Abstract

The light outcoupling efficiency of organic light-emitting optoelectronic devices is severely limited by excitation of tightly bound surface plasmon polaritons at the metal electrodes. We present a theoretical study of an organic semiconductor-silver-SiO2 waveguide and demonstrate that by simple tuning of metal film thickness and the emission regime of the organic semiconductor, a significant fraction of surface plasmon polariton mode amplitude is leaked into the active semiconductor layer, thereby decreasing the amount of optical energy trapped by the metal. At visible wavelengths, mode leakage increases by factors of up to 3.8 and 88 by tuning metal film thickness and by addition of gain, respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Scholz, J. Frischeisen, A. Jaeger, D. S. Setz, T. C. G. Reusch, W. Brütting, “Extraction of surface plasmons in organic light-emitting diodes via high-index coupling,” Opt. Express 20(S2), A205–A212 (2012).
    [CrossRef] [PubMed]
  2. L. H. Smith, J. A. E. Wasey, W. L. Barnes, “Light outcoupling efficiency of top-emitting organic light-emitting diodes,” Appl. Phys. Lett. 84(16), 2986–2988 (2004).
    [CrossRef]
  3. J. Frischeisen, D. Yokoyama, A. Endo, C. Adachi, W. Brütting, “Increased light outcoupling efficiency in dye-doped small molecule organic light-emitting diodes with horizontally oriented emitters,” Org. Electron. 12(5), 809–817 (2011).
    [CrossRef]
  4. S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
    [CrossRef]
  5. L. H. Smith, J. A. E. Wasey, I. D. W. Samuel, W. L. Barnes, “Light out-coupling efficiencies of organic light-emitting diode structures and the effect of photoluminescence quantum yield,” Adv. Funct. Mater. 15(11), 1839–1844 (2005).
    [CrossRef]
  6. B. Koo, S. Kim, J.-L. Lee, “Indium-tin-oxide free transparent electrodes using a plasmon frequency conversion layer,” J. Mater. Chem. C 1(2), 246–252 (2012).
    [CrossRef]
  7. K. H. An, M. Shtein, K. P. Pipe, “Surface plasmon mediated energy transfer of electrically-pumped excitons,” Opt. Express 18(5), 4041–4048 (2010).
    [CrossRef] [PubMed]
  8. G. Colas des Francs, P. Bramant, J. Grandidier, A. Bouhelier, J.-C. Weeber, A. Dereux, “Optical gain, spontaneous and stimulated emission of surface plasmon polaritons in confined plasmonic waveguide,” Opt. Express 18(16), 16327–16334 (2010).
    [CrossRef] [PubMed]
  9. S. Lal, S. Link, N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
    [CrossRef]
  10. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  11. H. J. Queisser, “Photovoltaic conversion at reduce dimensions,” Physica E 14(1-2), 1–10 (2002).
    [CrossRef]
  12. A. E. Ostfeld, D. Pacifici, “Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics,” Appl. Phys. Lett. 98(11), 113112 (2011).
    [CrossRef]
  13. J. Bellessa, C. Bonnand, J. C. Plenet, J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
    [CrossRef] [PubMed]
  14. S. Chénais, S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012).
    [CrossRef]
  15. F. A. Burton, S. A. Cassidy, “A complete description of the dispersion relation for thin metal film plasmon-polaritons,” J. Lightwave Technol. 8(12), 1843–1849 (1990).
    [CrossRef]
  16. G. I. Stegeman, J. J. Burke, D. G. Hall, “Surface-polaritonlike waves guided by thin, lossy metal films,” Opt. Lett. 8(7), 383–385 (1983).
    [CrossRef] [PubMed]
  17. P. Ferguson, R. F. Wallis, M. Belakhovsky, J. P. Jadot, J. Tomkinson, “Surface plasma waves in silver and gold,” Surf. Sci. 76(2), 483–498 (1978).
    [CrossRef]
  18. F. Yang, J. R. Sambles, G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
    [CrossRef] [PubMed]
  19. J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
    [CrossRef] [PubMed]
  20. M. N. Zervas, “Surface plasmon-polariton waves guided by thin metal films,” Opt. Lett. 16(10), 720–722 (1991).
    [CrossRef] [PubMed]
  21. M. Campoy-Quiles, G. Heliotis, R. Xia, M. Ariu, M. Pintani, P. Etchegoin, D. D. C. Bradley, “Ellipsometric characterization of the optical constants of polyfluorene gain media,” Adv. Funct. Mater. 15(6), 925–933 (2005).
    [CrossRef]
  22. The value of the phase of the first oscillator term is misprinted in [21]. Donal D. C. Bradley, Director of the Centre for Plastic Electronics, Lee-Lucas Professor of Experimental Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK provided the correct value of −0.981 (personal communication in 2012).
  23. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press,1985).
  24. G. Heliotis, D. D. C. Bradley, M. Goossens, S. Richardson, G. A. Turnbull, I. D. W. Samuel, “Operating characteristics of a travelling-wave semiconducting polymer optical amplifier,” Appl. Phys. Lett. 85(25), 6122–6124 (2004).
    [CrossRef]
  25. R. Xia, M. Campoy-Quiles, G. Heliotis, P. Stavrinou, K. S. Whitehead, D. D. C. Bradley, “Significant improvements in the optical gain properties of oriented liquid crystalline conjugated polymer films,” Synth. Met. 155(2), 274–278 (2005).
    [CrossRef]
  26. N. Liu, A. Ruseckas, N. A. Montgomery, I. D. W. Samuel, G. A. Turnbull, “Semiconducting polymer waveguides for end-fired ultra-fast optical amplifiers,” Opt. Express 17(24), 21452–21458 (2009).
    [CrossRef] [PubMed]
  27. M. P. Nezhad, K. Tetz, Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004).
    [CrossRef] [PubMed]
  28. E. Kretschmann, “Decay of non radiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun. 6(2), 185187 (1972).
    [CrossRef]
  29. A. Kolomenski, A. Kolomenskii, J. Noel, S. Peng, H. Schuessler, “Propagation length of surface plasmons in a metal film with roughness,” Appl. Opt. 48(30), 5683–5691 (2009).
    [CrossRef] [PubMed]
  30. D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B 12(10), 4036–4046 (1975).
    [CrossRef]
  31. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
    [CrossRef]

