

Fig. 2
Fig. 2

Fast images of laser-induced Al plasmas in the time period of 0.8 ~2 μs without (top row) and with (bottom row) the presence of flame with a gate width of 50 ns and a laser fluence of 3.3 J/cm2. The dash line shows the location of the sample surface.

Fig. 3
Fig. 3

Temporal evolution of Al spectra in the range of 388 ~400 nm (a) without flame (blue curve), (b) with flame (red curve); Al I 394.4 nm (Al atomic line) (c) peak intensity, and (d) FWHM evolution without (square blue curve) and with (dot red curve) flame; Temporal evolution in the spectral range of 462~470 nm (e) without flame (blue curve), (f) with flame (red curve) with a gate width of 50 ns and a laser fluence of 3.3 J/cm2.

Fig. 4
Fig. 4

Fast images of laser-induced Al plasmas in the time period of 2~16 μs without (top row) and with (bottom row) the presence of flame with a gate width of 200 ns and a laser fluence of 3.3 J/cm2. The dash line shows the location of the sample surface.

Fig. 5
Fig. 5

Temporal evolution of Al spectra in the range of 388 ~400 nm (a) without flame (blue curve), (b) with flame (red curve); Al I 394.4 nm (Al atomic line) (c) peak intensity and (d) FWHM evolution without flame (square blue curve) and with (dot red curve) with a gate width of 500ns and a laser fluence of 3.3 J/cm2.

Fig. 6
Fig. 6

Temporal evolution of the low steel alloy (NIST 1762) spectra in the range of 398 ~410 nm (a) without flame (blue curve), and (b) with flame (red curve) with a gate width of 500 ns and a laser fluence of 3.3 J/cm2.

Fig. 7
Fig. 7

Temporal evolution of Al electron (a) temperature and (b) density without (square blue curve) and with (circle red curve) flame.

Metrics