Abstract

A tunable fiber polarizing filter based on selectively filling a single hole of a solid-core polarization maintaining photonic crystal fiber with high index liquid are proposed and demonstrated. Two groups of polarization-dependent resonance dips in the transmission spectrum of the single-hole-infiltrated photonic crystal fiber are observed. Theoretical and experimental investigations reveal that these resonant dips result from the couplings between the silica core fundamental mode at x or y polarization and high order modes (TM01, TE01 and HE11) in the liquid core. Especially, a distinctive characteristic near the strongest resonant point (SRP) is demonstrated and revealed. The transmission loss and spectral shape at the SRP wavelength are extremely sensitive to the filling length and temperature (or Refractive Index, RI), which permits a fiber bandpass or bandstop polarizing filter with a good performance on tunability and controllability. Furthermore, the narrowband dips on both sides of the SRP wavelength have wavelength-dependent tuning velocities, providing a method to achieve flexible and controllable filters as well as two- or multi-parameter sensors with a compact structure.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ortega, L. Dong, W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, V. N. Bagratashvili, R. I. Laming, “High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers,” IEEE Photon. Technol. Lett. 9(10), 1370–1372 (1997).
    [CrossRef]
  2. Y. Wang, L. Xiao, D. N. Wang, W. Jin, “In-fiber polarizer based on a long-period fiber grating written on photonic crystal fiber,” Opt. Lett. 32(9), 1035–1037 (2007).
    [CrossRef] [PubMed]
  3. Z. Yan, K. Zhou, L. Zhang, “In-fiber linear polarizer based on UV-inscribed 45° tilted grating in polarization maintaining fiber,” Opt. Lett. 37(18), 3819–3821 (2012).
    [CrossRef] [PubMed]
  4. X. Zheng, Y. Liu, Z. Wang, T. Han, B. Tai, “Tunable single-polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photon. Technol. Lett. 23(11), 709–711 (2011).
    [CrossRef]
  5. W. Qian, C. L. Zhao, Y. Wang, C. C. Chan, S. Liu, W. Jin, “Partially liquid-filled hollow-core photonic crystal fiber polarizer,” Opt. Lett. 36(16), 3296–3298 (2011).
    [CrossRef] [PubMed]
  6. W. Lei, T. T. Alkeskjold, A. Bjarklev, “Compact design of an electrically tunable and rotatable polarizer based on a liquid crystal photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21(21), 1633–1635 (2009).
    [CrossRef]
  7. D. K. Wu, B. T. Kuhlmey, B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [CrossRef] [PubMed]
  8. Y. Wang, M. Yang, D. Wang, C. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photon. Technol. Lett. 23(20), 1520–1522 (2011).
    [CrossRef]
  9. H. Liang, W. Zhang, P. Geng, Y. Liu, Z. Wang, J. Guo, S. Gao, S. Yan, “Simultaneous measurement of temperature and force with high sensitivities based on filling different index liquids into photonic crystal fiber,” Opt. Lett. 38(7), 1071–1073 (2013).
    [CrossRef] [PubMed]
  10. M. Luo, Y. G. Liu, Z. Wang, T. Han, Z. Wu, J. Guo, W. Huang, “Twin-resonance-coupling and high sensitivity sensing characteristics of a selectively fluid-filled microstructured optical fiber,” Opt. Express 21(25), 30911–30917 (2013).
    [CrossRef] [PubMed]
  11. S. Savin, M. J. F. Digonnet, G. S. Kino, H. J. Shaw, “Tunable mechanically induced long-period fiber gratings,” Opt. Lett. 25(10), 710–712 (2000).
    [CrossRef] [PubMed]
  12. B. T. Kuhlmey, B. J. Eggleton, D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol. 27(11), 1617–1630 (2009).
    [CrossRef]
  13. B. Guan, H. Tam, X. Tao, X. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(6), 675–677 (2000).
    [CrossRef]

2013 (2)

2012 (1)

2011 (3)

X. Zheng, Y. Liu, Z. Wang, T. Han, B. Tai, “Tunable single-polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photon. Technol. Lett. 23(11), 709–711 (2011).
[CrossRef]

W. Qian, C. L. Zhao, Y. Wang, C. C. Chan, S. Liu, W. Jin, “Partially liquid-filled hollow-core photonic crystal fiber polarizer,” Opt. Lett. 36(16), 3296–3298 (2011).
[CrossRef] [PubMed]