2012 (3)

B. J. Scholz, J. Frischeisen, A. Jaeger, D. S. Setz, T. C. G. Reusch, W. Brütting, “Extraction of surface plasmons in organic light-emitting diodes via high-index coupling,” Opt. Express 20(S2), A205–A212 (2012).
[CrossRef] [PubMed]

B. Koo, S. Kim, J.-L. Lee, “Indium-tin-oxide free transparent electrodes using a plasmon frequency conversion layer,” J. Mater. Chem. C 1(2), 246–252 (2012).
[CrossRef]

S. Chénais, S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012).
[CrossRef]

2011 (2)

A. E. Ostfeld, D. Pacifici, “Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics,” Appl. Phys. Lett. 98(11), 113112 (2011).
[CrossRef]

J. Frischeisen, D. Yokoyama, A. Endo, C. Adachi, W. Brütting, “Increased light outcoupling efficiency in dye-doped small molecule organic light-emitting diodes with horizontally oriented emitters,” Org. Electron. 12(5), 809–817 (2011).
[CrossRef]

2010 (2)

2009 (2)

2008 (1)

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[CrossRef]

2007 (1)

S. Lal, S. Link, N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

2005 (3)

L. H. Smith, J. A. E. Wasey, I. D. W. Samuel, W. L. Barnes, “Light out-coupling efficiencies of organic light-emitting diode structures and the effect of photoluminescence quantum yield,” Adv. Funct. Mater. 15(11), 1839–1844 (2005).
[CrossRef]

M. Campoy-Quiles, G. Heliotis, R. Xia, M. Ariu, M. Pintani, P. Etchegoin, D. D. C. Bradley, “Ellipsometric characterization of the optical constants of polyfluorene gain media,” Adv. Funct. Mater. 15(6), 925–933 (2005).
[CrossRef]

R. Xia, M. Campoy-Quiles, G. Heliotis, P. Stavrinou, K. S. Whitehead, D. D. C. Bradley, “Significant improvements in the optical gain properties of oriented liquid crystalline conjugated polymer films,” Synth. Met. 155(2), 274–278 (2005).
[CrossRef]

2004 (4)

G. Heliotis, D. D. C. Bradley, M. Goossens, S. Richardson, G. A. Turnbull, I. D. W. Samuel, “Operating characteristics of a travelling-wave semiconducting polymer optical amplifier,” Appl. Phys. Lett. 85(25), 6122–6124 (2004).
[CrossRef]

M. P. Nezhad, K. Tetz, Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004).
[CrossRef] [PubMed]

L. H. Smith, J. A. E. Wasey, W. L. Barnes, “Light outcoupling efficiency of top-emitting organic light-emitting diodes,” Appl. Phys. Lett. 84(16), 2986–2988 (2004).
[CrossRef]

J. Bellessa, C. Bonnand, J. C. Plenet, J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[CrossRef] [PubMed]

2002 (1)

H. J. Queisser, “Photovoltaic conversion at reduce dimensions,” Physica E 14(1-2), 1–10 (2002).
[CrossRef]

1998 (1)

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[CrossRef]

1991 (2)

M. N. Zervas, “Surface plasmon-polariton waves guided by thin metal films,” Opt. Lett. 16(10), 720–722 (1991).
[CrossRef] [PubMed]

F. Yang, J. R. Sambles, G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
[CrossRef] [PubMed]

1990 (1)

F. A. Burton, S. A. Cassidy, “A complete description of the dispersion relation for thin metal film plasmon-polaritons,” J. Lightwave Technol. 8(12), 1843–1849 (1990).
[CrossRef]

1986 (1)

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

1983 (1)

1978 (1)

P. Ferguson, R. F. Wallis, M. Belakhovsky, J. P. Jadot, J. Tomkinson, “Surface plasma waves in silver and gold,” Surf. Sci. 76(2), 483–498 (1978).
[CrossRef]

1975 (1)

D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B 12(10), 4036–4046 (1975).
[CrossRef]

1972 (1)

E. Kretschmann, “Decay of non radiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun. 6(2), 185187 (1972).
[CrossRef]

Adachi, C.

J. Frischeisen, D. Yokoyama, A. Endo, C. Adachi, W. Brütting, “Increased light outcoupling efficiency in dye-doped small molecule organic light-emitting diodes with horizontally oriented emitters,” Org. Electron. 12(5), 809–817 (2011).
[CrossRef]

An, K. H.

Ariu, M.

M. Campoy-Quiles, G. Heliotis, R. Xia, M. Ariu, M. Pintani, P. Etchegoin, D. D. C. Bradley, “Ellipsometric characterization of the optical constants of polyfluorene gain media,” Adv. Funct. Mater. 15(6), 925–933 (2005).
[CrossRef]

Barnes, W. L.

L. H. Smith, J. A. E. Wasey, I. D. W. Samuel, W. L. Barnes, “Light out-coupling efficiencies of organic light-emitting diode structures and the effect of photoluminescence quantum yield,” Adv. Funct. Mater. 15(11), 1839–1844 (2005).
[CrossRef]

L. H. Smith, J. A. E. Wasey, W. L. Barnes, “Light outcoupling efficiency of top-emitting organic light-emitting diodes,” Appl. Phys. Lett. 84(16), 2986–2988 (2004).
[CrossRef]

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[CrossRef]

Belakhovsky, M.

P. Ferguson, R. F. Wallis, M. Belakhovsky, J. P. Jadot, J. Tomkinson, “Surface plasma waves in silver and gold,” Surf. Sci. 76(2), 483–498 (1978).
[CrossRef]

Bellessa, J.

J. Bellessa, C. Bonnand, J. C. Plenet, J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[CrossRef] [PubMed]

Bonnand, C.

J. Bellessa, C. Bonnand, J. C. Plenet, J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[CrossRef] [PubMed]

Bouhelier, A.

Bradberry, G. W.

F. Yang, J. R. Sambles, G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
[CrossRef] [PubMed]

Bradley, D. D. C.

M. Campoy-Quiles, G. Heliotis, R. Xia, M. Ariu, M. Pintani, P. Etchegoin, D. D. C. Bradley, “Ellipsometric characterization of the optical constants of polyfluorene gain media,” Adv. Funct. Mater. 15(6), 925–933 (2005).
[CrossRef]

R. Xia, M. Campoy-Quiles, G. Heliotis, P. Stavrinou, K. S. Whitehead, D. D. C. Bradley, “Significant improvements in the optical gain properties of oriented liquid crystalline conjugated polymer films,” Synth. Met. 155(2), 274–278 (2005).
[CrossRef]

G. Heliotis, D. D. C. Bradley, M. Goossens, S. Richardson, G. A. Turnbull, I. D. W. Samuel, “Operating characteristics of a travelling-wave semiconducting polymer optical amplifier,” Appl. Phys. Lett. 85(25), 6122–6124 (2004).
[CrossRef]

Bramant, P.