Y. Wang, M. Yang, D. Wang, C. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photon. Technol. Lett. 23(20), 1520–1522 (2011).
[CrossRef]

2009 (3)

2007 (1)

2000 (2)

S. Savin, M. J. F. Digonnet, G. S. Kino, H. J. Shaw, “Tunable mechanically induced long-period fiber gratings,” Opt. Lett. 25(10), 710–712 (2000).
[CrossRef] [PubMed]

B. Guan, H. Tam, X. Tao, X. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(6), 675–677 (2000).
[CrossRef]

1997 (1)

B. Ortega, L. Dong, W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, V. N. Bagratashvili, R. I. Laming, “High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers,” IEEE Photon. Technol. Lett. 9(10), 1370–1372 (1997).
[CrossRef]

Alkeskjold, T. T.

W. Lei, T. T. Alkeskjold, A. Bjarklev, “Compact design of an electrically tunable and rotatable polarizer based on a liquid crystal photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21(21), 1633–1635 (2009).
[CrossRef]

Bagratashvili, V. N.

B. Ortega, L. Dong, W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, V. N. Bagratashvili, R. I. Laming, “High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers,” IEEE Photon. Technol. Lett. 9(10), 1370–1372 (1997).
[CrossRef]

Bjarklev, A.

W. Lei, T. T. Alkeskjold, A. Bjarklev, “Compact design of an electrically tunable and rotatable polarizer based on a liquid crystal photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21(21), 1633–1635 (2009).
[CrossRef]

Chan, C. C.

de Sandro, J. P.

B. Ortega, L. Dong, W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, V. N. Bagratashvili, R. I. Laming, “High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers,” IEEE Photon. Technol. Lett. 9(10), 1370–1372 (1997).
[CrossRef]

Digonnet, M. J. F.

Dong, L.

B. Ortega, L. Dong, W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, V. N. Bagratashvili, R. I. Laming, “High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers,” IEEE Photon. Technol. Lett. 9(10), 1370–1372 (1997).
[CrossRef]

Dong, X.

B. Guan, H. Tam, X. Tao, X. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(6), 675–677 (2000).
[CrossRef]

Eggleton, B. J.

Gao, S.

Geng, P.

Guan, B.

B. Guan, H. Tam, X. Tao, X. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(6), 675–677 (2000).
[CrossRef]

Guo, J.

Han, T.

M. Luo, Y. G. Liu, Z. Wang, T. Han, Z. Wu, J. Guo, W. Huang, “Twin-resonance-coupling and high sensitivity sensing characteristics of a selectively fluid-filled microstructured optical fiber,” Opt. Express 21(25), 30911–30917 (2013).
[CrossRef] [PubMed]

X. Zheng, Y. Liu, Z. Wang, T. Han, B. Tai, “Tunable single-polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photon. Technol. Lett. 23(11), 709–711 (2011).
[CrossRef]

Huang, W.

Jin, W.

Kino, G. S.

Kuhlmey, B. T.

Laming, R. I.

B. Ortega, L. Dong, W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, V. N. Bagratashvili, R. I. Laming, “High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers,” IEEE Photon. Technol. Lett. 9(10), 1370–1372 (1997).
[CrossRef]

Lei, W.

W. Lei, T. T. Alkeskjold, A. Bjarklev, “Compact design of an electrically tunable and rotatable polarizer based on a liquid crystal photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21(21), 1633–1635 (2009).
[CrossRef]

Liang, H.

Liao, C.

Y. Wang, M. Yang, D. Wang, C. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photon. Technol. Lett. 23(20), 1520–1522 (2011).
[CrossRef]

Liu, S.

Liu, W. F.

B. Ortega, L. Dong, W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, V. N. Bagratashvili, R. I. Laming, “High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers,” IEEE Photon. Technol. Lett. 9(10), 1370–1372 (1997).
[CrossRef]

Liu, Y.

H. Liang, W. Zhang, P. Geng, Y. Liu, Z. Wang, J. Guo, S. Gao, S. Yan, “Simultaneous measurement of temperature and force with high sensitivities based on filling different index liquids into photonic crystal fiber,” Opt. Lett. 38(7), 1071–1073 (2013).
[CrossRef] [PubMed]

X. Zheng, Y. Liu, Z. Wang, T. Han, B. Tai, “Tunable single-polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photon. Technol. Lett. 23(11), 709–711 (2011).
[CrossRef]

Liu, Y. G.

Luo, M.