Brütting, W.

B. J. Scholz, J. Frischeisen, A. Jaeger, D. S. Setz, T. C. G. Reusch, W. Brütting, “Extraction of surface plasmons in organic light-emitting diodes via high-index coupling,” Opt. Express 20(S2), A205–A212 (2012).
[CrossRef] [PubMed]

J. Frischeisen, D. Yokoyama, A. Endo, C. Adachi, W. Brütting, “Increased light outcoupling efficiency in dye-doped small molecule organic light-emitting diodes with horizontally oriented emitters,” Org. Electron. 12(5), 809–817 (2011).
[CrossRef]

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[CrossRef]

Burke, J. J.

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

G. I. Stegeman, J. J. Burke, D. G. Hall, “Surface-polaritonlike waves guided by thin, lossy metal films,” Opt. Lett. 8(7), 383–385 (1983).
[CrossRef] [PubMed]

Burton, F. A.

F. A. Burton, S. A. Cassidy, “A complete description of the dispersion relation for thin metal film plasmon-polaritons,” J. Lightwave Technol. 8(12), 1843–1849 (1990).
[CrossRef]

Campoy-Quiles, M.

M. Campoy-Quiles, G. Heliotis, R. Xia, M. Ariu, M. Pintani, P. Etchegoin, D. D. C. Bradley, “Ellipsometric characterization of the optical constants of polyfluorene gain media,” Adv. Funct. Mater. 15(6), 925–933 (2005).
[CrossRef]

R. Xia, M. Campoy-Quiles, G. Heliotis, P. Stavrinou, K. S. Whitehead, D. D. C. Bradley, “Significant improvements in the optical gain properties of oriented liquid crystalline conjugated polymer films,” Synth. Met. 155(2), 274–278 (2005).
[CrossRef]

Cassidy, S. A.

F. A. Burton, S. A. Cassidy, “A complete description of the dispersion relation for thin metal film plasmon-polaritons,” J. Lightwave Technol. 8(12), 1843–1849 (1990).
[CrossRef]

Chénais, S.

S. Chénais, S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012).
[CrossRef]

Colas des Francs, G.

Dereux, A.

Endo, A.

J. Frischeisen, D. Yokoyama, A. Endo, C. Adachi, W. Brütting, “Increased light outcoupling efficiency in dye-doped small molecule organic light-emitting diodes with horizontally oriented emitters,” Org. Electron. 12(5), 809–817 (2011).
[CrossRef]

Etchegoin, P.

M. Campoy-Quiles, G. Heliotis, R. Xia, M. Ariu, M. Pintani, P. Etchegoin, D. D. C. Bradley, “Ellipsometric characterization of the optical constants of polyfluorene gain media,” Adv. Funct. Mater. 15(6), 925–933 (2005).
[CrossRef]

Fainman, Y.

Ferguson, P.

P. Ferguson, R. F. Wallis, M. Belakhovsky, J. P. Jadot, J. Tomkinson, “Surface plasma waves in silver and gold,” Surf. Sci. 76(2), 483–498 (1978).
[CrossRef]

Forget, S.

S. Chénais, S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012).
[CrossRef]

Frischeisen, J.

B. J. Scholz, J. Frischeisen, A. Jaeger, D. S. Setz, T. C. G. Reusch, W. Brütting, “Extraction of surface plasmons in organic light-emitting diodes via high-index coupling,” Opt. Express 20(S2), A205–A212 (2012).
[CrossRef] [PubMed]

J. Frischeisen, D. Yokoyama, A. Endo, C. Adachi, W. Brütting, “Increased light outcoupling efficiency in dye-doped small molecule organic light-emitting diodes with horizontally oriented emitters,” Org. Electron. 12(5), 809–817 (2011).
[CrossRef]

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[CrossRef]

Goossens, M.

G. Heliotis, D. D. C. Bradley, M. Goossens, S. Richardson, G. A. Turnbull, I. D. W. Samuel, “Operating characteristics of a travelling-wave semiconducting polymer optical amplifier,” Appl. Phys. Lett. 85(25), 6122–6124 (2004).
[CrossRef]

Grandidier, J.

Halas, N. J.

S. Lal, S. Link, N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Hall, D. G.

Heliotis, G.

M. Campoy-Quiles, G. Heliotis, R. Xia, M. Ariu, M. Pintani, P. Etchegoin, D. D. C. Bradley, “Ellipsometric characterization of the optical constants of polyfluorene gain media,” Adv. Funct. Mater. 15(6), 925–933 (2005).
[CrossRef]

R. Xia, M. Campoy-Quiles, G. Heliotis, P. Stavrinou, K. S. Whitehead, D. D. C. Bradley, “Significant improvements in the optical gain properties of oriented liquid crystalline conjugated polymer films,” Synth. Met. 155(2), 274–278 (2005).
[CrossRef]

G. Heliotis, D. D. C. Bradley, M. Goossens, S. Richardson, G. A. Turnbull, I. D. W. Samuel, “Operating characteristics of a travelling-wave semiconducting polymer optical amplifier,” Appl. Phys. Lett. 85(25), 6122–6124 (2004).
[CrossRef]

Jadot, J. P.

P. Ferguson, R. F. Wallis, M. Belakhovsky, J. P. Jadot, J. Tomkinson, “Surface plasma waves in silver and gold,” Surf. Sci. 76(2), 483–498 (1978).
[CrossRef]

Jaeger, A.

Kim, S.

B. Koo, S. Kim, J.-L. Lee, “Indium-tin-oxide free transparent electrodes using a plasmon frequency conversion layer,” J. Mater. Chem. C 1(2), 246–252 (2012).
[CrossRef]

Kolomenski, A.

Kolomenskii, A.

Koo, B.

B. Koo, S. Kim, J.-L. Lee, “Indium-tin-oxide free transparent electrodes using a plasmon frequency conversion layer,” J. Mater. Chem. C 1(2), 246–252 (2012).
[CrossRef]

Kretschmann, E.

E. Kretschmann, “Decay of non radiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun. 6(2), 185187 (1972).
[CrossRef]

Krummacher, B. C.

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[CrossRef]

Lal, S.

S. Lal, S. Link, N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Lee, J.-L.

B. Koo, S. Kim, J.-L. Lee, “Indium-tin-oxide free transparent electrodes using a plasmon frequency conversion layer,” J. Mater. Chem. C 1(2), 246–252 (2012).
[CrossRef]

Link, S.

S. Lal, S. Link, N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Liu, N.

Mills, D. L.

D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B 12(10), 4036–4046 (1975).
[CrossRef]

Montgomery, N. A.

Mugnier, J.

J. Bellessa, C. Bonnand, J. C. Plenet, J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[CrossRef] [PubMed]

Nezhad, M. P.

Noel, J.

Nowy, S.

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[CrossRef]

Ostfeld, A. E.

A. E. Ostfeld, D. Pacifici, “Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics,” Appl. Phys. Lett. 98(11), 113112 (2011).
[CrossRef]

Pacifici, D.

A. E. Ostfeld, D. Pacifici, “Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics,” Appl. Phys. Lett. 98(11), 113112 (2011).
[CrossRef]

Peng, S.

Pintani, M.

M. Campoy-Quiles, G. Heliotis, R. Xia, M. Ariu, M. Pintani, P. Etchegoin, D. D. C. Bradley, “Ellipsometric characterization of the optical constants of polyfluorene gain media,” Adv. Funct. Mater. 15(6), 925–933 (2005).
[CrossRef]

Pipe, K. P.

Plenet, J. C.

J. Bellessa, C. Bonnand, J. C. Plenet, J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[CrossRef] [PubMed]

Queisser, H. J.

H. J. Queisser, “Photovoltaic conversion at reduce dimensions,” Physica E 14(1-2), 1–10 (2002).
[CrossRef]

Reinke, N. A.

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[CrossRef]

Reusch, T. C. G.

Richardson, S.