Ortega, B.

B. Ortega, L. Dong, W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, V. N. Bagratashvili, R. I. Laming, “High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers,” IEEE Photon. Technol. Lett. 9(10), 1370–1372 (1997).
[CrossRef]

Qian, W.

Reekie, L.

B. Ortega, L. Dong, W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, V. N. Bagratashvili, R. I. Laming, “High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers,” IEEE Photon. Technol. Lett. 9(10), 1370–1372 (1997).
[CrossRef]

Savin, S.

Shaw, H. J.

Tai, B.

X. Zheng, Y. Liu, Z. Wang, T. Han, B. Tai, “Tunable single-polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photon. Technol. Lett. 23(11), 709–711 (2011).
[CrossRef]

Tam, H.

B. Guan, H. Tam, X. Tao, X. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(6), 675–677 (2000).
[CrossRef]

Tao, X.

B. Guan, H. Tam, X. Tao, X. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(6), 675–677 (2000).
[CrossRef]

Tsypina, S. I.

B. Ortega, L. Dong, W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, V. N. Bagratashvili, R. I. Laming, “High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers,” IEEE Photon. Technol. Lett. 9(10), 1370–1372 (1997).
[CrossRef]

Wang, D.

Y. Wang, M. Yang, D. Wang, C. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photon. Technol. Lett. 23(20), 1520–1522 (2011).
[CrossRef]

Wang, D. N.

Wang, Y.

Wang, Z.

Wu, D. K.

Wu, D. K. C.

Wu, Z.

Xiao, L.

Yan, S.

Yan, Z.

Yang, M.

Y. Wang, M. Yang, D. Wang, C. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photon. Technol. Lett. 23(20), 1520–1522 (2011).
[CrossRef]

Zhang, L.

Zhang, W.

Zhao, C. L.

Zheng, X.

X. Zheng, Y. Liu, Z. Wang, T. Han, B. Tai, “Tunable single-polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photon. Technol. Lett. 23(11), 709–711 (2011).
[CrossRef]

Zhou, K.

IEEE Photon. Technol. Lett. (5)

B. Ortega, L. Dong, W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, V. N. Bagratashvili, R. I. Laming, “High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers,” IEEE Photon. Technol. Lett. 9(10), 1370–1372 (1997).
[CrossRef]

X. Zheng, Y. Liu, Z. Wang, T. Han, B. Tai, “Tunable single-polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photon. Technol. Lett. 23(11), 709–711 (2011).
[CrossRef]

W. Lei, T. T. Alkeskjold, A. Bjarklev, “Compact design of an electrically tunable and rotatable polarizer based on a liquid crystal photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21(21), 1633–1635 (2009).
[CrossRef]

Y. Wang, M. Yang, D. Wang, C. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photon. Technol. Lett. 23(20), 1520–1522 (2011).
[CrossRef]

B. Guan, H. Tam, X. Tao, X. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(6), 675–677 (2000).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Lett. (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic diagram of the experimental setup for the measurement. (b) Cross-section of the PM-PCF. (c) Schematic diagram of the selectively filled PM-PCF.

Fig. 2
Fig. 2

(a) The modal effective indices of the y-polarization HE11 silica core mode ny, the liquid core TM01 mode nly (black line) and the liquid core HE21 mode n2y (olive line). (b) The mode fields of the three modes at different wavelengths.

Fig. 3
Fig. 3

The simulated temperature tuning velocities of the dips at different wavelengths. The red line is at 25 °C and the black line is at 30 °C.

Fig. 4
Fig. 4

The simulated normalized transmission spectrum at different temperatures.

Fig. 5
Fig. 5

The simulated normalized transmission spectra with different filling lengths.

Fig. 6
Fig. 6

Transmission spectra of the single-hole-infiltrated PCF.

Fig. 7
Fig. 7

(a) The transmission spectrum at 23 °C, 30 °C, 37 °C. (b) The temperature responses of dip A1 and dip B1.

Fig. 8
Fig. 8

The response of the dip A1 and dip B1 to the force at a certain temperature.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

L c = λ 2Δn
I I 0 = COS 2 ( L 2 L c π)= COS 2 ( ΔnL λ π)
πL(λ,T)Δn(λ,T) λ(T) =(k+ 1 2 )π
λ(T)= L(λ,T)Δn(λ,T) k+ 1 2
S= dλ dT = λ(ΔndL/L+Δn/T) Δ n g

Metrics