G. Heliotis, D. D. C. Bradley, M. Goossens, S. Richardson, G. A. Turnbull, I. D. W. Samuel, “Operating characteristics of a travelling-wave semiconducting polymer optical amplifier,” Appl. Phys. Lett. 85(25), 6122–6124 (2004).
[CrossRef]

Ruseckas, A.

Sambles, J. R.

F. Yang, J. R. Sambles, G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
[CrossRef] [PubMed]

Samuel, I. D. W.

N. Liu, A. Ruseckas, N. A. Montgomery, I. D. W. Samuel, G. A. Turnbull, “Semiconducting polymer waveguides for end-fired ultra-fast optical amplifiers,” Opt. Express 17(24), 21452–21458 (2009).
[CrossRef] [PubMed]

L. H. Smith, J. A. E. Wasey, I. D. W. Samuel, W. L. Barnes, “Light out-coupling efficiencies of organic light-emitting diode structures and the effect of photoluminescence quantum yield,” Adv. Funct. Mater. 15(11), 1839–1844 (2005).
[CrossRef]

G. Heliotis, D. D. C. Bradley, M. Goossens, S. Richardson, G. A. Turnbull, I. D. W. Samuel, “Operating characteristics of a travelling-wave semiconducting polymer optical amplifier,” Appl. Phys. Lett. 85(25), 6122–6124 (2004).
[CrossRef]

Scholz, B. J.

Schuessler, H.

Setz, D. S.

Shtein, M.

Smith, L. H.

L. H. Smith, J. A. E. Wasey, I. D. W. Samuel, W. L. Barnes, “Light out-coupling efficiencies of organic light-emitting diode structures and the effect of photoluminescence quantum yield,” Adv. Funct. Mater. 15(11), 1839–1844 (2005).
[CrossRef]

L. H. Smith, J. A. E. Wasey, W. L. Barnes, “Light outcoupling efficiency of top-emitting organic light-emitting diodes,” Appl. Phys. Lett. 84(16), 2986–2988 (2004).
[CrossRef]

Stavrinou, P.

R. Xia, M. Campoy-Quiles, G. Heliotis, P. Stavrinou, K. S. Whitehead, D. D. C. Bradley, “Significant improvements in the optical gain properties of oriented liquid crystalline conjugated polymer films,” Synth. Met. 155(2), 274–278 (2005).
[CrossRef]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

G. I. Stegeman, J. J. Burke, D. G. Hall, “Surface-polaritonlike waves guided by thin, lossy metal films,” Opt. Lett. 8(7), 383–385 (1983).
[CrossRef] [PubMed]

Tamir, T.

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Tetz, K.

Tomkinson, J.

P. Ferguson, R. F. Wallis, M. Belakhovsky, J. P. Jadot, J. Tomkinson, “Surface plasma waves in silver and gold,” Surf. Sci. 76(2), 483–498 (1978).
[CrossRef]

Turnbull, G. A.

N. Liu, A. Ruseckas, N. A. Montgomery, I. D. W. Samuel, G. A. Turnbull, “Semiconducting polymer waveguides for end-fired ultra-fast optical amplifiers,” Opt. Express 17(24), 21452–21458 (2009).
[CrossRef] [PubMed]

G. Heliotis, D. D. C. Bradley, M. Goossens, S. Richardson, G. A. Turnbull, I. D. W. Samuel, “Operating characteristics of a travelling-wave semiconducting polymer optical amplifier,” Appl. Phys. Lett. 85(25), 6122–6124 (2004).
[CrossRef]

Wallis, R. F.

P. Ferguson, R. F. Wallis, M. Belakhovsky, J. P. Jadot, J. Tomkinson, “Surface plasma waves in silver and gold,” Surf. Sci. 76(2), 483–498 (1978).
[CrossRef]

Wasey, J. A. E.

L. H. Smith, J. A. E. Wasey, I. D. W. Samuel, W. L. Barnes, “Light out-coupling efficiencies of organic light-emitting diode structures and the effect of photoluminescence quantum yield,” Adv. Funct. Mater. 15(11), 1839–1844 (2005).
[CrossRef]

L. H. Smith, J. A. E. Wasey, W. L. Barnes, “Light outcoupling efficiency of top-emitting organic light-emitting diodes,” Appl. Phys. Lett. 84(16), 2986–2988 (2004).
[CrossRef]

Weeber, J.-C.

Whitehead, K. S.

R. Xia, M. Campoy-Quiles, G. Heliotis, P. Stavrinou, K. S. Whitehead, D. D. C. Bradley, “Significant improvements in the optical gain properties of oriented liquid crystalline conjugated polymer films,” Synth. Met. 155(2), 274–278 (2005).
[CrossRef]

Xia, R.

R. Xia, M. Campoy-Quiles, G. Heliotis, P. Stavrinou, K. S. Whitehead, D. D. C. Bradley, “Significant improvements in the optical gain properties of oriented liquid crystalline conjugated polymer films,” Synth. Met. 155(2), 274–278 (2005).
[CrossRef]

M. Campoy-Quiles, G. Heliotis, R. Xia, M. Ariu, M. Pintani, P. Etchegoin, D. D. C. Bradley, “Ellipsometric characterization of the optical constants of polyfluorene gain media,” Adv. Funct. Mater. 15(6), 925–933 (2005).
[CrossRef]

Yang, F.

F. Yang, J. R. Sambles, G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
[CrossRef] [PubMed]

Yokoyama, D.

J. Frischeisen, D. Yokoyama, A. Endo, C. Adachi, W. Brütting, “Increased light outcoupling efficiency in dye-doped small molecule organic light-emitting diodes with horizontally oriented emitters,” Org. Electron. 12(5), 809–817 (2011).
[CrossRef]

Zervas, M. N.

Adv. Funct. Mater. (2)

L. H. Smith, J. A. E. Wasey, I. D. W. Samuel, W. L. Barnes, “Light out-coupling efficiencies of organic light-emitting diode structures and the effect of photoluminescence quantum yield,” Adv. Funct. Mater. 15(11), 1839–1844 (2005).
[CrossRef]

M. Campoy-Quiles, G. Heliotis, R. Xia, M. Ariu, M. Pintani, P. Etchegoin, D. D. C. Bradley, “Ellipsometric characterization of the optical constants of polyfluorene gain media,” Adv. Funct. Mater. 15(6), 925–933 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

G. Heliotis, D. D. C. Bradley, M. Goossens, S. Richardson, G. A. Turnbull, I. D. W. Samuel, “Operating characteristics of a travelling-wave semiconducting polymer optical amplifier,” Appl. Phys. Lett. 85(25), 6122–6124 (2004).
[CrossRef]

L. H. Smith, J. A. E. Wasey, W. L. Barnes, “Light outcoupling efficiency of top-emitting organic light-emitting diodes,” Appl. Phys. Lett. 84(16), 2986–2988 (2004).
[CrossRef]

A. E. Ostfeld, D. Pacifici, “Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics,” Appl. Phys. Lett. 98(11), 113112 (2011).
[CrossRef]

J. Appl. Phys. (1)

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[CrossRef]

J. Lightwave Technol. (1)

F. A. Burton, S. A. Cassidy, “A complete description of the dispersion relation for thin metal film plasmon-polaritons,” J. Lightwave Technol. 8(12), 1843–1849 (1990).
[CrossRef]

J. Mater. Chem. C (1)

B. Koo, S. Kim, J.-L. Lee, “Indium-tin-oxide free transparent electrodes using a plasmon frequency conversion layer,” J. Mater. Chem. C 1(2), 246–252 (2012).
[CrossRef]

J. Mod. Opt. (1)

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[CrossRef]

Nat. Photonics (1)

S. Lal, S. Link, N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Opt. Commun. (1)

E. Kretschmann, “Decay of non radiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun. 6(2), 185187 (1972).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Org. Electron. (1)

J. Frischeisen, D. Yokoyama, A. Endo, C. Adachi, W. Brütting, “Increased light outcoupling efficiency in dye-doped small molecule organic light-emitting diodes with horizontally oriented emitters,” Org. Electron. 12(5), 809–817 (2011).
[CrossRef]

Phys. Rev. B (1)

D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B 12(10), 4036–4046 (1975).
[CrossRef]

Phys. Rev. B Condens. Matter (2)

F. Yang, J. R. Sambles, G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
[CrossRef] [PubMed]

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

J. Bellessa, C. Bonnand, J. C. Plenet, J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[CrossRef] [PubMed]

Physica E (1)

H. J. Queisser, “Photovoltaic conversion at reduce dimensions,” Physica E 14(1-2), 1–10 (2002).
[CrossRef]

Polym. Int. (1)

S. Chénais, S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012).
[CrossRef]

Surf. Sci. (1)

P. Ferguson, R. F. Wallis, M. Belakhovsky, J. P. Jadot, J. Tomkinson, “Surface plasma waves in silver and gold,” Surf. Sci. 76(2), 483–498 (1978).
[CrossRef]

Synth. Met. (1)

R. Xia, M. Campoy-Quiles, G. Heliotis, P. Stavrinou, K. S. Whitehead, D. D. C. Bradley, “Significant improvements in the optical gain properties of oriented liquid crystalline conjugated polymer films,” Synth. Met. 155(2), 274–278 (2005).
[CrossRef]

Other (3)

The value of the phase of the first oscillator term is misprinted in [21]. Donal D. C. Bradley, Director of the Centre for Plastic Electronics, Lee-Lucas Professor of Experimental Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK provided the correct value of −0.981 (personal communication in 2012).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press,1985).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustrations of (a) a generic OLED exhibiting a tightly-bound SPP mode at the metal electrode propagating in the z-direction, and (b) the F8BT-Ag-SiO2 SMI waveguide studied in this work . (c-f) Schematic representations of |Hy|versus x cross-sections for: SB, (c) SL, (d) AB, (e) and AL (f) for an antisymmetric IMI waveguide (where 0 < ( ( | ε cover- ε substrate | / ε substrate ) × 100 ) < 1 % ). Blue dotted line in (e, f) represents Hy versus x cross-sections of the AB and AL modes, respectively.

Fig. 2
Fig. 2

(a-c) Neff and (d-f) Log10(L) versus t calculated for (a, d) the PRSS case, (b, e) the CSS case and (c, f) the CG case for all four SPP modes supported by the F8BT-Ag-SiO2 SMI waveguide

Fig. 3
Fig. 3

D as a function of t, in F8BT (a,c,e,g) and SiO2 (b,d,f,h) for: (a,b) SB; (c,d) SL; (e,f) AB; (g,h) AL for three SMI waveguide dielectric constant cases.

Fig. 4
Fig. 4

(a) Hy and (b-g) |Hy| calculated at t = 47 nm (a,b,d,f) and t = 80 nm (c,e,g) for the SB (a-c), SL (d,e) and AB (f,g) modes for all three SMI waveguide dielectric constant cases. Schematic illustrations of the F8BT-Ag-SiO2 SMI waveguide inset in (b,c) represent the |Hy| of the highly radiative ‘leaky’ SB mode at t = 47 nm and the tightly-bound SB mode t = 80 nm, respectively. AL mode not included.

Tables (2)

Tables Icon

Table 1 ε values for the substrate (SiO2) and cover (F8BT) media for the three dispersion relation conditions

Tables Icon

Table 2 Boundary conditions (A and B) for the real part of the complex surface plasmon polariton wavevector, k r , at specific metal film thickness ranges (tstart to tend) for the four mode solutions (SB, SL, AB, and AL) for the three dispersion relation conditions (PRSS, CSS, and CG). Metal film thicknesses are entered into Lines 10 and 11 and boundary conditions (A and B) are entered into Line 12 of the code.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

α 1 ε 2 α 2 ε 1 + ( ε 0 α 1 + ε 1 α 0 ) + ( ε 0 α 1 ε 1 α 0 ) exp ( 2 α 1 t ) ( ε 0 α 1 + ε 1 α 0 ) ( ε 0 α 1 ε 1 α 0 ) exp ( 2 α 1 t ) = 0
α 0 2 = k 2 k 0 2 ε 0
α 1 2 = k 2 k 0 2 ε 1
α 2 2 = k 2 k 0 2 ε 2                                                          
N eff = k r / k 0
L = 1 / k i
D = 1 / α r
S i O 2 :   f ( x ) = [ cos h ( α 1 x ) + α 0 ε 1 α 1 ε 0 sin h ( α 1 t ) ] e α 2 ( x t ) ,         x > t
Ag :   f ( x ) = cos h ( α 1 x ) + α 0 ε 1 α 1 ε 0 sin h ( α 1 x ) ,         0 < x < t
F 8 B T :   f ( x ) = e α 0 x ,       x < 0.

Metrics